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Portable, low-field magnetic resonance
imaging for evaluationofAlzheimer’sdisease

Annabel J. Sorby-Adams 1,2, Jennifer Guo1,2, Pablo Laso 3, John E. Kirsch3,
Julia Zabinska4, Ana-Lucia Garcia Guarniz1, Pamela W. Schaefer5,
Seyedmehdi Payabvash6, Adam de Havenon4, Matthew S. Rosen 3,
Kevin N. Sheth 4, Teresa Gomez-Isla1, J. Eugenio Iglesias3 &
W. Taylor Kimberly 1,2

Portable, low-field magnetic resonance imaging (LF-MRI) of the brain may
facilitate point-of-care assessment of patients with Alzheimer’s disease (AD) in
settings where conventional MRI cannot. However, image quality is limited by
a lower signal-to-noise ratio. Here, we optimize LF-MRI acquisition and
develop a freely available machine learning pipeline to quantify brain mor-
phometry and white matter hyperintensities (WMH). We validate the pipeline
and apply it to outpatients presenting with mild cognitive impairment or
dementia due to AD. We find hippocampal volumes from ≤ 3mm isotropic LF-
MRI scans have agreement with conventional MRI and are more accurate than
anisotropic counterparts. We also showWMH volume has agreement between
manual segmentation and the automated pipeline. The increased availability
and reduced cost of LF-MRI, in combination with our machine learning pipe-
line, has the potential to increase access to neuroimaging for dementia.

Alzheimer’s disease (AD) is characterized by the pathological deposi-
tion of amyloid-β (Aβ) and formation of neurofibrillary tangles in the
brain1. The progressive accumulation of these proteins lead to
degenerative changes in brain structure and frequently coincide with
vascular injury, characterized by brain atrophy and white matter
hyperintensities (WMH), respectively. A burgeoning aging population
and accumulating risk factors is leading to an increased lifetime risk of
dementia,withprevalencepredicted to reach 139millionworldwideby
the year 20502. Patients with AD have a progressive pre-symptomatic
stage lasting 10–20 years, with individuals often receiving a diagnosis
after cognitive impairment is already well established. Consequently,
an estimated 75% of people with dementia remain undiagnosed glob-
ally, with rates as high as90% in lowandmiddle income countries3. The
advent of anti-amyloid therapies has highlighted the importance of

identifying individuals with mild cognitive impairment (MCI) or AD
whomay benefit from treatment, and their subsequentmonitoring for
both disease progression and treatment side effects.

Current AD diagnosis involves cognitive testing, assessment of Aβ
and phosphorylated tau burden through positron emission tomo-
graphy (PET) or fluid biomarkers, and magnetic resonance imaging
(MRI)4. Multiparametric MRI facilitates assessment of changes in brain
structure and integrity, including generalized and hippocampal
atrophy5–7 and accompanying white matter disease8,9, which accrue
over the course of disease progression and precede onset of cognitive
decline10,11. These features highlight the importance of neuroimaging
for the clinical diagnosis andmanagement ofMCI andAD, yet there are
disparities in access to neuroimaging technologies both locally and
globally.
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Portable, low-field MRI (LF-MRI) is an emerging neuroimaging
technology that has the potential to address some of the barriers
intrinsic to MRI on conventional systems operating at 1.5 to 3 Tesla
(T)12,13. Previous work has demonstrated that LF-MRI is safe, feasible,
less costly, and can facilitate point-of-care scanning for acute neuro-
logic conditions14–16. The lower power requirements, reduced fringe
field, and electromagnetic interference cancellation enable imaging
outside of a conventional MRI suite12. However, the inherently lower
magnetic field strength reduces signal-to-noise ratio (SNR) and thus
influences image resolution. To overcome these limitations and
explore the potential of LF-MRI for tracking disease correlates in AD
patients, we developed machine learning tools to automatically
quantify brain morphometry and white matter lesions, and demon-
strate the utility of LF-MRI formonitoring of patients withMCI and AD.

To first establish an imaging pipeline for quantifying brain
volumes, we iteratively optimized our joint super-resolution and con-
trast synthesis technique (LF-SynthSR)17–19 to enhance the resolution of
LF images for subsequent segmentation (SynthSeg)20 and determined
the optimal LF acquisition parameters for accurate quantification. We
subsequently expanded functionality to enable the measurement of
WMH burden (WMH-SynthSeg) through automated segmentation of
WMH lesions from T2 fluid attenuated inversion recovery (FLAIR)
images acquired at LF. We validated these freely available tools (LF-
SynthSR, SynthSeg, and WMH-SynthSeg) using multiple patient
cohorts, including a prospective cohort of patients with a diagnosis of
MCI or AD.

Results
Automated morphometry
LF-MRI images lack the necessary resolution for automatic segmen-
tation with high-field software analysis tools, but can succeed when
first super-resolved (SR) to 1mm isotropic T1-weighted (T1w)
magnetization-prepared rapid gradient-echo (MP-RAGE)-like images17.
However, our prior super-resolutionpipeline (LF-SynthSR, v1) required
inputs of both T1w and T2-weighted (T2w) LF-MR images to generate a
T1w MP-RAGE-like output. The necessity to co-register low resolution
images can lead to co-registration errors and misalignment, decreas-
ing the accuracy of the SR image output and subsequent segmenta-
tion. Following an approach we used in other applications19, we
modified LF-SynthSR (v2) to accommodate single image inputs of any
tissue contrast (including T1w and T2w), any resolution, and any
orientation (Fig. 1a), followed by SynthSeg-derived segmentation
(Fig. 1b)21.

Using this pipeline, we first evaluated the accuracy of automated
segmentation in a group of healthy volunteers (cohort 1, N = 20; Sup-
plementary information, Table S1) by comparing AD relevant seg-
mentation volumes (hippocampus, lateral ventricle, and whole
brain22,23) generated from the original LF-SynthSR (v1; T1w and T2w
input images co-registered) and LF-SynthSR v2 (T1w or T2w input
separately) against conventional, ground truth high-field (HF) MRI
acquired at 3 T (Fig. 1c–h). We examined agreement in volume [e.g.,
correlation and absolute symmetrized percent difference (ASPD)] and
also the degree of spatial overlap (e.g., Dice similarity coefficient).

The correlation of hippocampal volumes between 1mmMP-RAGE
HF-MRI images and co-registered T1/T2w LF-MRI counterparts for LF-
SynthSR v1 was r =0.70 (95% confidence interval (CI) 0.53–0.86).
However, when the updated version LF-SynthSR v2 was used on T1w
images alone, the correlation increased to r =0.89 (95% CI 0.80–0.99;
Supplementary information, Table S2). Using theASPDas an additional
measure of accuracy, the hippocampal volume using LF-SynthSR v1
had an ASPD of 7.1% (interquartile range (IQR) 1.1–12.3%) relative to
ground truth. In contrast, LF-SynthSR v2 generated hippocampal
volumes with an ASPD of 3.3% (IQR 1.8–7.2%, p = 0.028) when using
T1w images as the input and 2.3% (IQR 0.5–4.4%, p = 0.015) when using
T2w images (Fig. 1c). Lateral ventricle volume accuracy improvedwhen

LF-SynthSR v2 was used as compared with LF-SynthSR v1 (Fig. 1d, both
p <0.001), as did the whole brain for the T1w image input (Fig. 1e;
p <0.001). Analysis basedon correlations relative to ground truthwere
also similar or improved using LF-SynthSR v2 (Supplementary infor-
mation, Table S2). As a measure of spatial overlap of the segmented
brain volumes of interest, Dice similarity coefficients derived from LF-
SynthSR v2 were improved for the hippocampus (Fig. 1f; p <0.05),
similar for the lateral ventricles (Fig. 1g), although slightly less accurate
for whole brain LF-SynthSR v2 (Fig. 1h).

Voxel size and geometry influence the accuracy of brain mor-
phometry, particularly in the low SNR regime of LF-MRI24. Compared
to ground truth 1mmMP-RAGE at 3 T (Fig. 2a), we next systematically
varied the image acquisition resolution of T1w (Fig. 2b) and T2w
(Fig. 2c) LF-MRI scans, followed by analysis using the LF-SynthSR v2
and SynthSeg pipeline. The image acquisition duration ranged
between 1:53min:sec to 9:48min:sec depending on sequence, voxel
size, and geometry (Supplementary information, Table S3). For the
hippocampus, the ASPD difference in volume relative to ground truth
was < 5% for all resolutions and comparable across LF T1w and T2w
contrasts (Supplementary information, Fig. S1). Correlation between
hippocampal, whole brain, and lateral ventricle volumes derived at LF
and HF were comparable among T1w and T2w contrasts when the
voxel dimensions were isotropic and ≤ 3mm (Supplementary infor-
mation, Table S4). Furthermore, Dice similarity coefficients demon-
strated optimal spatial overlap between HF and LF counterparts when
the voxel sizes were isotropic and ≤ 3mm (p <0.01, Fig. 3a, b) which
was observed irrespective of co-registration direction (see Supple-
mentary information, Table S5). Re-scanning of participants in a
separate session demonstrated high test-retest agreement, where
isotropic 3mm acquisition also had improved Dice similarity coeffi-
cients compared with anisotropic counterparts (p <0.05, Fig. 3c).
Similar results were obtained for lateral ventricle (Fig. 3d–f) and whole
brain (Fig. 3g–i) volumes across the range of tissue contrasts and voxel
sizes (see also Supplementary information, Table S4). Finally, we vali-
dated our LF-SynthSR v2 segmentation pipeline against HF T1w MP-
RAGE segmentations derived from the well-established FreeSurfer
segmentation tool ASEG25, which revealedhippocampal correlations of
r >0.83, ASPD < 6.5% and Dice coefficients > 0.80 for all T1w image
inputs, and correlations of r >0.81, ASPD< 8.3% and Dice > 0.81 for
T2w images across all voxel dimensions (Supplementary information
Table S6). Similar results for lateral ventricle and whole brain are also
shown (Supplementary information Table S6).

Automated WMH quantification
A common pathologic finding among patients with cognitive impair-
ment is the presence of WMH lesions, which may be due to cerebral
small vessel disease or axonal loss26. These imaging findings manifest
on FLAIR as T2 hyperintense lesions, and automated quantification of
these lesions would expand LF-MRI capability for AD diagnosis and
monitoring. However, automated T2 lesion segmentation pipelines
designed for conventional 1.5–3 T MRI are unable to identify and seg-
ment lesions on LF images21. Therefore, we next sought to implement a
machine learning algorithm to generateWMH lesion volumes (WMHv)
from LF-FLAIR images using WMH-SynthSeg21. We designed this to
simultaneously enable segmentation of WMH T2 FLAIR lesions in
addition to the prior brain morphometry.

To first assess the accuracy of WMH segmentation, we analyzed a
cohort of aged individuals with WMH lesions and concomitant vas-
cular risk factors (cohort 2, N = 23; Supplementary information
Table S7) that had paired LF- and HF-FLAIR images27, an example of
which is shown in Fig. 4a (blue mask and 3D render). First, we com-
pared the volume of WMH lesions on LF-FLAIR using WMH-SynthSeg
relative to the paired HF-FLAIR images, which showed a correlation of
r =0.92 (p <0.001, Fig. 4b). The WMHv generated by WMH-SynthSeg
wasalso correlatedwith the respectivemanually outlinedWMH lesions
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at HF and LF (HF-FLAIR, r = 0.84, p <0.001; and LF-FLAIR, r =0.81,
p <0.001; Figs. 4c, d, respectively). The visually graded Fazekas scale is
frequently used to categorize WMH accrual28. We found that WMHv
generated by WMH-SynthSeg showed a stepwise increase relative to
the periventricular Fazekas score (Fig. 4e, p =0.022), the deep white
matter Fazekas score (Fig. 4f, p =0.003), and a dichotomized com-
posite score (Fig. 4g, p =0.004).

Application to MCI/AD patients
We next prospectively studied a cohort of patients who presented to
the Memory Disorders outpatient neurology clinic with a diagnosis of
MCI or dementia due to AD (cohort 3, N = 54; Supplementary infor-
mation Table S8). We applied the imaging analysis pipelines LF-
SynthSR v2 and SynthSeg to derive hippocampal, whole brain, and
lateral ventricle volumes and WMH-SynthSeg to quantify WMHv at LF
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Fig. 1 | Fine-tuning of LF-SynthSR and overall imaging analysis pipeline and
performance. a The architecture of the convolutional neural network LF-SynthSR
(v2). b The overall imaging analysis pipeline includes acquisition of LF-MRI images
at different contrasts and resolutions, super-resolving the raw images with LF-
SynthSR followed by segmentation using SynthSeg. c–h LF-MRI images were pre-
paredwith the original (v1, T1 + T2AXI) or fine-tuned (v2, T1 and T2AXI) LF-SynthSR
followed by automated segmentation with SynthSeg. LF-MRI segmentation
volumes for the hippocampus (c and f), lateral ventricles (d and g) and whole brain
(e and h) were compared with volumes derived from 1mm MP-RAGE images
acquired at high-field using the absolute symmetrized percentage difference
(ASPD) and Dice coefficient. The ASPD for hippocampus (T1w p =0.027; T2w

p =0.014) and lateral ventricle volumes (p <0.001 forT1wandT2w) relative tohigh-
fieldwas less forT1worT2wLF-MRI inputswhen LF-SynthSRv2was used. TheASPD
for whole brainwas improved for T1w (p <0.001) but not for T2w (p =0.040) when
using LF-SynthSR v2. The Dice coefficient for the hippocampus was more accurate
when v2 was used for both T1w (p =0.022) and T2w inputs (p <0.001), similar for
lateral ventricles, and lower for the whole brain (p <0.001). For each subpanel, the
box plots show the median, the interquartile range, and the Tukey whiskers. Each
box plot corresponds to n = 20 biological replicates. Source data is available via the
following link: https://doi.org/10.7910/DVN/9PANMC. AXI, axial; LF, low-field; T1w,
T1 weighted; T2w, T2 weighted. * p <0.05, ** p <0.01 using the Wilcoxon signed
rank test compared to v1.

Fig. 2 | Axial, sagittal, and coronal views of original and processed images at
different resolutions from one healthy volunteer subject. a Isotropic 1mmMP-
RAGE images acquired at 3 T are shown, including ground truth SynthSeg seg-
mentation. b T1w and c T2w images acquired at anisotropic (AXI) and varying

isotropic voxel sizes at LF were super-resolved with LF-SynthSR (v2) and auto-
matically segmented by SynthSeg. MP-RAGE, Magnetization Prepared-RApid Gra-
dient Echo; AXI, axial.
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relative to clinically acquired 1.5–3 T MRI (case example, Fig. 5a) and
determined the accuracy of these pipelines between LF and HF coun-
terparts and their relevance to differential disease states.

Hippocampal volumes derived fromLF- andHF-MRI counterparts
were in close agreement (ASPD 2.8%, IQR 1.9–7.3%), revealing a cor-
relation of r =0.85 (95% CI 0.77–0.93, p <0.001; Fig. 5b) and a Dice
similarity coefficient of 0.87 (95% CI 0.85–0.88). Similar results were

obtained when examining lateral ventricle and whole brain volumes
(Fig. 5b; r = 0.99; 95% CI 0.98–0.99; and r = 0.97; 95% CI 0.95–0.98,
respectively; p < 0.001; see Supplementary information Table S9 for
ASPD and Dice similarity coefficients). Test-retest analysis revealed an
ASPD< 4.0%, DICE coefficient > 0.9 and correlation r > 0.8 for hippo-
campal, lateral ventricle and whole brain volumes (see Supplementary
information Table S10). WMHv derived from LF-FLAIR were also

Fig. 3 | Accuracy of brain volumes varies as a function of the initial image
acquisition resolution at LF. a The Dice similarity coefficient of the hippocampus
derived from LFT1w images of anisotropic (T1 AXI) or varying isotropic resolutions
was compared to 1mm MP-RAGE images acquired at 3 T. Dice scores were higher
when isotropic voxels ≤ 3mm were used (p <0.001) and (b) similar accuracy was
obtained from T2w images (p <0.001 for voxels ≤ 3mm). c Re-scanning demon-
strates higher test-retest agreement in 3.0mm isotropic relative to anisotropic
counterparts (T1w, p =0.0059; T2w, p =0.014). Similar improvements in the Dice
coefficient were observed for voxel sizes ≤ 3.0mm for the lateral ventricle volume

and whole brain using (d) and (g) T1w images, e and h T2w images and (f) and (i)
test-retest analysis, respectively. For each subpanel, the boxplots show themedian,
the interquartile range, and the Tukey whiskers and the individual data points are
shown adjacent to the box plots. The Wilcoxon signed rank test was used for
analysis for n = 20 biological replicates, except for the test-retest analysis where
n = 10. Source data is available via the following link: https://doi.org/10.7910/DVN/
9PANMC. T1w, T1weighted;T2w, T2weighted; AXI, axial. *p <0.05, **p <0.01 for all
panels.
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Fig. 4 | WMH-SynthSeg can automatically segment WMH on LF-MRI FLAIR
sequences in patients presenting without neurologic complaints yet con-
comitant vascular risk factors. aAn exampleof a subjectwithWMHatHF- and LF-
MRI, with automatically segmented lesions outlined (blue) in the axial plane and
with 3D rendering. b) WMH volume scatterplot and linear fit of WMH volumes
derived at LF- compared to HF-MRI using WMH-SynthSeg (r =0.91, p <0.001).
c Scatterplot of WMH volumes derived from automatic segmentation versus

manual outlining at HF, and similarly at LF in (d). WMH volume (n = 23) was asso-
ciated with the periventricular Fazekas score (e), the deep Fazekas score in (f), and
the composite Fazekas score in (g). For each subpanel, the box plots shows the
median, the interquartile range, and the Tukeywhiskers. Source data is available via
the following link: https://doi.org/10.7910/DVN/9PANMC. WMH, white matter
hyperintensity volume; LF, low-field; HF, high-field.

Article https://doi.org/10.1038/s41467-024-54972-x

Nature Communications |        (2024) 15:10488 6

https://doi.org/10.7910/DVN/9PANMC
www.nature.com/naturecommunications


correlated with volumes from HF-FLAIR (r = 0.82, 95% CI 0.74–0.91,
p <0.001; Fig. 5b, righthand most panel).

We next determined if our machine learning pipelines could
accurately differentiate betweenpatientswith adiagnosis ofMCI orAD
and thosewho are cognitivelynormal (CN). As an initial validation step,
we first assessed 1.5 TMRI scans derived fromCN,MCI and ADpatients
in the established Alzheimer’s Disease Neuroimaging Initiative (ADNI)

cohorts (N = 61; Supplementary information Table S11). Consistent
with previously reported results, we verified that MCI and AD ADNI
subjects had smaller hippocampal volumes than CN subjects when
analyzed with our pipeline (p =0.002 and p < 0.001, respectively),
although lateral ventricle andwhole brain volumeswere similar among
these groups (p =0.13 and p =0.44, respectively). We subsequently
validated the WMHv generated by WMH-SynthSeg with previously
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derived volumes measured on ADNI HF-FLAIR scans (N = 58; Supple-
mentary informationTableS12), and revealed a correlation inWMHvof
r =0.91 (95% CI 0.83–0.99, p <0.001).

Finally, we assessed whether our pipeline could distinguish MCI
and AD from non-AD subjects exclusively using LF-MRI. Patients with a
diagnosis of MCI or AD demonstrated smaller hippocampal and whole
brain volumes when compared to the vascular cohort, and patients
with AD had larger lateral ventricles (all p <0.001, Fig. 5d). Auto-
matically quantified WMHv burden was also greater in those with AD
compared to those without memory complaints (p <0.001, Fig. 5d),
and WMHv demonstrated a stepwise relationship with qualitative
Fazekas scores among MCI and AD patients (p <0.001). A subset of
MCI and AD patients had cerebrospinal fluid (CSF) Aβ biomarkers
obtained for their clinical care (n = 21). In these patients, a lower level
of CSF Aβ42, which decreases as a consequence of Aβ aggregation in
the brain and is thus used as a marker of disease progression29,30,
correlated with larger ventricle volumes derived from LF-MRI
(r = −0.46, 95% CI −0.75 – −0.02, p =0.038). Lower CSF Aβ42 was also
associated with a higher burden of deepWMH (r = −0.63, 95%CI −0.84
– −0.26, p =0.002) but not total WMH burden.

Discussion
In this study,wepresent anend-to-endLF-MRI acquisitionpipeline that
automatically quantifies brain and WMH volumes with comparable
accuracy to HF-MRI. To validate machine learning tools for automated
quantification, we demonstrated that brain volumes segmented from
≤ 3mm isotropic LF-MRI images were more accurate than anisotropic
counterparts, and that white matter lesions segmented using auto-
mated tools have strong agreement with those segmented manually.
We applied this pipeline to patients with MCI/AD and demonstrate a
similar pattern of brain atrophy and WMH to that observed on con-
ventional MRI, with strong agreement between brain morphometry
andWMHvolumes generated via automated andmanual counterparts,
and an ability to leverage these LF-MRI pipelines to distinguish
between non-AD patients and those with a diagnosis of MCI/AD.

Given its portability and low operational cost, LF-MRI holds pro-
mise as a tool to complement and extend access to current approaches
for AD diagnosis, monitoring and management. Atrophy is an estab-
lished biomarker for AD, with effects primarily observed in the hip-
pocampus, whole brain, and ventricles31,32, with structural changes
observed onMRI often preceding cognitive impairment in the order of
years. Hippocampal atrophy is present in pre-symptomatic individuals
who subsequently develop AD, with hippocampal volumes reduced by
15–25% among MCI and mild AD compared to cognitively normal
individuals, and with rates of hippocampal atrophy of 3–5% per
year33–38. Ventricular enlargement also has demonstrated sensitivity to
disease progression, as patients with MCI who convert to AD have a
higher rate of ventricular enlargement compared to those with stable
MCI39. Our findings indicate that LF-MRI can detect hippocampal,
lateral ventricle, and whole brain volumes with strong agreement to
ground truth and high test-retest reliability. Moreover, we show that
volumes acquired from LF-MRI follow a similar pattern to that
observed on conventional MRI, with less atrophy observed in CN

individuals compared to individuals with MCI and AD. These results
suggest that LF-MRI has the potential to provide brain volumetric
information to monitor AD progression.

Loss of white matter integrity that manifests as WMH lesions is
also associated with an increased risk of cognitive impairment40,41.
Variability in both the pattern and degree of WMH reflects differences
in etiology, pathological severity, and subsequent clinical manifesta-
tion. Although WMH is prevalent in 20–50% of individuals by midlife,
prevalence increases to > 90% with advancing age42. WMH has been
shown to be associated with elevated cerebral Aβ in the setting of AD,
with evidence to suggest cerebral small vessel disease exacerbates the
accumulation of Aβ due to impaired perivascular clearance43. Evalu-
atingWMHburden is thus of clinical value in distinguishing the impact
of vascular contributions to subsequent cognitive decline. In our
study, automated segmentation of WMH at LF showed strong corre-
lation to quantitative HF measures and qualitative Fazekas scoring.
This pipeline was accurate among multiple cohorts, including those
with vascular risk factors and individuals with MCI and AD, indicating
its generalizability for quantifying WMH volume.

Our study demonstrates that pairing LF-MRI with an end-to-end
machine learning pipeline enables point-of-care scanning and auto-
matic quantification of brainmorphometry andWMHvolume. The use
of portable low-field MRI at the point-of-care in combination with
machine learning tools may have future application to disease states
including vascular dementia, neurodegenerative tauopathies and
synucleinopathies, and in longitudinal analyzes. The pipelines repor-
ted herein and related tools44,45 warrant further evaluation in other low-
field MRI scanners as they become available13,46–50, and may benefit
from diagnostic specificity and sensitivity analyzes from expert read-
ers, with particular attention to the detection limit for small pathologic
lesions. These represent valuable next steps for future research.
Moreover, additional logistical steps will need to be undertaken to
promote widespread adoption for clinical use. For example, clinical
implementation of the proposed pipeline would require capital
investment, training of personnel to operate the scanners, and reg-
ulatory clearance ofmachine learning algorithms.Nevertheless, due to
the portability and low operational costs, LF-MRI has substantial
potential to increase access and reduce burdens associated with neu-
roimaging, which may be particularly advantageous in environments
where availability of conventional MRI is limited.

Methods
Study Design and Imaging Acquisition Parameters
This study included participants from three cohorts who underwent
MRI acquisition on a portable, low-field 0.064 T MRI (Hyperfine Inc.)
with a high-field, conventional scan at a field strength of 1.5–3 T. For all
cohorts, we deem the 1.5–3 T MRI as the gold standard and thus
ground truth. Demographics of each cohort is provided in Supple-
mentary information Tables. LF imaging parameters are provided in
Supplementary information Table S3.

Cohort 1 included N= 20 healthy volunteers (n = 10 males and
n = 10 females) with no past medical history of neurological disease or
memory complaints (Supplementary information Table S1) imaged at

Fig. 5 | Applicationof LF-SynthSR v2 andWMH-SynthSeg to a cohort ofMCI/AD
subjects imaged in the clinic at LF. a Representative T1 weighted (T1w) and FLAIR
images at low field (LF) and high field (HF) in a patient with Alzheimer’s disease
(AD). T1w images are processed through LF-SynthSR v2 (LF) and SynthSeg and
FLAIR images are processed through WMH-SynthSeg. b Hippocampal (orange),
lateral ventricle (red) and whole brain (light gray) volumes derived from SynthSeg
andWMH(blue) derived fromWMH-SynthSeg are shown in the 3D rendering for LF
and HF counterparts. c Scatter plots comparing the hippocampus, lateral ventricle,
whole brain, and WMH volume derived from HF-MRI and LF-MRI scans are shown.
d Using LF-MRI scans, the hippocampus and whole brain volumes were smaller

among Alzheimer’s disease (AD, n = 24) and mild cognitive impairment (MCI;
n = 30) patients compared to the vascular cohort (VC; n = 23) presenting without
memory complaints, and patients with AD had larger ventricles. Patients with AD
also had greater WMH burden compared with the VC. Segmentation volumes are
adjusted for total intracranial volume in mm3. For each subpanel, the box plots
show the median, the interquartile range, and the Tukey whiskers. The individual
data points are shown adjacent to the box plots. Source data is available via the
following link: https://doi.org/10.7910/DVN/9PANMC. WMH, white matter hyper-
intensity. *** p <0.001, compared to the VC.
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the Massachusetts General Hospital (MGH) between December 2022
and July 2023. Equal numbers of male and female participants under-
went LF-MRI acquisition using T1w, T2w and FLAIR anisotropic, in-
plane sequences. To optimize the acquisition parameters that main-
tained accuracy in segmentation tasks while minimizing acquisition
time, we studied the impact of image resolution. To that end, we
custom-built isotropic sequences at resolutions of 2, 3, and 4mmvoxel
sizes, which were acquired in T1w and T2w contrasts (see Supple-
mentary information Table S3 for imaging parameters and acquisition
duration). Ground truth 1mm isotropic T1 MP-RAGE sequences were
acquired at 3 T using a Siemens Prisma MRI scanner.

Cohort 2 includedN = 23 patients (n = 11males and n = 12 females)
with at least one vascular risk factor who presented to Yale NewHaven
Hospital between December 2021 and July 2022 with non-neurologic
complaints and no prior history of memory disorder (Supplementary
information Table S7). All subjects had a T2 FLAIR sequence acquired
using both LF- and HF-MRI. Details on this cohort have been published
previously27, and in the current study we focused on the subset that
had a paired HF-MRI FLAIR in addition to a LF-FLAIR image.

Cohort 3 included patients who were evaluated in the MGH out-
patient Memory Disorders clinic (N = 54; n = 32 males and n = 22
females; Supplementary information Table S8) with a diagnosis ofMCI
or AD. Subjects aged ≥60 years old with a clinical diagnosis of MCI or
AD who presented to the MGH Memory Disorders clinic between
February 2023 and August 2024 and consented to participation were
included. Subjects with a global Clinical Dementia Rating (CDR) score
of 0.5were classified asMCI and subjectswith aCDR scoregreater than
or equal to 1.0 were classified as AD51. For subjects who did not have a
CDR score available, theMontreal Cognitive Assessment (MoCA) score
was used, where MCI was defined as a score between 18–25, and mild
AD as a score between 10–17. All subjects in this cohort underwent a
LF-MRI imagingprotocol that includedT1w, T2w and FLAIR sequences.
The chronologically closest 1.5–3 T MRI acquired as standard of care
was used for comparison and validation. A subset of patients (n = 7)
returned for test-retest image acquisition using the aforementioned
imaging protocol. CSF analysiswas performed in patientswho hadCSF
sampling and ADMark testing available (Athena, n = 21).

A subset of randomly selected participants from ADNI were used
for validation of SynthSeg andWMH-SynthSegonHF-MRI in thosewith
AD/MCI compared with CN controls. Participants from ADNI-1 (N = 61;
n = 32males and n = 19 females) who underwent 1mm isotropic T1MP-
RAGE image acquisition at 1.5 T were used for validation of morpho-
metry using SynthSeg (Supplementary information Table S11).
Dementia status was based on CDR scoring, where the CDR score for
CN subjects was 0, for subjects with MCI the CDR was 0.5, and for
subjects with AD it was 0.5–1. Full details on the parameters for image
acquisition have been previously published52. For validation of WMH
volume usingWMH-SynthSeg, N = 58 randomly selected patients from
ADNI-2 and ADNI-GO with a diagnosis of AD, MCI or CN who under-
went HF-FLAIR acquisition were analyzed (Supplementary information
Table S12). Details on the parameters for image acquisition have been
reported previously52.

Informed consent was obtained for all prospectively enrolled
participants (cohorts 1, 3) or for secondary data analysis (cohort 2 and
ADNI subgroups) under Mass General Brigham and/or Yale University
Institutional Review Board approval. LF-MRI exclusion criteria inclu-
ded an inability to lay flat, body habitus exceeding the dimensions of
the LF-scanner, pregnancy, or the presence of active electronic
implants including a cardiac pacemaker, insulin pump, or spinal sti-
mulator. Consent was obtained from the individual or their legally
authorized representative.

Machine Learning Algorithms
The LF-SynthSR pipeline reported herein builds on our publicly avail-
able method, SynthSR17,18,19. The overall architecture used in training is

summarized in Fig. 1a. As with SynthSR, LF-SynthSR relies on a syn-
thetic data generator that creates batches of synthetic LF-MRI data
with paired target outputs. The synthetic LF-MRI scans are produced
fromapool of volumetric segmentations that havebeenpre-generated
from a publicly available dataset of HF-MRI53. The target outputs
include the aforementioned segmentations and corresponding 1mm
isotropic T1w scans. In LF-SynthSR v1, the generator used targeted
simulation to create pairs of LF T1w- and T2w-like scans. In LF-SynthSR
v2, the generator used domain-randomized simulation to create a
single LF-like synthetic scan of random resolution and tissue contrast.
This approach enables the trained network to process single scans of
any contrast and resolution at test time18.

LF-SynthSR uses the data from the synthetic generator to train a
convolutional neural network (specifically aU-net)54with two losses: an
image intensity loss and a segmentation loss17,19. The former compares
the estimated high-resolution T1w scan with the ground truth (i.e., the
authentic T1w scan acquired at HF) using the L1 norm, i.e., the sum of
absolute differences in image intensities. The segmentation loss pro-
cesses the estimated high-resolution T1w scan with a fully supervised
U-net for image segmentation trained on real HF T1w scans, and
compares the output with the ground truth segmentation. This loss
encourages LF-SynthSR to produce image features that are well seg-
mented, which is particularly helpful to penalize errors that have little
impact on the L1 loss yet can noticeably degrade the segmentation,
e.g., blurring of the putamen and claustrum17,20.

At test time, the original v1 of LF-SynthSR used Robust Registra-
tion in the FreeSurfer environment55 to align the anisotropic T1w and
T2w LF-MRI scans from each healthy volunteer; registration is not
required by v2 since it operates on individual scans. Both for v1 and v2,
the resulting MP-RAGE-like images were each segmented with
SynthSeg20,56, which is publicly available, and which also relies on
domain randomization to achieve high robustness.

For WMH-SynthSeg, the overall architecture of the training algo-
rithm uses a similar generator as LF-SynthSR and SynthSeg, with two
key differences21. First, the training data include scans with WMH (and
corresponding segmentations), which we obtained from public data-
sets, including the Human Connectome Project, ADNI, and the WMH
segmentation challenge52,57–61. This enables generation of synthetic
imageswithWMHandcorrespondingground truth segmentationswith
WMH masks. Second, WMH-SynthSeg achieves improved robustness
with respect to SynthSeg, by solving three different tasks simulta-
neously (an approach known as “multi-task learning”): image segmen-
tation; joint synthesis and super-resolution; and bias field estimation.
This is in contrast with SynthSeg, which only predicts the segmenta-
tions. WMH-SynthSeg uses a multi-task U-net that simultaneously
makes these three predictions; at test time, the bias field and synthetic
T1w-like scan are discarded, and only the segmentation is preserved.

The full details of the training procedure have been previously
reported19–21, but are summarized here for completeness. The regres-
sion (LF-SynthSR) and segmentation networks (WMH-SynthSeg and
the auxiliary segmentation network in LF-SynthSR) have the same
architecture, except for the final layer: the regression networks have a
linear layer with a single feature (the predicted intensities), whereas
the segmentation U-Nets have as many features as labels to segment,
followed by a softmax function. The U-nets are 3D and have five
resolution levels with two layers each. These layers comprise con-
volutions with 3 × 3 × 3 kernels followed by nonlinear activations using
exponential linear units (ELU). The number of features is 24 × 2(L−1),
where L = 1,…,5 is the level number. Training uses a large, fixed number
of iterations that ensures convergence; we note that classical valida-
tion is not directly translatable to the domain randomization
approach, since: (i) images are synthetic; and (ii) using real images in
validation may skew the network towards their appearance (MRI
contrast), potentially compromising the ability to analyze any MRI
contrast and resolution.
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Image analysis
All LF and HF dicom images were converted to NIfTI format prior to
analysis with LF-SynthSR, SynthSeg, and/or WMH-SynthSeg for all
cohorts. Ground truth was obtained by segmenting HF T1 MP-RAGE
and/or FLAIR scans acquired at 1.5–3 T. HF T1 MP-RAGE images from
healthy volunteerswere additionallyprocessed through the FreeSurfer
segmentation pipeline ASEG25. Hippocampal, lateral ventricle, and
whole brain volumeswere compared betweenHF and LF counterparts.
Quantitative metrics included agreement in segmentation volume
(correlation and ASPD) and degree of spatial overlap (Dice similarity
coefficient). For the hippocampus, the left and right volumes derived
from the SynthSeg output for each subject were averaged. For ven-
tricle volume, the left and right lateral ventricle volumes were com-
bined.Whole brain volumeswere computedby summing the following
structures: cerebral white matter, cerebral cortex, thalamus, caudate,
putamen, pallidum, hippocampus, ventral diencephalon, accumbens,
and amygdala. Hippocampus, lateral ventricle and whole brain
volumes were corrected for total intracranial volume to normalize/
account for differences in head size. To compute the Dice, HF scans
were co-registered to the super-resolved LF-MRI using a nonlinear
approach with a grid spacing of 30mm and computed kernel of 5mm
in NiftyReg and then both images were segmented using SynthSeg. HF
images were co-registered to LF counterparts to preserve LF image
resolution for downstream segmentation. However, LF co-registration
to HF T1wMP-RAGE was also performed to determine the effect of co-
registration direction onDice scores. The equations for ASPD andDice
are listed below, where X corresponds to the segmentation volume of
interest on the ground truth image at HF and Y corresponds to the
segmentation volume of interest on the LF-MRI scan:

ASPD= 100
jX � Y j
ðX + Y Þ=2 ð1Þ

Dice =2
jX \ Y j
jX j+ jY j ð2Þ

Togenerate ground truth lesion volumes forWMHin cohort 2, the
FLAIR sequences from the HF-FLAIR and LF-FLAIR were each manually
segmented by consensus using ITK-Snap v3.862. For each of the LF-MRI
cohorts (1, 2 and 3), HF-MRI scans were acquired within 7 ± 11 months
of the LF-MRI exam.

Statistical Analysis
Statistical analyzes were performed using STATA v18 (StataCorp,
College Station, Texas, USA) and GraphPad Prism v10 (GraphPad
Software, Boston, Massachusetts USA). Pearson correlations were
performed with bootstrapping (n = 400 samples) to derive 95% con-
fidence intervals. Comparisons between groups were evaluated using
the Kruskal-Wallis test formore than 2 groups, andWilcoxon rank sum
test for 2 groups. A p-value < 0.05 was considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data has been uploaded to the Harvard Dataverse repository
(https://dataverse.harvard.edu) and is available via the following link:
https://doi.org/10.7910/DVN/9PANMC. Individual patient data are
available to academic researchers under restricted access due to
privacy and ethical restrictions, and access can be obtained by con-
tacting the corresponding author and entering into an institutional
data use agreement.

Code availability
LF-SynthSR, SynthSeg and WMH-SynthSeg are publicly available and
implemented in FreeSurfer: https://surfer.nmr.mgh.harvard.edu/
fswiki/DownloadAndInstall. https://surfer.nmr.mgh.harvard.edu/
fswiki/SynthSR. https://surfer.nmr.mgh.harvard.edu/fswiki/SynthSeg.
https://surfer.nmr.mgh.harvard.edu/fswiki/WMH-SynthSeg.
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