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Aim: Recently, a machine-learning (ML) technique has been
used to create generalizable classifiers for psychiatric disor-
ders based on information of functional connections (FCs)
between brain regions at resting state. These classifiers pre-
dict diagnostic labels by a weighted linear sum (WLS) of the
correlation values of a small number of selected FCs. We
aimed to develop a generalizable classifier for gambling disor-
der (GD) from the information of FCs using the ML technique
and examine relationships between WLS and clinical data.

Methods: As a training dataset for ML, data from 71 GD
patients and 90 healthy controls (HCs) were obtained from
two magnetic resonance imaging sites. We used an ML
algorithm consisting of a cascade of an L1-regularized
sparse canonical correlation analysis and a sparse logistic
regression to create the classifier. The generalizability of
the classifier was verified using an external dataset.
This external dataset consisted of six GD patients and
14 HCs, and was collected at a different site from the sites

of the training dataset. Correlations between WLS and South
Oaks Gambling Screen (SOGS) and duration of illness were
examined.

Results: The classifier distinguished between the GD
patients and HCs with high accuracy in leave-one-out cross-
validation (area under curve (AUC = 0.89)). This performance
was confirmed in the external dataset (AUC = 0.81). There
was no correlation between WLS, and SOGS and duration of
illness in the GD patients.

Conclusion: We developed a generalizable classifier for GD
based on information of functional connections between
brain regions at resting state.

Keywords: functional connection, gambling disorder, generalizable

classifier, machine learning.

http://onlinelibrary.wiley.com/doi/10.1111/pcn.13350/full

Gambling disorder (GD) is a behavioral addiction characterized by
the inability to stop gambling, which leads to social problems such as
debt and unemployment.1 GD is categorized into Substance-related
and Addictive Disorders in the Diagnostic and Statistical Manual of
Mental Disorders 5th Edition (DSM-5),1 and common symptoms in
this category include craving, tolerance, and withdrawal state. The
diagnostic criteria for GD consist of a combination of subjective
symptoms and socially problematic behaviors, but do not include
indicators based on biological information such as biomarkers.

In recent years, alterations of functional connections (FCs)
between brain regions at resting state have been widely examined in
psychiatric disorders using a technique of functional magnetic reso-
nance imaging (fMRI), as they are less sensitive to task performance

and generally have shorter acquisition times than a task-based fMRI.
Alterations of FCs at resting state have been reported in GD, although
the results have been inconsistent.2–4 Reasons for this inconsistency
may be due to the effect of nuisance variables (NVs) on MRI data,
such as differences in MRI machines5 and imaging parameters,6 as
well as variables of participants such as age7 and gender.8

Data-driven approaches using machine-learning (ML) techniques
have been used to support the diagnosis of psychiatric disorders,9 and
successful developments of generalizable classifiers for some psychi-
atric disorders based on the information of FCs at resting state have
been reported.10–12 In those studies, classifiers were created by using
an ML algorithm for the information from a large number of FCs at
resting state. This algorithm optimally excluded the influence of NVs
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and selected a small number of FCs for classification to avoid,13 and
this classifier predicted the diagnostic label of an individual by sum-
ming the products of the correlation values of a small number of
selected FCs and their weights, that is, weighted linear sum (WLS).

In this study, we aimed to develop a generalizable classifier for
GD from the information of FCs at resting state, using the same algo-
rithm as that of previous studies.10,12 In addition, in order to explore
the characteristics of WLS, we examined the relationships between
WLS and clinical data.

Methods
Training dataset
All participants were recruited among Japanese in the Kyoto area.
The training data to be used for the ML algorithm were collected
from two sites, Kyoto A and Kyoto B. Patients with GD were rec-
ruited from treatment facilities and were limited to those who were
not receiving pharmacotherapy with psychotropic drugs. All patients
had stopped their gambling behaviors at the time of recruitment.
Healthy controls (HCs) were from the local community. Since it was
difficult to recruit female patients with GD, all patients with GD as
well as all HCs were males. The data of 35 patients with GD and
44 HCs were collected from Kyoto A and those of 38 patients with
GD and 46 HCs were from Kyoto B. Thus, a total of 73 patients with
GD and 90 HCs were recruited for the training data. GD symptoms
were examined using the Structured Clinical Interview for Pathologi-
cal Gambling,14 and all patients with GD met the GD criteria
according to DSM-5. Comorbid psychiatric disorders were screened
by the Structured Clinical Interview for DSM-IV-TR15 to exclude
patients with any psychiatric disorders, including any substance use
disorders (SUDs). The HCs were screened by the Structured Clinical
Interview for DSM-IV-TR to ensure that they had no history of psy-
chiatric disorders. For all participants, we confirmed that they were
physically healthy at the time of this study and had no history of neu-
rological injury or disease, no comorbid severe medical disease, and
no illegal substance use. The data from one GD participant from
Kyoto A was excluded from the training dataset because of past use
of cannabis. Demographic data concerning age were collected. This
study was approved by the Kyoto University Graduate School and
Faculty of Medicine, Ethics Committee. All participants in this study
were assured that their confidentiality would not be breached in any
manner. After offering a complete explanation of the study, written
informed consent was obtained from all participants.

Clinical data
A clinical scale of problem gambling was assessed using the South
Oaks Gambling Screen (SOGS),16 which consists of a 20-item self-
administered questionnaire with a scoring range from 0 to 20. SOGS
comprises primarily past problematic behaviors related to gambling,
including debt. A score of 5 or higher indicates that the subject is at
risk for GD. SOGS has been used to screen for, and assess the sever-
ity of GD. Onset age, duration of illness, and abstinence period of
patients with GD were confirmed by clinical interviews.

MRI data
We collected the data of functional images at resting state, field map
images, and T1-weighted structural images. Both Kyoto A and Kyoto
B belong to the Human Brain Research Center of Kyoto University,
but the data from Kyoto A and Kyoto B were acquired on different
MRI machines and imaging parameters (Tables 1 and 2). The func-
tional images at resting state were acquired using a single-shot
gradient-echo echo planar imaging (EPI) pulse sequence. Volumes
equivalent to the first 10 s of the functional images were discarded in
order to obtain magnetization equilibrium. The structural images were
acquired using 3-dimensional magnetization-prepared rapid gradient-
echo (3D-MPRAGE) sequences. The protocols for the functional and
structural images are summarized in Tables 1 and 2, respectively. The
field map images were acquired with a double-echo spoiled gradient-
echo sequence using the following parameters: Kyoto A, TR = 488.0
ms, TE = 4.92/7.38 ms, voxel size: 3.3 � 3.3 � 3.2 (0.8-mm gaps),
flip angle 60�; Kyoto B, TR = 511.0 ms, TE = 5.19/7.65 ms, voxel
size: 3.0 � 3.0 � 3.0 (without gaps), flip angle 60�.

The imaging data were preprocessed in the same manner as in
the previous study,10 and they are briefly summarized as follows.
They were preprocessed using Statistical Parametric Mapping
12 (SPM12; Wellcome Trust Center for Neuroimaging, University
College London, UK) software running on MATLAB (R2017a,
Mathworks, USA). Unwarping to correct for static distortions was
performed by field map images using the Fieldmap toolbox.17 The
functional images were corrected for slice-timing and realigned to the
mean image of the sequence to compensate for head motion. Second,
the structural images were co-registered to the mean functional
images and segmented into three tissue classes in the Montreal Neu-
rological Institute (MNI) space. The functional images were normal-
ized and resampled in a 2 � 2 � 2mm3 grid. They were smoothed
by Gaussian function of full-width at half-maximum of 6mm. After

Table 1. Imaging protocols for resting-state fMRI

Site

Parameter Kyoto A Kyoto B Kyoto C

MRI scanner Siemens TimTrio Siemens Trio Siemens Verio
Magnetic field strength (T) 3.0 3.0 3.0
Head coil (channel) 32 8 32
Field of view (mm) 212 � 212 256 � 192 212 � 212
Matrix 64 � 64 64 � 48 64 � 64
Number of slices 40 30 39
Number of volumes 240 180 244
In-plane resolution (mm) 3.3125 � 3.3125 4.0 � 4.0 3.3125 � 3.3125
Slice thickness (mm) 3.2 4.0 3.2
Slice gap (mm) 0.8 0 0.8
TR (ms) 2,500 2,000 2,500
TE (ms) 30 30 30
Flip angle (degrees) 80 90 80
Slice acquisition order Ascending Interleaved Ascending
Instructions Please relax. Fixate on the central crosshair mark on the monitor and do not think about anything.
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that, we applied a ‘scrubbing’ procedure’18 to discard the frame with
excessive head motions from further analyses. Details of the scrub-
bing procedure were that frame-to-frame head motion during scanning
was assessed by frame-wise displacement (FD), FD for each of
the six motion parameters (translation and rotation with respect to the
x, y and z axes) was evaluated, and if FD was greater than 0.5mm,
the frame was excluded from further analyses along with the previous
and two subsequent frames. As in the previous study that adopted the
same procedure to create a classifier for a psychiatric disorder,11 any
participant with a remaining volume of less than 30% was excluded
from further analyses. The normalized images of the participants were
then parcellated into 140 brain regions using the Brainvisa Sulci Atlas
(BSA)19 and the anatomical automatic labeling (AAL) composite
atlas.20 In each participant, the time courses of blood oxygenation
level-dependent signals of the functional images of the cortex were
extracted from the 140 brain regions and a band-pass filter (0.008–0.1
Hz) was applied. The time courses were linearly regressed out by nine

parameters, namely, the temporal fluctuation of white matter, the cere-
brospinal fluid and the entire brain, and six head motion parameters.
In each participant, interregional Pearson correlation coefficients
between the time courses of the parcellated 140 brain regions were
calculated, and a matrix of 9,730 FCs (i.e. 140� 139/2) was created.

Machine-learning algorithm
To develop the GD classifier, we used the ML algorithm established
in previous studies.10–12 This algorithm uses a cascade of
L1-regularized sparse canonical correlation analyses (L1-SCCA)21

and sparse logistic regressions (SLR).22 L1-SCCA allows both extrac-
tion of FCs that are relevant to the diagnosis of GD and removal of
FCs covarying with NVs that can cause catastrophic over-fitting.13 In
this study, site (i.e. Kyoto A and Kyoto B) and age were treated as
NVs. SLR has the ability to train a logistic regression model by auto-
matically pruning out FCs that are not useful for classifying patients
with GD from HCs, to select a small number of FCs that contribute
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FCs

FCs

Union of FCs selected in the inner loop

Union of FCs selected across the outer loop
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2. Outer loop FS – 9 folds
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External data (Kyoto C)
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All training data (Kyoto A + Kyoto B)

LOOCV training data

Outer loop training data
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Fig. 1 Schematic diagram of the GD classifier development procedure. † Black, blue, red, and green lines are conceptually associated with training, testing, methods
and features, respectively. (1) In each iteration of the inner loop feature selection (FS), 8/9 of the outer loop training set is used to train L1-regularized sparse canonical
correlation (L1-SCCA) with different hyper-parameters. Functional connectivity features (FCs) that are associated with the canonical variables connected only with the
label “Diagnosis” are retained. (2) In the outer loop FS, 1/9 of the samples is retained as testing pool for leave-one-out cross-validation (LOOCV), and union of the FCs
selected throughout the inner loop is obtained. (3) One sample taken from the testing pool of the outer loop is used as test set of LOOCV. The remaining samples are
used to train sparse logistic regressions (SLR) for the union of the FCs retained during the inner loop. This procedure is repeated for every sample in the testing pool of
the outer loop. In this way, the test set of LOOCV is always independent from the dataset used to select features. (4) The union of the FCs selected across the outer
loop is used to train the final SLR on all training datasets (= Kyoto A + Kyoto B), and validated using an external dataset (= Kyoto C). In summary, nested feature
selection is used to remove nuisance FCs, LOOCV is used to quantify the generalizability on all training datasets, and external validation is used to quantify generaliz-
ability on the independent dataset.

Table 2. Imaging protocols of T1-weighted images

Site

Parameter Kyoto A Kyoto B Kyoto C

Field of view (mm) 225 � 240 225 � 240 256 � 256
Matrix 240 � 256 240 � 256 256 � 256
Number of volumes 208 208 208
resolution (mm) 0.9375 � 0.9375 0.9375 � 0.9375 1.0 � 1.0
Slice thickness (mm) 1 1 1
TR (ms) 2,000 2,000 2,000
TE (ms) 3.40 4.38 3.51
TI (ms) 990 990 990
Flip angle (degrees) 8 8 8
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significantly to the classification from a large number of FCs, and to
calculate the weight for each selected FC. A diagnostic label for each
participant is predicted by WLS, with positive values corresponding
to patients and negative values corresponding to healthy individuals.

A schematic diagram of the GD classifier development proce-
dure is shown in Fig. 1. The procedure for selection of FCs, training
a predictive model and assessment of its generalizability, is con-
ducted as a sequential process of 9 � 9 nested feature-selection and
leave-one-out cross-validation (LOOCV). In dividing the data into
nine folds, we used a stratified approach to ensure that each fold
had an equal combination of diagnosis and sites. In each iteration
of feature selection (FS) in the inner loop, 8/9 of the outer loop
training set is used to train L1-SCCA with different hyper-
parameters. In the inner-loop FS, two hyperparameters, λ1 and λ2,
were involved in L1-SCCA, where λ1 controlled the sparsity of
CCA weights on the diagnostic label and λ2 controlled the sparsity
of weights on FCs. The hyperparameters λ1 and λ2 of L1-SCCA
vary from 0.1 to 0.9 (λ1 ≤ λ2), respectively, in steps of 0.1. In each
instance of L1-SCCA, FCs that are associated with diagnosis, but not
with NVs, are retained. The criterion for removing FCs was based on
whether the weights of L1-SCCA were driven to 0 during the training
procedure with the regularization hyperparameters λ1 and λ2. In the
outer loop FS, 1/9 of the samples is retained as testing pool for
LOOCV, and merging of the FCs selected throughout the inner loop
is obtained. After the inner loop FS is conducted, one sample is
picked up from the test pool of the outer loop FS and used as test
data for LOOCV. The remaining samples of the testing pool are used
to train SLR on the FCs obtained in the inner loop FS. SLR was
based on automatic relevance determination, a Bayesian procedure
that assumed that the non-informative prior distribution for hyper-
parameters did not require tuning. This procedure is repeated for all
samples in the testing pool of the outer loop. The above procedure
makes each sample for LOOCV independent of the dataset for
FS. After all LOOCVs, performance of the classifier is calculated in
the whole training data in terms of area under the curve (AUC), accu-
racy, sensitivity and specificity. Finally, the merger of the FCs selected
across the outer loop is used to train SLR on the whole training

dataset, and validate its performance on an external dataset
(i.e. dataset of Kyoto C). More detailed explanation of this algorithm
can be found in the methods section of the previous study,10 and the
original code is available (for access, please contact the server admin-
istrator of ATR Brain Information Communication Research Labora-
tory: https://bicr.atr.jp/decnefpro/software/).

The statistical significance of the result of LOOCV was assessed
by permutation test.23 In the permutation test, the diagnostic labels of
the participants were randomly swapped 1000 times, and the classifi-
cation accuracy was calculated using cross-validation. P-values were
calculated by summing all values of the permutation distribution that
were equal to or greater than the result of the original labels and
divided by the number of permutations. The significance level was set
at P < 0.05.

External dataset
To verify the generalizability of the classifier created from the training
data, an external dataset of six male patients with GD and 14 male
HCs were collected from Kyoto C, which belongs to the Kokoro
Research Center of Kyoto University. Kyoto C was different from
Kyoto A and Kyoto B. The external dataset of Kyoto C was recruited
in the same way as the training dataset. The diagnostic process and
exclusion criteria for the external dataset were the same as for the
training dataset. Demographic and clinical data were collected for the
same items as for the training dataset, but SOGS for HCs was not
conducted. In the external dataset, data of the functional images at
resting state, field map images, and T1-weighted structural images
were collected using a different 3T MRI machine from that for the
training dataset. The protocols for the functional and structural
images are summarized in Tables 1 and 2, respectively. Field map
images were acquired using the following parameters: TR = 488.0
ms, TE = 4.92/7.38 ms, voxel size: 3.3 � 3.3 � 3.2 (0.8-mm gaps),
flip angle 60�. The imaging data of the external dataset were
processed by the same procedure as for the training dataset. The per-
formance of the classifier on the external dataset was evaluated by
AUC, accuracy, sensitivity, and specificity.

Table 3. Demographic and clinical characteristics

Kyoto A Kyoto B Kyoto A + Kyoto B Kyoto C

Characteristic GD HC GD HC GD HC GD HC
(n = 33) (n = 44) (n = 38) (n = 46) (n = 71) (n = 90) (n = 6) (n = 14)Mean (S.D.)

Age (year) 35.9 (10.7) 36.2 (8.6) 34.1 (8.7) 33.5 (7.7) 35.0 (9.6) 34.8 (8.2) 31.5 (8.7) 29.5 (5.7)
Onset age (year) 25.3 (7.4) 21.0 (3.9) 23.0 (6.2) 20.0 (5.2)
Duration of illness (year) 10.6 (8.5) 13.1 (8.6) 11.9 (8.6) 11.5 (9.8)
Abstinent period (month) 19.4 (48.4) 9.9 (12.3) 14.3 (34.3) 11.8 (7.8)
SOGS 13.2 (2.7) 0.8 (1.2) 13.8 (2.4) 0.3 (1.1) 13.5 (2.5) 0.6 (1.2) 15.0 (2.6) NA

GD, gambling disorder; HC, healthy control; NA, not available; SOGS, South Oaks Gambling Screen.

Table 4. Remaining volumes after head motion scrubbing

Kyoto A Kyoto B Kyoto A + Kyoto B Kyoto C

GD HC P GD HC P GD HC P GD HC P

Mean percentages of remaining
volumes

91.2 91.5 0.92 91.1 97.6 0.004 91.1 94.6 0.048 82.7 92.0 0.16

(S.D.) (10.6) (12.1) (13.7) (5.7) (12.3) (9.8) (13.8) (12.9)

GD, gambling disorder; HC, healthy control.
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The statistical significance of the classification in the external
dataset was assessed by permutation test23 at a significance level of
P < 0.05, the same as for the LOOCV result.

Relationships between WLS and clinical data
We focused on SOGS as a severity scale of GD and the duration of
illness in clinical data. In both patients with GD and in HCs, we

Table 5. Properties of the 15 FCs used in the classification of GD and HC

FCs
ID Terminal regions Mean FC Wt.

Lat. BSA (Sulcus) AAL (Gyral region) BA Network* r GD r HC
1 R Cmrg.pos.f. Middle cingulate & paracingulate gyri 23 DMN, SN, PN 0.21 0.29 �1.06

R Ant.scnt.rl.f. Rolandic operculum 44 SN
2 R Intpar.s. Inferior parietal gyrus 40 SN, ECN, VSN �0.19 �0.29 2.05

L Cmrg.ant.f. Anterior cingulate & paracingulate
gyri

24, 32 DMN, SN

3 L Sup.ptct.s. Postcentral gyrus 3 SM 0.17 0.02 2.88
R Calcar.f. Calcarine fissure 17 PVN

4 R Intpar.s. Inferior parietal gyrus 40 SN, ECN, VSN 0.24 0.36 �2.06
R Sup.pi.sup.s. Postcentral gyrus 3 SM

5 L Rhinal.s. Fusiform gyrus 37 HVN �0.06 0.01 �1.18
L Insula Insula 47, 48 SN

6 L Pos.intl.s. Lingual gyrus 18, 19 HVN �0.003 �0.08 2.03
L Subcal.s. Posterior cingulate gyrus 23 PN

7 L Median.prct.
s.

Precentral gyrus 4 VSN �0.22 �0.09 �2.21

R Ant.inf.fr.s. Middle frontal gyrus 46 ECN, SN, DMN,
VSN

8 L Orbital.fr.s. Middle frontal gyrus 46 ECN, SN, DMN, VSN 0.18 0.04 1.92
L Intnl.fr.s. Superior frontal gyrus, medial 6 ECN, SN, VSN

9 L Sup.tmp.s. Middle temporal gyrus 21 LN, ECN 0.02 0.19 �2.85
R Median.fr.s. Supplementary motor area 6 SN

10 R Sup.tmp.s. Superior temporal gyrus 22 AN �0.02 �0.12 2.51
R Orbital.fr.s. Middle frontal gyrus 46 ECN, SN, DMN,

VSN
11 L Med.occt.lt.s. Inferior temporal gyrus 20 ECN 0.16 0.09 1.45

R Int.occt.lt.s. Fusiform gyrus 37 HVN
12 R Olfactory.s. Gyrus rectus 11 NA 0.05 0.13 �0.98

L Med.occt.lt.s. Inferior temporal gyrus 20 ECN
13 L Pos.tabst.s. Middle temporal gyrus 21 LN, ECN 0.13 0.08 1.29

L Trns.partl.s. Precuneus 5, 7 ECN, SN, PN
14 L Pallidum Pallidum NA NA �0.004 0.07 �1.07

L Polar.tmp.s. Inferior temporal gyrus 20 ECN
15 L Hippocampus Hippocampus 20, 30,

36
DMN 0.08 0.13 �1.76

L Pos.tabst.s. Middle temporal gyrus 21 LN, ECN

*Identification of the network is based on the Functional ROI (http://findlab.stanford.edu/research).
AAL, Anatomical automatic labeling; BA, Brodmann’s area; L, left; BSA, Lat., laterality; R, right; Brainvisa Sulci Atlas; Wt., weight.
BSA abbreviations: cmrg.pos.f., calloso-marginal posterior fissure; ant.scnt.rl.f., anterior sub-central ramus of the lateral fissure; intpar.s., internal
parietal sulcus; cmrg.ant.f., calloso-marginal anterior fissure; sup.ptct.s., superior postcentral sulcus; calcar.f., calcarine fissure; intpar.s., internal
parietal sulcus; rhinal.s., rhinal sulcus; pos.intl.s., posterior intra-lingual sulcus; subcal.s., subcallosal sulcus; median.prct.s., median precentral
sulcus; ant.inf.fr.s., anterior inferior frontal sulcus; orbital.fr.s., orbital frontal sulcus; intnl.fr.s., internal frontal sulcus; sup.tmp.s., superior temporal
sulcus; median.fr.s., median frontal sulcus; med.occt.lt.s., median occipito-temporal lateral sulcus; int.occt.lt.s., internal occipito-temporal lateral
sulcus; olfactory.s., olfactory sulcus; pos.tabst.s., posterior terminal ascending branch of the superior temporal sulcus; trns.partl.s., transverse
parietal sulcus; polar.tmp.s., polar temporal sulcus.
Network abbreviations: AN, auditory network; BGN, basal ganglia network; DMN, default mode network; ECN, executive control network; HVN,
higher visual network; LN, language network; PN, precuneus network; PVN, primary visual network; SN, salience network; SMN, sensorimotor
network; VSN, visuospatial network.
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examined correlations between WLS and SOGS in the training
dataset at a significance level of P <0.05 (two-tailed). In patients with
GD, we examined correlations between WLS and duration of illness
in the training dataset at a significance level of P <0.05 (two-tailed).
In the external dataset, the correlation was not examined because of
the small sample size of patients with GD.

Results
Demographic and clinical data
Although the 73 patients with GD and 90 HCs were recruited as the
training dataset, one GD patient from Kyoto A was excluded because
of past cannabis usage and one GD patient from Kyoto A was
excluded during the scrubbing process of functional imaging data.
Finally, a total of 161 data (GD patients = 71, HCs = 90) were used
as training data. The demographic and clinical data of the training
dataset (= Kyoto A and Kyoto B) and the external dataset (= Kyoto
C) are summarized in Table 3. The GD patients from Kyoto A,
Kyoto B, and Kyoto C had high gambling severity, as well as a long
mean illness duration of more than 10 years.

Quality of imaging data
The results of the scrubbing process of the functional images were
summarized in Table 4. In the training dataset, because of a signifi-
cant difference between the GD and HC groups in the dataset of
Kyoto B, the GD group had less remaining volume than the HC
group, but both groups had more than 90% remaining volume of the
functional images. In the external dataset, there was no significant dif-
ference between the GD and HC groups.

GD classifier
For the GD classifier, 15 FCs were selected from the training dataset,
and they showed both robustness and stability across the LOOCV
procedure (Fig. S1). Properties of the 15 FCs are shown in Table 5.
The selected FCs spanned a variety of functional networks and were
not biased toward any particular network. The GD classifier discrimi-
nated between the GD patients and HCs with an AUC of 0.89 in
LOOCV (Accuracy = 0.79, Sensitivity = 0.79, Specificity = 0.79).
Distributions of WLS for the GD patients and HCs in the training
dataset are shown in Fig. 2. The permutation test showed that the
probability of obtaining this high performance by chance was less
than P = 0.05 (P = 0.007; Fig. S2(a)). The GD classifier showed
high performance, with an AUC of 0.81, on the external dataset
(Accuracy = 0.75, Sensitivity = 1.00, Specificity = 0.64). Distribu-
tions of WLS for the GD patients and HCs in the external dataset are
shown in Fig. 3. The permutation test showed that the probability of

obtaining this high performance by chance was less than P = 0.05
(P = 0.009; Fig. S2(b)).

As a reference, we conducted conventional between-group
comparisons to examine whether FCs exhibiting significant group
differences (i.e. HC vs GD) in their correlation values existed. Two
sample t-tests on each of 9,730 FCs revealed that only one FC con-
necting the left middle temporal gyrus and the left angular gyrus
exhibited a significant difference in their mean values (mean � s.d.,
�0.33 � 0.19 in HC and � 0.16 � 0.21 in GD; two-sample t-test,
P = 7.7 � 10�7 < Pc, where Pc = 0.05/9,730 = 5.1 � 10�6). Classi-
fication based on their population mean value (rmean = �0.25)
achieved accuracy of 64.6% (AUC = 0.65), which was much worse
than the result of the present study (79%). We found that this particu-
lar FC was selected 7 out of 161 times throughout the LOOCV proce-
dure, whereas the mean of the assigned weights was not significantly
different from zero (Bonferroni corrected P >0.05). These results
indicated that the present machine-learning based classifier better
identified the neural substrates of GD, which provided higher reliabil-
ity in the classification of HC and GD.

Correlations between WLS and clinical data
Before examining the correlations, Kolmogorov–Smirnov tests were
used to examine the distributions’ normality of WLS, SOGS and
duration of illness. Although the GD and HC groups showed normal
distributions in terms of WLS (GD, P = 0.20; HC, P = 0.20), normal
distributions were not shown for SOGS (GD, P < 0.001; HC, P <
0.001) and duration of illness (GD, P = 0.026). Therefore, we exam-
ined the correlations using Spearman’s rank correlation coefficients.
There was no significant correlation between WLS and SOGS in the
two groups (GD, P = 0.02, P = 0.85; HC, P = 0.19, P = 0.07). In
the GD group, there was no significant correlation between WLS and
duration of illness (P = 0.18, P = 0.13). In addition, we checked for
a correlation between SOGS and duration of illness in the GD group
and found a significant positive correlation (ρ = 0.31, P = 0.008,
two-tailed).

Discussion
To the best of our knowledge, this is the first study to develop the
GD classifier using information of FCs between brain regions at rest-
ing state. The developed GD classifier showed generalizability across
the differences of MRI machines and imaging parameters. No rela-
tionship was found between WLS, and SOGS and duration of illness
in patients with GD.

Similar to previous studies,10–12 the training data in this study
were collected from multiple MRI machines using different imaging
parameters, and with comparable sample sizes. Among the various
NVs in imaging data, it has been reported that differences in MRI
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machines and imaging parameters have a particularly large effect,
and that it is comparable to or greater than the brain alterations cau-
sed by psychiatric disorders.24 In the present study, as in previous
studies,10–12 L1-SCCA reduced these effects, contributing to the gen-
eralizability of the GD classifier derived. Addictive disorders are diag-
nosed based on self-reported subjective symptoms and information on
problematic behaviors. In addition, it was reported that patients with
addictive disorders,25,26 including GD,27 often deny their symptoms
or hide their behaviors related to addictive targets. These issues make
it difficult to arrive at an accurate diagnosis of GD. It is expected that
the classifier will be used to support this effort.

Several studies have reported associations between FCs during
resting state and clinical symptoms in GD, such as gambling-related
cognitive distortions28 and impulsivity and craving symptoms.4 How-
ever, the relationship between FCs during resting state and clinical
symptoms has not yet been fully clarified in GD. Examination of the
relationship between the FC selected by the classifier and the clinical
symptoms is expected to provide a deeper understanding of the patho-
physiology of GD.

The positive correlation between SOGS and the duration of ill-
ness is reasonable, because SOGS increases with the accumulation of
past problem gambling behaviors. In contrast, WLS was not corre-
lated with SOGS or the duration of illness. Because the GD patients
in this study were recruited from a treatment facility and had already
stopped gambling at the time of recruitment, they had not been
exposed to stimuli from continuous gambling behavior in their daily
life at the time of their participation in this study. This factor might
have contributed to the lack of correlation between SOGS and WLS
in this study, and this result might suggest that the WLS in this study
primarily reflects something like fixed “traits” of the GD patients’
brains rather than their “states” that would be somewhat altered by
the most recent gambling stimuli. Duration of illness and WLS were
not correlated in patients with GD. This suggests that WLS does not
simply reflect the chronicity of disease, which has been reported to
affect brain activity in GD.29 It is therefore recommended that a lon-
gitudinal study be conducted in the future to examine changes in pro-
gression/chronicity and responses to abstinence/treatment/intervention
of WLS in patients with GD.

Gambling behavior is not an alternative (i.e. problem vs non-
problem) but a spectrum,30 and gamblers are generally divided into
stages: social/recreational gamblers who play at gambling but have no
gambling problems at all, at-risk gamblers who are below the diag-
nostic threshold but have some gambling problems, and patients with
GD.31–33 In this study, we developed a classifier to distinguish
patients with GD from non-gamblers and social/recreational gamblers.
Applying this classifier to a population of at-risk gamblers and exam-
ining their characteristics might help us to understand the pathogenic
process of GD.

Because GD is a behavioral addiction, unlike substance addic-
tions, alterations in the brain do not involve neurotoxicity associated
with addictive substances,34,35 and therefore studies of GD could be
informative for understanding SUDs.36 Based on these suggestions,
the application of GD classifier to SUDs and vice versa may provide
clues to the neural substrate of psychopathology common to addictive
disorders, that is, the essence of addiction.

There are several limitations to this study. First, the sample size of
the data for external validation was smaller, especially for the patients’
groups, than those used in the previous studies.10–12 Second, the train-
ing data was from only two sites, the external validation data was pre-
pared from only one site, and the training and external validation data
were collected using MRI machines from the same manufacturer
(Siemens). Third, the participants for both training and external valida-
tion data in this study were recruited among Japanese in a single area.
In the future, external validation using larger sample sizes, different
areas and races, and data collected by MRI machines from various
manufacturers will be needed. Fourth, because it was difficult to recruit
female patients with GD, the classifier was created from male patients
only. Therefore, the validity of the classification for female patients

with GD remains unclear. Finally, although this study excluded patients
with GD who had other psychiatric disorders, it has been reported that
patients with GD often have other comorbid psychiatric disorders.37

Therefore, these points need to be taken into consideration when apply-
ing the results of this study to patients with GD.

In conclusion, we have developed a generalizable GD classifier
using the information of FCs between brain regions at resting state.
The classifier is expected to be used to accurately diagnose and
explore the nature of addictive disorders.
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