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ABSTRACT The many quantitative traits of interest to plant breeders are often genetically correlated,
which can complicate progress from selection. Improving multiple traits may be enhanced by identifying
parent combinations – an important breeding step – that will deliver more favorable genetic correlations (rG).
Modeling the segregation of genomewide markers with estimated effects may be one method of predicting
rG in a cross, but this approach remains untested. Our objectives were to: (i) use simulations to assess the
accuracy of genomewide predictions of rG and the long-term response to selection when selecting crosses
on the basis of such predictions; and (ii) empirically measure the ability to predict genetic correlations using
data from a barley (Hordeum vulgare L.) breeding program. Using simulations, we found that the accuracy
to predict rG was generally moderate and influenced by trait heritability, population size, and genetic
correlation architecture (i.e., pleiotropy or linkage disequilibrium). Among 26 barley breeding populations,
the empirical prediction accuracy of rG was low (-0.012) to moderate (0.42), depending on trait complexity.
Within a simulated plant breeding program employing indirect selection, choosing crosses based on
predicted rG increased multi-trait genetic gain by 11–27% compared to selection on the predicted cross
mean. Importantly, when the starting genetic correlation was negative, such cross selection mitigated or
prevented an unfavorable response in the trait under indirect selection. Prioritizing crosses based on
predicted genetic correlation can be a feasible and effective method of improving unfavorably correlated
traits in breeding programs.
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Quantitative traits oftenexhibit complex relationshipswithoneanother,
with ramifications for disease epidemiology, evolutionaryprocesses, and
plant and animal improvement. These relationships may manifest as
genetic correlations, which can be caused by shared genetic influence
(i.e., pleiotropy) or the non-random association of alleles (i.e., linkage
disequilibrium) (Lynch andWalsh 1998). Investigations in quantitative
genetics commonly assume that many loci of small effect govern traits
[i.e. “infinitesimal model” (Fisher 1919)]. This suggest that a large pro-
portion of the genome should contribute to phenotypic variation, a
hypothesis that has been supported by recent genome-wide analyses

of complex traits (Mackay 2010; Boyle et al. 2017). If true for multiple
complex traits, a natural corollary follows that pleiotropy or close link-
age of trait-specific genes is widespread. Recent studies attempting to
identify quantitative trait loci (QTL) influencing multiple traits using
dense genomewide markers have provided support for this idea, re-
porting extensive pleiotropy or strong genetic correlations (Korte et al.
2012; Lee et al. 2012; Bulik-Sullivan et al. 2015; Schaid et al. 2016; Deng
and Pan 2017).

Plant breeders routinely select onmultiple traits, but progress can
be complicated by genetic correlations. If two traits are favorably
correlated, selection can simultaneously improve both by tandem
selection, indirect selection, or a trait index (Bernardo 2010). Un-
favorable correlations, meanwhile, are common and often the bane
of the breeder. In crop improvement, notorious examples include
grain yield and grain protein content in wheat (Triticum aestivum
L.; Simmonds 1995), grain yield and plant height in maize (Zea
mays L.; Chi et al. 1969), and seed protein and oil content in soybean
(Glycine max L.; Bandillo et al. 2015). The directions of such cor-
relations imply an unfavorable response in one trait when selecting
on another (Falconer and Mackay 1996), and the underlying cause
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will impact the prospects of long-term improvement. Selection on
traits with shared, antagonistic genetic influence is functionally con-
strained, but correlations induced by linkage disequilibrium are
transient and can be disrupted by recombination (Falconer and
Mackay 1996; Lynch and Walsh 1998).

Genomewide selection has become popular among plant breeders
as a method of predicting the merit of unphenotyped individuals
using genomewide markers and a phenotyped training population
(Meuwissen et al. 2001). Typical prediction models are univariate
(i.e., one trait), but multivariate models have recently been explored
as a means of borrowing information from genetically correlated
traits and improving the prediction accuracy of both traits (Calus
and Veerkamp 2011; Jia and Jannink 2012). Selection on multiple
traits using predicted breeding values would proceed as if using
phenotypic values, relying on procedures such as tandem selection,
independent culling levels, or the construction of a trait index
(Bernardo 2010), with most studies of multi-trait genomewide se-
lection using the latter (Combs and Bernardo 2013; Beyene et al.
2015; Sleper and Bernardo 2018; Tiede and Smith 2018).

These models and selection methods implicitly assume that the
breeding population has already been developed from selected parents.
Therefore, the genetic variance of each trait, and the genetic correlation
between traits, bothofwhichdetermine thedirect or correlated response
to selection (Falconer and Mackay 1996), are fixed parameters of the
population. In addition tomore accurate selectionwithin an established
population, multi-trait genetic gain could be increased by developing
better populations through deliberate selection of parent combinations
with a more ideal mean, larger genetic variance, and more favorable
genetic correlation. Typically, breeders select parents using the expected
population mean, which can reliably be predicted as the mean of the
two parents (Bernardo 2010). Recently developed methods that rely on
in silico simulations (Bernardo 2014; Mohammadi et al. 2015) or de-
terministic equations (Zhong and Jannink 2007; Lehermeier et al. 2017;
Osthushenrich et al. 2017) have been proposed to predict the genetic
variance in a potential cross. These procedures model the expected
segregation of genomewide markers with estimated effects, and
early validation experiments suggest that such procedures may be
useful (Lian et al. 2015; Tiede et al. 2015; Osthushenrich et al. 2017;
Neyhart and Smith 2019).

Predictions of the population mean and genetic variance could be
used todiscriminate amongpotential crosseson thebasis of the expected
mean of selected progeny in those crosses. This can be quantified by the
usefulness criterion (Schnell and Utz 1975), or the superior progeny
mean (Zhong and Jannink 2007). The superior progeny mean assumes
selection on a single trait, yet if two traits are genetically correlated, a
response to selection would also be expected in a second trait. This
“correlated progeny mean,” as we will refer to it, could be used to
further distinguish ideal crosses as long as the genetic correlation is
known or can be predicted. Though much research has focused on
predicting the genetic variance in breeding crosses (e.g., Souza and
Sorrells 1991; Bohn et al. 1999; Utz et al. 2001), little work has
addressed predicting the genetic correlation. The simulation ap-
proach codified by Mohammadi et al. (2015) generates such predic-
tions, but their accuracy and utility remain unexplored, and the use
of simulations can be computationally burdensome for a large num-
ber of potential crosses.

The ideal selection of crosses to simultaneously improve multiple
traits has been the focus of recent research. Allier et al. (2019) presented
theory and a deterministic equation to predict the genetic correlation
between two traits in multi- or bi-parental populations. While they
applied this equation to the case of parental contribution (treated as

a quantitative trait) correlated with an agronomic trait of interest, the
theory could be generalized to two or more traits in the traditional
sense. Additionally, Akdemir et al. (2019) applied a multi-objective
optimized breeding strategy in simulations to select parent combina-
tions and improve two unfavorably correlated traits. This approach
solves the multiple objective optimization problem of maximizing the
genetic gain of two or more traits while constraining inbreeding. Their
maximization objective accounts for both the predicted mean and
genetic variance of a cross, but does not consider the predicted genetic
correlation between traits. In theory, such information could be in-
cluded in this optimization framework, as long as predictions are
accurate.

The objectives of this study were to (i) use simulations to assess the
accuracy of genomewide predictions of genetic correlations and the
long-term response to selection when selecting crosses on the basis of
superior/correlated progeny means; and (ii) empirically measure the
ability topredict genetic correlations using data fromabarley (Hordeum
vulgare L.) breeding program.

METHODS AND MATERIALS

Theory
Below, we first outline a deterministic prediction of the genetic variance
of a single trait and the correlation between traits in a recombinant
inbred line (RIL)populationassuming two fully inbredparents, bi-allelic
QTL, and no dominance or epistasis. This derivation follows the
notation presented in Zhong and Jannink (2007); others have de-
termined equations for the expected genetic variance in bi-parental
populations of intermediate selfing generations (Lehermeier et al.
2017) or multi-parent populations (Allier et al. 2019), and this
derivation could be applied to such circumstances. We then use
these predictions to determine the superior progeny mean and cor-
related progeny mean for a cross.

Suppose that L(k) QTL influence the kth quantitative trait, and in the
mth cross Lm(k) QTL are segregating for that trait (where Lm(k) # L(k)).
The expected genetic variance in the cross is the sum of the variance of
each locus plus the covariance between pairs of loci. As noted in Zhong
and Jannink (2007), the genetic variance in cross m is

s2
GðmÞ ¼

XLm
i¼1

a2
i þ 2

X
i, j

12 2cij
1þ 2cij

aiaj; (1)

where ai and aj are the allele substitution effects of the ith and jth loci,
respectively and cij is the recombination fraction between the ith and
jth loci. As expected, loci that are genetically unlinked (i.e., indepen-
dent, cij ¼ 0:5) will have a covariance of 0. The covariance can be
generalized across coupling and repulsion phase linkage by setting
the allele substitution effectsþai andþaj to those of the first parent
and2ai and2aj to those of the second parent (Zhong and Jannink
2007).

The single-trait covariance term in Equation (1) can be mod-
ified to calculate the expected genetic covariance between two
traits, 1 and 2:

sGð1;2ÞðmÞ ¼
XLmð1Þ

i¼1

XLmð2Þ

j¼1

12 2cið1Þjð2Þ
1þ 2cið1Þjð2Þ

aið1Þajð2Þ; (2)

where cið1Þjð2Þ is the recombination fraction between the ith locus of
trait 1 and the jth locus of trait 2, aið1Þ is the allele substitution effect of
the ith locus of trait 1 and ajð2Þ is the allele substitution effect of the jth
locus of trait 2. Using the expected genetic variance of each trait
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calculated from Equation (1) and the expected covariance between
traits from Equation (2), the expected genetic correlation is

rGð1;2ÞðmÞ ¼
sGð1;2ÞðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
Gð1ÞðmÞs

2
Gð2ÞðmÞ

q : (3)

With estimates of the genetic variance for two traits and the genetic
correlation between the traits, we can rely on established theory to
estimate the superior progeny mean (mspðmÞ) and correlated prog-
eny mean in a cross. For trait 1, assumed under direct selection, the
superior progeny mean is

mspð1ÞðmÞ ¼ mð1ÞðmÞ þ kspsGð1ÞðmÞ; (4)

where mð1ÞðmÞ is the expected mean of trait 1 in the cross (estimated as
the mean breeding value of the parents) and ksp is the standardized
selection coefficient. It is worth noting that the deviation from mð1ÞðmÞ
in Equation (4) is the same as the direct response to selection,
Rð1Þ ¼ kspsGð1Þ, when the heritability is 1. The correlated response
of the second trait, after selection on the first, is RC

ð2Þ ¼ ksprGð1;2ÞsGð2Þ,
which, when expressed as a deviation from the expected mean of the
second trait, becomes the correlated progeny mean:

mC
spð2ÞðmÞ ¼ mð2ÞðmÞ þ ksprGð1;2ÞsGð2ÞðmÞ: (5)

Aswith phenotypic values of two traits in a population, estimates of the
superior progenymean and correlated progenymean could be used to
select crosses that maximize the genetic gain for both traits, through
independent culling levels or index selection (Bernardo 2010).

The equations above assume that the lociunder considerationare the
trueQTLinfluencingthequantitative traits. Since theeffectsof suchQTL
are usually unknown, the estimated effects of genomewide markers
in linkage disequilibrium with QTL can be used to make predictions
(Meuwissen et al. 2001). This is the basis of in silicomethods to predict
genetic variance and genetic correlation, such as the R package PopVar
(Mohammadi et al. 2015). The advantage of the deterministic equa-
tions is computational speed (about 130-fold faster, data not shown),
with a high or perfect correlation between predicted values (Figure S1).

Simulations
We conducted two simulations to assess the utility of predicting the
genetic correlation in a breeding cross. Our simulations were based on
observed marker genotypes of 1,570 North American two-row spring
barley lines genotyped with 3,072 single nucleotide polymorphism
(SNP) markers (Close et al. 2009), with genetic positions according
to a consensus linkage map (Muñoz-Amatriaín et al. 2011); all data
were obtained from the Triticeae Toolbox (https://triticeaetoolbox.org/
barley/; Blake et al. 2016).We used empirical marker data to initiate our
simulations in order to reflect the observed patterns of LDwithin North

American barley breeding lines (Jannink 2010).Marker genotypes were
arbitrarily coded as -1, 0, 1, where -1 was homozygous for the second
allele, 0 was heterozygous, and 1 was homozygous for the first allele.
After removing monomorphic and redundant SNPs (identical geno-
type calls and genetic positions), and SNPs and lines with more than
10% missing data, we were left with a marker matrix of 1,565 lines and
2,309 SNPs. We set the few heterozygous genotypes to missing and
imputed missing calls using the mode across each SNP. The genetic
map positions of completely coincident SNPs (i.e., due to low genetic
resolution) were jittered by adding a small value (1 · 1026 cM). These
data were used to define the genetic architecture of the simulated quan-
titative traits and form the initial pool from which to establish a base
training population.

Simulation 1 – Accuracy of predicting genetic correlations: In the
first simulation experiment, we assessed the conditions influencing
prediction accuracy of genetic correlations. We perturbed the herita-
bilities of two traits, the architecture defining the traits (i.e., number of
QTL) and genetic correlation, the initial genetic correlation, and the
base/training population size (Table 1). Simulations were initiated by
drawing 200 SNP markers to act as QTL. For each trait, 100 – L QTL
were assigned an effect of 0, where L was the effective number of QTL
(30 or 100). QTL effects were defined by a geometric series, as proposed
by Lande and Thompson (1990): for the kth QTL, the value of the
favorable homozygote was ak, the value of the heterozygote was 0,
and the value of the unfavorable homozygote was 2ak, where
a ¼ ð12 LÞ=ð1þ LÞ. The first allele at each QTL was randomly
assigned to be favorable or unfavorable and larger values were consid-
ered favorable for both traits. This randomization was performed in-
dependently for each trait.

Genetic correlations were generated according to three different
architecture types: pleiotropy, tight linkage, or loose linkage. For sim-
plicity, we assumed that the genetic architecture was governed entirely
by oneof the types.Under pleiotropy, the sampledQTL effectswerefirst
stored in an L · 2 matrix, A. The desired genetic correlation in the
base population (rGð0Þ) was achieved by multiplying matrix A by the
Choleski decomposition of the variance-covariance matrix Σ, which
contained 1 on the diagonal and rGð0Þ on the off-diagonal. This resulted
in a set of QTL with pleiotropic effects that varied in both magnitude
and sign for the two traits. Under tight linkage and loose linkage, each
SNP sampled to be an effective QTL for the first trait was paired with
another SNP that was sampled – with restrictions – to be an effective
QTL for the second trait. For tight linkage, this second SNP was re-
stricted to within 5 cM of the first SNP, and for loose linkage, this
second SNP was restricted to between 25 cM and 35 cM of the first
SNP. The QTL effects were again stored in the L · 2 matrix A, where
each rowwas a pair of QTL, and subsequently adjusted as above. Effects
of QTL influencing the second trait were then multiplied by matrix R,

n Table 1 In our two simulation experiments, we modified the heritability (h2) and number of quantitative trait loci (NQTL) of two traits, the
starting genetic correlation (rG(0)), correlation architecture, size of a training population (NTP), and model used to predicted genomewide
marker effects

Simulation experiment h2 NQTL rG(0)

Correlation
architecture NTP Model

Experiment 1 (prediction accuracy) Trait 1: 0.3, 0.6, 1 30, 100 20.5, 0, 0.5 Pleiotropy 150, 300, 450, 600 RR-BLUP
Trait 2: 0.3, 0.6, 1 Tight linkage BayesCp

Loose linkage
Experiment 2 (long-term response) Trait 1: 0.6 100 20.5, 0.5 Pleiotropy 600 RR-BLUP

Trait 2: 0.3, 0.6 Tight linkage
Loose linkage

Volume 9 October 2019 | Predicting Genetic Correlations | 3155

https://triticeaetoolbox.org/barley/
https://triticeaetoolbox.org/barley/


which contained estimates of linkage disequilibrium (LD; measured as
the pairwise correlation, r, between genotype states in the base popu-
lation) between QTL influencing the first trait and QTL influencing the
second trait. This adjustment resulted in base genetic correlations that
approximately matched the target, rGð0Þ (Figure S2).

The base/training population was first generated by randomly
sampling NTP individuals from the simulation starting material. For
each trait, the genotypic value of an individual was calculated as the
sum of the QTL allele effects carried by that individual, and the genetic
variance was calculated as the variance among genotypic values.
Phenotypic values were simulated by adding independent normally
distributed deviations to the genotypic values to achieve a starting
entry-mean heritability of h2p (Table 1) with no residual covariance
between traits. Individuals were assumed to be phenotyped in three
environments with one replication, and themean phenotypic value was
used for genomewide prediction. Marker effects were predicted using
the univariate model:

yip ¼ mp þ
XM
m¼1

ximump þ eip; (6)

where yip was the phenotypic mean of the ith individual for the pth
trait, mp was the population mean for the pth trait, xim was the allelic
state of the mth marker in the ith individual (i.e., -1, 0, or 1), ump was
the predicted effect of themth marker for the pth trait, and eip was the
associated error. We used twomodels to predict marker effects: ridge-
regression best linear unbiased prediction (RR-BLUP) and BayesCp
(Habier et al. 2011). Potential crosses were generated by randomly
sampling 50 pairs of individuals from the base population. We pre-
dicted the genetic correlation (̂rGð1;2Þ) for each potential cross using
Equations (1), (2), and (3), where a was substituted with ump. The
expected genetic correlation (rGð1;2Þ) was similarly computed but instead
using the known QTL effects instead of the predicted marker effects. Pre-
diction accuracy was defined as the correlation between the predicted and
expected genetic correlations. As a comparison, we also assessed predic-
tions of the trait-specific mean (m̂ðpÞ) and genetic variance (ŝ

2
GðpÞ) in each

cross. Each condition of this simulation was replicated 100 times.

Simulation 2 – Correlated response to selection: We conducted a
second simulation experiment to measure the long-term response of
two correlated traits under different cross selection strategies. The range
of perturbed parameters was smaller than in the first simulation (Table
1), though simulations were initiated as described above. We assumed
that a breeder wanted to simultaneously increase the genotypic value of
two quantitative traits through indirect selection, therefore positive
genetic correlations were favorable. The base/training population was
created by randomly sampling NTP = 600 individuals from the simu-
lation starting material. Informed by the results of the first simulation
(see below), we used only the simpler RR-BLUP model to predict
marker effects. Potential parents for the first breeding cycle were se-
lected by determining the best 30 individuals in training population
based on the predicted genotypic values of the first trait (the primary
trait under direct selection). We predicted the mean, genetic variance,
and genetic correlation for all possible non-reciprocal crosses between
the potential parents. We then calculated the superior progeny mean
of the first trait and the correlated progeny mean of the second trait
using the predicted parameters and Equations (4) and (5) with a stan-
dardized selection coefficient of ksp ¼ 2:06 (i.e., selection of the best 5%).

Twenty crosses were selected based on i) equal-weight sum of the
normalizedpredicted superiorprogenymeanof thefirst trait andpredicted
correlated response in the second trait ðm̂I

sp ¼ m̂spð1Þ þ m̂C
spð2ÞÞ, ii) the

predicted cross mean of the primary trait ðm̂ð1ÞÞ, or iii) random
selection. We will subsequently refer to the non-random cross se-
lection methods by the abbreviations CPM (correlated/superior
progeny mean) or FM (family, or cross, mean). From the selected
crosses, families of 50 recombinant inbred lines were simulated
using the qtl R package (Broman et al. 2003). Recombination events
were sampled according to the genetic map (Muñoz-Amatriaín et al.
2011), with the assumption of no crossover interference or muta-
tion. This resulted in a pool of 1,000 selection candidates. Finally,
50 potential parents for the next breeding cycle were chosen from
these candidates using predicted genotypic values of the first trait.
We simulated 10 cycles of recurrent selection (outlined in Figure 1),
during which marker effect estimates remained unchanged. Along
with the standardized selection response for each trait, we also
tracked the genetic variance of each trait, the genetic correlation
between traits, the frequency of favorable, unfavorable, and antag-
onistic (i.e., two alleles with opposite effect) QTL haplotypes, and
the proportion of QTL with fixed alleles. Simulations were repli-
cated 250 times, and we report the mean and 95% approximate
confidence interval for each measured variable.

Empirical validation
To empirically validate predictions of genetic correlations, we used phe-
notypic and genotypic data from a barley breeding program. The details
of data generation are described elsewhere (Neyhart and Smith 2019),

Figure 1 In the recurrent selection simulation (Simulation 2), a training
population (TP) was sampled and used to predict genomewide marker
effects. In the first cycle, potential parents were identified using direct
selection on predicted genotypic values (PGVs) of the first trait.
Crosses were selected by one of three methods and were used to
simulate selection candidates. Potential parents of the next cycle were
determined using direct selection on the first trait. Ten breeding cycles
were simulated. Any processes that relied on the predicted marker
effects are noted with a blue/gray box.
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but we include a brief overview below. A training population (TP) of
175 two-row spring barley lines was genotyped with 6,361 SNP markers
and phenotyped in four location-year environments for heading date (a
proxy for flowering time), Fusariumhead blight (FHB) severity (caused by
the fungal pathogen Fusarium graminearum Schwabe), and plant height.
To estimate the genetic correlation between pairs of traits in the TP, we
regressed the phenotypic observations of two traits, yp ¼ fyijpg; on
individuals (genotypes), environments, and their interaction, where i
indexes genotypes, j environments, and p traits. We fitted a bi-variate
mixed model:

yp ¼ 1mp þ tp þ gp þ ðgtÞp þ ep; (7)

where mp is the population mean, tp ¼ ftjpg the fixed environmental
effect, gp ¼ fgipg the random effect of genotypes, ðgtÞp ¼ fðgtÞijpg
the random interaction effect of genotypes and environment, and
ep ¼ feijpg the associated error. The distribution of random effects was
assumed to be multivariate normal such that: g � MVNð0;G5ΣÞ,
gt � MVNð0; ðZgGZ

0
g � ZtZ

0
tÞ5VÞ, and e � MVNð0; I5RÞ, where

G is the realized genomic relationship matrix, Zg is an incidence matrix
for individuals, Zt is an incidence matrix for environments, I is an
identity matrix, 5 denotes the Kronecker product between matrices
and � denotes the Hadamard product between matrices. The geno-
type, genotype-environment interaction, and residuals covariance
structures are

Σ ¼
"

s2
Gð1Þ sGð1;2Þ

sGð1;2Þ s2
Gð2Þ

#
;

V ¼
"

s2
gtð1Þ sgtð1;2Þ

sgtð1;2Þ s2
gtð2Þ

#
;

and

R ¼
"

s2
eð1Þ seð1;2Þ

seð1;2Þ s2
eð2Þ

#
:

Models were fitted using the R package sommer (Covarrubias-Pazaran
2016) and the genetic correlation was estimated from elements in Σ
using Equation (3).

Marker effects were estimated frommarker genotypes and phenotypic
best linear unbiased estimates (BLUES; i.e., genotypicmeans fromamodel
accounting for genotype, environment, and the interaction) of the TP
using the univariate model in Equation (6). Among all potential non-
reciprocal crosses between 813 offspring of the TP (n = 330,078), we used
estimated marker effects and the R package PopVar to predict the genetic
correlation for each pair of traits. (Predictions were generated early in the
study using this package, so for consistency we used those values, and not
those generated using the deterministic equations above.) Twenty-six
crosses were made based on the predictions, producing “validation fam-
ilies” ranging from 28 to 160 F5 lines. The criteria for selecting crosses are
described in Neyhart and Smith (2019) and rested primarily on predic-
tions of genetic variance for several traits relevant for the breeding pro-
gram. Validation families were phenotyped for the same three traits in
2 or 4 environments. Observations of heading date and plant height were
recorded for all families, but due to logistical constraints of the inoculated
disease nursery, only 14 families were phenotyped for FHB severity.

Validation family phenotypes were used to estimate the observed
genetic correlation in each family. We fitted a model modified from
Equation (7):

yp ¼ 1mp þ gp þ ep; (8)

where yp ¼ fyipg was the BLUE of genotypes in a validation family and
other terms as described above. The distribution of random genotypic
effects was assumedmultivariate normal such that g � MVNð0; I5ΣÞ,
where the genomic relationship matrix in Equation (7) was replaced
by an identity matrix, since validation families were ungenotyped and
equally related within a family. Predictive ability was measured as the
correlation between predicted and estimated genetic correlations across
validation families, and the significance of this coefficient was tested
using 1,000 bootstrapping replicates. Note that predictive ability is cal-
culated by comparing predictions with phenotype-based observations,
whereas prediction accuracy compares predictions with the true geno-
typic parameter (unobservable in our empirical experiment).

Data availability
Marker data for initiating the simulations and all data used in the
empirical validation experiment is available from the Triticeae Toolbox
(T3; https://triticeaetoolbox.org/barley/). Genomewide marker data for
empirical validation is also available from the Data Repository for the
University of Minnesota (DRUM): https://conservancy.umn.edu/
handle/11299/204785. All simulations and analyses were performed
in R (v. 3.5.1; R Core Team 2018) and relevant scripts are located in
the GitHub repository https://github.com/UMN-BarleyOatSilphium/
GenCorPrediction. Instructions are included in this repository for
downloading data from T3. Supplemental material available at FigShare:
https://doi.org/10.25387/g3.8980055.

RESULTS

Factors influencing predictions of genetic correlation
In our simulation, prediction accuracy for the genetic correlation in
potential crosses was most influenced by trait heritability, training
population size (NTP), and genetic architecture. We provide a cross-
section of results in Figure 2, and all results for the first simulation are
displayed in Figure S3 and Table S1. Accuracy increased additively as a
function of the heritability of both simulated traits, but only reached a
maximum of about 0.81 under the most ideal conditions (Figure S3,
Table S1). On average, accuracy increased by about 1.5-fold when
moving from NTP = 150 to NTP = 600. We generally did not observe
a pattern of diminishing returns when increasing NTP, though some
evidence of that pattern was present under the tight linkage architecture
(Figure 2).

Between all correlation architectures, tight linkage resulted in the
highest prediction accuracy, followed by loose linkage and then pleiot-
ropy. The difference in accuracyunder tight linkage vs. loose linkagewas
on average 0.071 (17%) and this difference under loose linkage vs.
pleiotropy was 0.017 (6.2%). With tight linkage and loose linkage ge-
netic architectures, accuracy was slightly higher when 100 vs. 30 QTL
influenced both traits (a difference of about 0.04, or 10%), but the
reverse was true under pleiotropy, where the accuracy was about 8%
lower (a difference of about 0.03) with more QTL (Figure 2, Table S1).
Interestingly, an interaction was apparent between the genetic archi-
tecture and the prediction model. Under pleiotropy and tight linkage,
there was a slight advantage to using the BayesCp model over
RR-BLUP, particularly when 30 QTL influenced each trait. This
difference was quite slim, however, with a boost to accuracy of only
about 0.015 (3%).

The family mean and genetic variance of each trait in potential
crosses were almost always predicted with greater accuracy than the
genetic correlation (Figure 3, Table S1). In general, the familymean was
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predicted most accurately, followed by the genetic variance and the
genetic correlation. (The genetic variance of one trait was occasionally
predicted more accurately than the family mean of another trait, but
only if the heritability of the first trait was much less than the second.)
This trend was consistent across training population sizes, prediction
models, and genetic architectures. The average (and range in) predic-
tion accuracy was 0.87 (0.64, 1.0) for the family mean, 0.66 (0.34, 0.96)
for the genetic variance, and 0.48 (0.18, 0.81) for the genetic correlation.

Empirical validation of predicted genetic correlations
We used genomewide markers and phenotypic data to empirically
estimate the genetic correlation for three pairs of quantitative traits
in our 175-line training population (TP). The genetic correlation was
-0.84 between Fusarium head blight (FHB) severity and heading date,
-0.44 between FHB severity and plant height, and 0.48 between head-
ing date and plant height (Table 2). These estimates were reflected in
predictions of the cross mean and genetic correlation of 330,078 po-
tential crosses (Figure 4, Table 2). The average predicted genetic cor-
relation among the potential crosses was -0.54 for FHB severity and
heading date, -0.26 for FHB severity and plant height, and 0.24 for
heading date and plant height. Though the genetic correlations between
FHB severity and both heading date and plant height were unfavorable
(earlier-flowering, shorter, and disease resistant plants are desirable),
predictions implied that progress could be made by selecting populations
with more favorable genetic correlations. For instance, more than 2,400
(0.73%) potential crosses were predicted to have a favorable (i.e., positive)
correlation between FHB severity and heading date.

The mean (and range) of estimated genetic correlations among the
validation families was -0.18 (-0.72, 0.58) for FHB severity and heading

date, -0.038 (-0.67, 0.64) for FHB severity and plant height, and -0.13
(-0.64, 0.69) for heading date and plant height (Table 3). Estimates of
predictive ability for genetic correlations ranged from -0.012 to 0.41
(Table 3).We could only validate predictions of the correlation between
heading date and plant height, where all 26 validation families (VF)
were phenotyped. The predictive abilities for remaining trait combina-
tions were not significantly different from zero (P . 0.05; bootstrap-
ping). The ability to predict the genetic correlation appeared to coincide
with the heritability of both traits; the entry-mean heritability in the TP
(and in the VF)was 0.45 (0.11) for FHB severity, 0.96 (0.78) for heading
date, and 0.52 (0.74) for plant height (Neyhart and Smith 2019).

Long-term response with different cross
selection strategies
Our second simulation showed that the genetic gain for two correlated
quantitative traits was impacted by the base genetic correlation, the
genetic architecture, and the strategy to select crosses (Figure 5). We
found little difference in the outcome when the heritability of the
second trait was 0.6; therefore, we highlight results when the heritabil-
ity of the second trait was 0.3, a more realistic situation for indirect
selection (Bernardo 2010). When measuring progress via a trait index
(Figure 5A), we found that selecting crosses based on the predicted
correlated superior progeny mean (CPM) resulted in a greater re-
sponse than using the predicted cross mean (FM) or by random
selection. Under all genetic architectures, the advantage of imposing
non-random cross selection became clear after 1 breeding cycle. Sub-
sequently, after 3 cycles, selecting crosses based on CPM resulted in
higher gain than by selecting based on FM. Only after 9 – 10 cycles did

Figure 3 Parameters of a cross were predicted with varying degrees
of accuracy in our simulation. Predictions of the cross mean (m̂, blue)
were most accurate, followed by genetic variance (ŝ2

G, orange) and
genetic correlation (r̂G, red); this ranking was consistent across trait
heritabilities, training population size, and genetic correlation archi-
tecture (loose linkage, tight linkage, or pleiotropy). Lines denote the
mean of 100 simulation replicates, and ribbons denote a 95% confi-
dence interval. Results are restricted to a base genetic correlation of
0.5, RR-BLUP prediction model, and 100 QTL. (See Table S1 for
complete results.)

Figure 2 The prediction accuracy of the genetic correlation in a cross
increased with larger training populations and greater trait heritabil-
ity. Accuracy was also influenced by genetic correlation architec-
ture (loose linkage, tight linkage, or pleiotropy), prediction model
[BayesCp (solid) or RR-BLUP (dashed)], and number of QTL [30 (navy)
or 100 (orange)]. Lines denote the mean of 100 simulation replicates,
and ribbons denote a 95% confidence interval. Results are restricted
to a base genetic correlation of 0.5. (See Figure S3 and Table S1 for
complete results.)
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random cross selection achieve equivalent or superior genetic gain
compared with FM selection, though it never outperformed selection
using CPM.

Gain from selection, and marginal differences between selection
methods, depended on the genetic architecture and correlation. The
final genetic gain was, on average, less when the genetic correlation
was negative.With pleiotropic architecture, the reduction in genetic
gain from a correlation of 0.5 to -0.5 was more severe (a roughly
100% decrease) than with tight or loose linkage architectures
(a roughly 20% decrease). After 10 cycles, the marginal genetic
response (based on an index) when using CPM vs. FM cross selec-
tion ranged from 0.30 (11%), with tight linkage architecture and
positive correlation, to 0.53 (27%), with loose linkage architecture
and negative correlation.

When considering traits individually, we found that much of the
advantage of selecting crosses on CPM was realized in the correlated
response of the second trait (Figure 5B). Selection on CPM or FM
yielded similar responses in the first trait, except under pleiotropic
architecture and a positive genetic correlation. Again, random cross
selection led to the lowest response, though in some cases it became
equivalent to selection on CPM or FM after 10 breeding cycles. Genetic
gain was consistent for the primary trait, with a plateau reached after
6 – 8 cycles of selection. Conversely, we observed a rapid plateauing in
the genetic gain of the second trait when the architecture was not
pleiotropic. Here, when the genetic correlation was positive, the corre-
lated response in the second trait was also positive, as expected, with a
greater response under CPM selection. When the genetic correlation
was negative, FM or random cross selection led to a negative response

in the second trait, which was prevented under CPM selection (Figure
5B). Under pleiotropic conditions, the correlated response in the sec-
ond trait matched expectations given the genetic correlation; however,
CPM selection increased the positive response with positive correlation
and mitigated the negative response with negative correlation.

As expected, the genetic variance for both traits decreased over cycles
of selection (Figure 6A), and by cycle 10, most had been exhausted.
Although genetic variance for the first trait declined similarly under
varying architectures, the loss of variance for the second trait was more
precipitous when the architecture was defined by linkage vs. pleiotropy.
Under the latter, genetic variance for the second trait was reduced at a
rate comparable to the first trait (Figure 6A). We found that cross
selection by FM always led to the most rapid reduction of genetic
variance, while this decay was slower when selecting on CPM and
slower yet with randommating. This ranking among selectionmethods
was very apparent for the first trait (and for the second trait under
pleiotropic architecture), but marginal differences were much less for
the second trait.

The genetic correlation in the breeding population consistently
declined in absolute value, moving toward zero under all simulated
conditions (Figure 6B). The genetic architecture impacted the rate of
change, with the most rapid movement under loose linkage, followed
by tight linkage and then pleiotropy. The correlation initially became
more negative when selection was imposed on the base population (i.e.,
cycle 0 to cycle 1). This change was much larger when the base corre-
lation (rGð0Þ) was positive; indeed, under non-pleiotropic architecture,
the genetic correlation became near-zero, or negative, after 1 cycle of
selection. Conversely, when rGð0Þ was negative, the genetic correlation
moved more steadily toward 0.When rGð0Þ was negative, we found that
selecting crosses on CPM usually led to a more negative genetic corre-
lation than FM or random selection, particularly in the first 5 breeding
cycles.

Changes in haplotype frequency were greatest when loose linkage
defined the correlation architecture, followed by tight linkage and
pleiotropy (Figure 7A). The change in haplotype frequencies was more
limited with negative rGð0Þ, particularly under pleiotropic architecture.
Selecting crosses on CPM led to a significantly higher increase in the
frequency of favorable haplotypes and a corresponding decrease in the
frequency of unfavorable haplotypes. Further, with non-pleiotropic

n Table 2 Estimated genetic correlation in the empirical barley
training population (r∧GðTPÞ) and the mean and range (in parentheses)
of the predicted genetic correlations among 330,078 potential crosses
(r∧gðPCÞ) for three pairs of quantitative traits

Trait 1 Trait 2 r̂GðTPÞ Mean (range) of r̂ gðPCÞ
FHBa Severity Heading Date 20.84 20.54 (20.94, 0.52)
FHB Severity Plant Height 20.44 20.26 (20.86, 0.63)
Heading Date Plant Height 0.48 0.24 (20.73, 0.87)
a
Fusarium head blight.

Figure 4 In the barley breeding population used to empirically validate predictions, the relationship between the predicted cross means (m̂) of
three pairs of traits for n = 330,078 potential crosses mirrored the overall distribution of predicted genetic correlations (̂rG), shaded from red
(negative) to blue (positive). FHB, Fusarium head blight.
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architecture we observed a greater reduction in the frequency of antag-
onistic haplotypes when selecting crosses by CPM than other methods.
As expected, the frequency of antagonistic haplotypes did not change
when the architecture was defined by pleiotropy (Figure 7A). Selection
increasingly drove QTL to fixation (Figure 7B), but the rate of fixation
was uneven for different cross selection methods. Choosing crosses on
FM led to the highest fixation rate, followed by CPM and then ran-
dom mating. There was a slightly higher fixation rate with positive
genetic correlation than with negative genetic correlation, and the
fixation rates for QTL influencing the first trait or second trait were
roughly equivalent.

DISCUSSION

Predictions of genetic correlations are feasible with
reliable training data
Our first simulation measured the prediction accuracy of genetic
correlations as a function of training population (TP) size, trait
heritability, predictionmodel, and genetic architecture. Our results
implicated the usual suspects driving genomewide prediction ac-
curacy for individual traits. Increasing the TP size and the herita-
bility of both traits improved accuracy, an expected result given the
importance of these parameters (Daetwyler et al. 2008; Wimmer
et al. 2013).

The impact of genetic architecture was curious. Genetic correla-
tions caused by loose linkage or pleiotropy led to lower prediction
accuracies compared to architecture defined by tight linkage (Figure
2). We hypothesize that the same phenomenon, albeit with oppo-
site effect, is responsible. Genomewide prediction models (i.e.,
RR-BLUP or BayesCp) assume that many more markers than true
QTL have non-zero effect on both traits. Our approach to predicting
genetic correlations relies on the recombination and segregation of
these markers, implying that all contribute to variability in genetic
variance and covariance, while only true QTL generate this variabil-
ity. With pleiotropy, this would manifest as a downward bias in the
covariance between traits, as we predict a greater possibility of re-
combination between markers than what is possible for the true
QTL. Under loose linkage, an opposite, upward bias in covariance
would be expected, as the many markers with uneven trait effects
would be predicted to co-segregate more often than what is possible
for the true QTL. Indeed, when we calculated the average bias of the
predicted genetic correlations, we observed a roughly 30% upward
bias under loose linkage and an opposite 30% downward bias under
pleiotropy (Figure S4). Additionally, though the bias in predicting
genetic covariance was always negative, it was less so under loose
linkage than under pleiotropy. This bias, particularly if uneven
across predicted crosses, could lead to the observed loss in accuracy.
Practically, the impact of genetic architecture may be less important,

since architecture is generally immutable and the effect on predic-
tion accuracy is small (Figure 2).

Though prediction accuracies were not appreciably different be-
tween models, it is worth mentioning potential causes and impacts.
With fewer QTL, we observed higher prediction accuracies under the
BayesCp model, an unsurprising result given the known advantage of
such models with heterogenous contributions of SNPs to total variance
(Daetwyler et al. 2010); however, differences between models were
smaller with architectures defined by more QTL. Although not ob-
served in our simulations, we might expect the genetic diversity in
the training population to play a role in prediction accuracy. Lower
diversity, defined by lower effective population sizes and fewer distinct
haplotype blocks, will lead to a spreading of the variance across few sets
of markers in high LD (Daetwyler et al. 2008, 2010). This spreading
would also exacerbate the observed upward bias under loose linkage
architecture and downward bias under pleiotropic architecture. Fur-
ther, the larger haplotype blocks accompanying lower diversity would
cloud differences in predictions between tight linkage and loose linkage
architectures. Predictions of genetic correlations in barley and other
inbreeding crops may be particularly sensitive to this problem, given
the long-range persistence of LD observed in these species (Hamblin
et al. 2010; Chao et al. 2011).

Differences in the accuracy to predict the three parameters of a
potential cross (i.e., mean, genetic variance, and genetic correlation) are
attributable to the nature of each statistic and have practical implica-
tions. Greater accuracy when predicting the cross mean vs. genetic
variance was predicted by theory (Zhong and Jannink 2007) and has
been observed empirically (Adeyemo and Bernardo 2019; Neyhart and
Smith 2019); this trend is expected because the genetic variance, a
second-order statistic, will be more adversely impacted by error in
marker effect estimates. Similarly, the accuracy of the genetic correla-
tion, a ratio of second-order statistics with large sampling variance
(Robertson 1959), will be even more adversely affected. Even at large
TP sizes, the predictions of the genetic correlation were only as accurate
as those of the genetic variance at modest TP size and never as accurate
as those of the cross mean (Figure 3). Practically, this suggests that very
large TPs are needed for such predictions to be useful, a prospect that
may be prohibitive for a plant breeder. Further research could be di-
rected toward applying Bayesian approaches, such as the “posterior
mean variance” method of Lehermeier et al. (2017), to improve the
accuracy and bias of predicted genetic correlations, particularly at small
TP sizes.

Selecting crosses using predicted genetic correlations
increases multi-trait response
Under a simulated breeding program focused on multi-trait recurrent
indirect selection, we showed that the long-term genetic gain for two
traits was greatest when crosses were selected on predicted correlated/

n Table 3 Number of phenotyped validation families, mean and range (in parentheses) of
observed genetic correlations, and the predictive ability, measured as the correlation between
the predicted (r∧g ) and observed (rG) genetic correlation, for each of three pairs of traits. A 95%
confidence interval (in parentheses) for the predictive ability was estimated from 1,000
bootstrapping replicates

Trait 1 Trait 2 Nf
b Mean (range) of rG corðr̂ g; rGÞ

FHBa Severity Heading Date 14 20.18 (20.72, 0.58) 0.24 (20.30, 0.70)
FHB Severity Plant Height 14 20.038 (20.67, 0.64) 20.012 (20.53, 0.59)
Heading Date Plant Height 26 20.13 (20.64, 0.69) 0.41� (0.024, 0.71)
a
Fusarium head blight.

b
Number of families used to compute predictive ability.

�Significant at P , 0.05.
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superior progeny means (CPM). This was true under all conditions of
genetic architecture, trait heritability, andbasegenetic correlation (rGð0Þ)
(Figure 5). Further, cross selection based on CPM was superior to
selection on the predicted cross mean (FM) or random mating, stan-
dard choices in programs using “best-by-best” breeding for cultivar
development or in recurrent selection (Bernardo 2010).

The greatermulti-trait selection response achievedunderCPMcross
selection can be attributed to many drivers, including genetic variance
and correlation, haplotype and allele frequencies, and LD. We discuss
their impacts below. Compared to FM, selection on CPM led to higher
genetic variance for both traits (Figure 6A). When selecting on CPM,
particularly at the relatively high selection intensity used in our simu-
lation (i = 0.05; ksp = 2.06), more weight is given to the predicted genetic
variance vs. the predictedmean (Equations 4 and 5). Segregation of QTL
is explicitly driving the prediction of genetic variance in our approach,
and an emphasis on variancemay keep small or moderate-effect QTL at
intermediate frequency, at which variance is maximized (Lynch and
Walsh 1998). Therefore, when selecting on CPM, we might expect a
short-term loss in genetic gain for long-term benefit. Indeed, we note a
small deficit in selection response in the first two breeding cycles relative
to FM selection, particularly for the trait under direct selection (Figure
5B). Selecting crosses using FM likely emphasizes the rapid increase in
frequency of beneficial alleles at large and moderate-effect QTL, leading
to fixation of unfavorable small-effect QTL due to drift or linkage (Fig-
ure 7B). Practically, the maintenance of genetic variance under CPM
selection suggests that genetic gainmay be sustained beyond 10 breeding
cycles (Figure 5).

Changes in LD and haplotype frequencies are likely driving
the movement toward zero of the genetic correlation in the breed-
ing population. After the first breeding cycle, we observed a sharp
trend toward, or persistence of, more negative genetic correlations
(Figure 6B). This could be the product of negative covariance generated
due to LD (Felsenstein 1965; Bulmer 1971; Falconer andMackay 1996)

and the simultaneous fixation of favorable haplotypes or QTL and
maintenance of antagonistic haplotypes or QTL at intermediate fre-
quency (Bennett and Swiger 1980; Falconer and Mackay 1996).
Though genetic correlations became similar at later cycles (Figure
6B), the less rapid movement toward zero of genetic correlations
when selecting crosses using CPM is curious. This pattern, more
apparent with positive rGð0Þ, may be due to similar forces influencing
the genetic variance. Selection on CPM combined with stronger
selection intensity weighs the predicted genetic correlation and ge-
netic variance of each trait (Equations 4 and 5). As above, this would
value the maintenance of segregating QTL in the population, in
agreement with our observations (Figure 7B). Co-segregating QTL
for both traits would impact the genetic covariance to a greater
degree than the genetic variances (Bohren et al. 1966; Villanueva
and Kennedy 1990), leading to the observed differences in genetic
correlation (Figure 6B). We would expect the linkage maintaining
covariance in the short-term to be broken down by recombination,
which may help explain why the genetic correlation moved more
rapidly toward zero under the loose linkage genetic architecture
(Figure 6B).

The general trends ingenetic correlationover cycles canbe explained
by the genetic architecture.With pleiotropy, themovement toward – or
maintenance of – a negative correlation is due to the fixation of favor-
able QTL and presence of antagonistic QTL. Absent pleiotropy, the
correlation is due entirely to LD (Lande 1984; Lynch andWalsh 1998),
which is degraded by recombination, eventually moving the genetic
correlation toward zero (Villanueva and Kennedy 1990). Though our
results confirm this under the loose linkage and tight linkage architec-
ture (Figure 6B), the final genetic correlation is slightly negative, and
more so with tight linkage. This is likely due to fixation of antagonistic
QTL haplotypes, which, particularly when tightly linked, can effectively
act as pleiotropic loci (Lande 1984) and are subject to the same com-
peting forces mentioned earlier.

Figure 5 Selecting crosses on the predicted correlated/superior progeny mean (CPM, orange) led to a greater long-term response (in units of
genetic standard deviations) compared to selection on the predicted family mean (FM), blue) or by random selection (gray). This was true for a
two-trait index (A) and both traits individually (B) across three correlation architectures and two base genetic correlations (rG(0)). Lines denote the
mean of 250 simulation replicates, and the ribbon denotes a 95% confidence interval.
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Our approach to cross selection for simultaneously improvement of
multiple traits is one of several that have recently been proposed.
Selection using CPM takes advantage of predictions of the genetic
correlation between two traits (Equations 4 and 5). In a similar vein,
Allier et al. (2019) proposed selecting crosses that were predicted to
maximize the response for a trait under direct selection and produce the
most favorable correlated response in parental contribution (treated as
the indirect trait). Their method extends predictions of genetic corre-
lations to three- and four-way crosses, a generalization beyond our
described approach for bi-parental populations. Instead of predicting
genetic correlations, a multi-trait index could be constructed and
crosses could be selected on the basis of the superior progeny mean
of that index (Yao et al. 2018). Though this simplifies the number of

parameters to be predicted (a single genetic variance vs. many pair-
wise correlations), it uses information differently from the CPM
method. Finally, predictions of genetic correlations or correlated
responses could enhance multi-objective cross optimization proce-
dures (Akdemir et al. 2019).

Figure 7 The change in frequency of two-trait quantitative trait locus
(QTL) haplotypes and proportion of fixed QTL depended on the cross
selection method genetic architecture, and base genetic correlation
(rG(0)). (A) The increase in frequency of favorable (solid) haplotypes and
decrease in frequency of unfavorable (dashed) and antagonistic (dot-
ted) haplotypes was always greater when selecting crosses on the
correlated/superior progeny mean (CPM, orange). (B) The rate of
QTL fixation for both trait 1 (solid) and trait 2 (dotted) was always
greatest with cross selection on the family mean (FM, blue), followed
by CPM and random mating (gray). Lines denote the mean of 250 sim-
ulation replicates, and the ribbon denotes a 95% confidence interval.

Figure 6 Genetic variances (A) and the genetic correlation (B) in the
simulated indirect selection breeding program were influenced by the
cross selection method (family mean, FM, blue; correlated/superior
progeny mean, CPM, orange; random, gray), genetic architecture, and
base genetic correlation (rG(0)). All components declined in absolute
value over cycles of selection, but the rate depended on the cross
selection method and genetic architecture. Lines denote the mean
of 250 simulation replicates, and the ribbon denotes a 95% confidence
interval.
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The results of our simulation bode well for implementation in a
breeding program. Notably, we observed that the advantage of selecting
crosses on CPM was apparent even when the genetic correlation was
negative (i.e., unfavorable). This condition is often encountered by
breeders and would typically discourage the use of indirect selec-
tion (Bernardo 2010); however, we demonstrated that CPM cross
selection canmitigate any negative response in the trait under indirect
selection when the genetic correlation is negative.

Application in a breeding program
To demonstrate its feasibility under more realistic conditions, we gen-
erated predictions of genetic correlations among populations in a barley
breeding program. For two pairs of traits with moderately or strongly
unfavorable correlations, we identified many crosses with favorable
predicted correlations (Figure 4, Table 2), suggesting that specific
crosses could be targeted to improve multiple traits simultaneously.
This would rely on accurately discriminating among crosses, and we
attempted to validate predictions of genetic correlations using em-
pirical data of breeding populations.

Thoughwewere only able tovalidatepredictions for onepair of traits
(Table 3), we observed that predictive ability seemed to be associated
with the heritability of both traits, in agreement with the results from
our first simulation. Of course, trait heritability may influence accuracy
beyond unreliable marker effect estimates.With less heritable traits, the
correlation among environmental effects is expected to have a greater
influence on the phenotypic correlation (Lynch and Walsh 1998). It is
not difficult to imagine how shared environment could influence the
observed correlations. For instance, environmental stresses might stunt
the growth of plants and promote earlier flowering, creating a positive
correlation between these traits. Additionally, plants that flower later or
are taller may avoid the soil-borne F. graminearum inoculum, poten-
tially leading to artificial negative correlations between the traits. The
results of our simulations and empirical experiment confirm that, as in
any other implementation of genomewide selection, reliable pheno-
typic data are paramount.

The modest size of our TP (n = 175) likely constrained pre-
diction accuracy, as suggested in our first simulation (Figure 2).
Previous genomewide selection research, including those focused
on barley, often report a pattern of diminishing returns when
predicting line means with ever-larger TPs (Lorenz et al. 2012;
Sallam et al. 2015). A breeding program using a smaller TP, per-
haps as a resource-saving measure, may be ill-equipped to utilize
predictions of genetic correlations. The size of our TP was a func-
tion of the early stage of implementing genomewide selection in
the breeding program, and we might expect that as more individ-
uals are phenotyped and genotyped, the size of the training dataset
will become more satisfactory.

Fortunately, the barrier for a breeder to incorporate predictions of
genetic correlations is low. First, the data required for predictions
(phenotypes, marker genotypes, and a genetic map) are commonly
available inmanybreedingprograms. Second, it is relatively inexpensive,
inboth timeandcomputingpower, togenerate suchpredictions.Thus, it
is possible that this procedure can be an additional tool for breeders to
make decisions.Wenote, however, that validating predictions of genetic
correlations requires phenotypic data onmany large families, leading to
population sizes that are generally unrealistic for a breeding program
(Bernardo 2010). It is likely that these predictions, if implemented, will
not be routinely validated, unlike genomewide predictions of genotypic
means, and this lack of feedback may prove discouraging for breeders.
Nevertheless, further work is necessary to demonstrate empirically
the utility of selecting crosses informed by predictions of genetic

correlations, with emphasis on the response to selection for two poten-
tially unfavorably correlated traits.
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