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Statistical issues related to dietary intake
as the response variable in intervention
trials
Ruth H. Keogh,a*† Raymond J. Carroll,b,c Janet A. Tooze,d

Sharon I. Kirkpatricke and Laurence S. Freedmanf,g

The focus of this paper is dietary intervention trials. We explore the statistical issues involved when the response
variable, intake of a food or nutrient, is based on self-report data that are subject to inherent measurement error.
There has been little work on handling error in this context. A particular feature of self-reported dietary intake
data is that the error may be differential by intervention group. Measurement error methods require
information on the nature of the errors in the self-report data. We assume that there is a calibration
sub-study in which unbiased biomarker data are available. We outline methods for handling measurement error
in this setting and use theory and simulations to investigate how self-report and biomarker data may be
combined to estimate the intervention effect. Methods are illustrated using data from the Trial of
Nonpharmacologic Intervention in the Elderly, in which the intervention was a sodium-lowering diet and the
response was sodium intake. Simulations are used to investigate the methods under differential error, differing
reliability of self-reports relative to biomarkers and different proportions of individuals in the calibration
sub-study. When the reliability of self-report measurements is comparable with that of the biomarker, it is
advantageous to use the self-report data in addition to the biomarker to estimate the intervention effect. If,
however, the reliability of the self-report data is low compared with that in the biomarker, then, there is little
to be gained by using the self-report data. Our findings have important implications for the design of dietary
intervention trials. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
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1. Introduction

Our health is undeniably linked with what we eat, and there is a long history of studies that aimed to
discover the effects of diet on health, starting with what is probably the earliest recorded intervention
study [1], and including the famous scurvy experiment of James Lind [2]. Nowadays, based on known
links between diet and health, such as salt intake with blood pressure [3], saturated fat intake with serum
low density lipoprotein cholesterol levels [4], and energy balance with obesity [5], investigators are
studying also how to get individuals to eat a healthier diet. In these studies, the focus is often on the in-
termediate aim of achieving dietary change [6–8]. The appropriate response variables in such studies are
the intakes of the nutrients or foods that are the targets for change. In other studies, the main focus is on
the effects of the intervention on a health outcome that may, at least in part, be mediated through dietary
change. In this case, the dietary response variable is a secondary outcome. Sometimes, dietary outcomes
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can be measured objectively using a reliable biomarker, such as 24-h urinary sodium [9], but sometimes,
no such objective measure exists or is prohibitively expensive. This paper explores the statistical issues
involved when the main response variable of interest is to be based instead on self-reported dietary in-
take data.

A primary concern when considering the use of a reported dietary intake is the measurement er-
ror inherent in self-report data. Measurement error is an important barrier to progress in many areas
of scientific endeavor and has been particularly difficult in the field of nutritional epidemiology
[10]. Depending on the context, measurement error will at best reduce the precision with which a
study can estimate the effect of interest and at worst could produce spurious results or fail to iden-
tify true effects. To counter this problem, various statistical methods for dealing with measurement
error have been developed, leading to a growing body of literature on this topic. Although the sta-
tistical literature on measurement error is vast, surprisingly, the focus has been greatly concentrated
on problems where explanatory variables in regression models are measured with error [11–13],
and rather little has been written on the problem where the response (or outcome) variable is mea-
sured with error [14]. For example, in the book of Carroll et al. [11], there are 15 chapters, and only
the last deals with error in the response variable.

Implementation of methods for dealing with measurement error requires information on the nature of
the measurement errors in the self-report data. This requires sub-studies that have been conducted along-
side the main study to assess the magnitude and nature of error in the measurements of the key variables,
by comparing the main self-report instrument with more accurate indicators, such as biomarkers, that can
be assumed to be unbiased measures of dietary intake [15]. The more accurate measures, which we will
here refer to as biomarker measurements, may be considered to provide a gold-standard measure of intake
of the dietary components of interest but are usually expensive and cannot necessarily be obtained for all
participants in the study. Therefore, a compromise design would be one that included self-report data for
all the participants, and biomarker data on a subset. The biomarker portion of the study is often called a
calibration sub-study, because it provides a means of ‘calibrating’ the self-report to the biomarker.

In our application, dietary intake is the outcome measure following the intervention, and we are con-
cerned with handling measurement errors in this context. We will draw on the work already performed
on this problem, particularly by Buonaccorsi [14], and will develop it in new directions. In particular, we
will discuss the problem of differential measurement error, where the magnitude of the bias differs be-
tween the intervention and control groups. This can be a critical concern for self-reported intake in die-
tary intervention studies because those exposed to the intervention may be more prone to altering the
reporting of their intake, which is thought to occur frequently in such studies (e.g., [16]). We will ad-
dress the following questions, using theory, a real example, and simulations based on data from the real
example:

(a) What methods can be used to take advantage of the combined data from a calibration sub-study
where biomarkers are available and data on self-reports from the main study to estimate the interven-
tion effect?

(b) In what circumstances are the self-report data helpful in addition to the biomarker data from the cal-
ibration sub-study for estimating the intervention effect?

The paper is organized as follows. In Section 2, we outline the situation in statistical terms and intro-
duce the notation. Methods for estimation of the intervention effect using the combined data from the
calibration sub-study and the main study are outlined in Section 3. In Section 4, the methods are
illustrated using data from the Trial of Nonpharmacologic Intervention in the Elderly (TONE), in which
the intervention was a sodium-lowering diet and the outcome of interest was sodium intake [17]. In this
study, the dietary outcome was a secondary outcome. In Section 5, detailed simulation studies based on
data from TONE are used to assess the performance of the methods across a range of scenarios, and in
Section 6, we conclude with a discussion and recommendations.

2. Models for error in a dietary outcome

We state the problem in statistical terms as follows. We have a set of individuals who have been allo-
cated by randomization to either an intervention or a control group. The intervention is designed to
change their intake of a particular dietary component (nutrient or food). At a chosen point of time, usu-
ally the end of the intervention period, the true intake (or change in intake) of individual j (j=1,…,Ni) in
group i (i=1 for control and 2 for intervention) is denoted by Tij .
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508
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A simple model for Tij is:

Tij ¼ μTi þ ϵTij ; (1)

where the ϵTij have expectations zero for each group i and variances σ2Ti
and μTi (i=1, 2) is the expected

intake (or change in intake) under control or intervention, respectively. The main aim of the study is to
estimate the intervention effect μT2�μT1. The focus is assumed to be on the absolute intake of the nu-
trient or food at a given point in time, although the methods that we describe could also be applied to a
situation in which the focus is on a change in dietary intake. This would require self-report data in the
main study and biomarker data in the calibration sub-study to be available at both time points from
which the change is calculated.

Unfortunately, we cannot measure Tij. Instead, we have the following data. First, we have a measure
of intake at the end of the intervention period obtained from the study participants by self-report, for ex-
ample, using a questionnaire or 24-h recall. We denote these data by Qij. These measurements are related
to true intake, but due to being self-reported, they are not considered to provide an unbiased measure of
it [10]. We write the statistical model for the self-report as

Qij ¼ α0i þ α1iT ij þ ϵQij; (2)

where the ϵQij are independent random errors with means zero and variances σ2Qi
i ¼ 1; 2ð Þ. The param-

eters α0i and α1i are the intercepts and slopes, respectively, in a linear regression of Q on T for each treat-
ment group i (i=1, 2). The measurement error is in general non-classical; only if α0i=0 and α1i=1 is the
measurement error classical and the self-report unbiased. Model 2, in its generality, describes the situa-
tion of differential error between the intervention and control groups, because the α-quantities differ be-
tween the two groups. Only when α01 =α02 and α11 =α12 is the error non-differential. We use the term
‘differential error’, although, traditionally in this area of statistics, differential error refers to error in
an explanatory variable differing according to the outcome variable. In our case, the outcome itself
(T) is measured with error, and the differential error occurs when the error in the outcome differs accord-
ing to the explanatory variable, the treatment group variable.

Second, we have a series of Kij biomarker measurements of intake in each treatment group in a subset
of ni individuals. Without loss of generality, individuals j=1,…,ni are assumed to be in the sub-study in
treatment group i and individuals ni+1,…,Ni outside the sub-study. We denote these biomarker data
Mijk (i=1, 2; j=1,…,ni; k=1,…, Kij). It is assumed that these measures are made close enough in time
to the time point of interest for the dietary outcome that they measure the intake of interest. These bio-
marker measurements are unbiased measures of Tij but have some random error. We write their statistical
model as

Mijk ¼ Tij þ ϵM ijk ; (3)

where ϵMijk are independent random errors with means zero and variances σ2Mi (i=1, 2).
We define the reliability of the self-report to be the correlation between repeat reports by the same per-

son; from 2, this equals α1i2 var(Tij)/var(Qij). Similarly, the reliability of the biomarker is var(Tij)/var(Mijk).
The reliabilities of the self-report and the biomarker are clearly reduced as the error variances, σ2Qi and
σ2Mi respectively, increase.

For convenience of developing the methods, we will assume that the error terms in models 1–3 are
independent of each other and normally distributed. In practice, with dietary data, this assumption can
often be satisfied by using a logarithmic or power transformation of the data. For the methods described
in the next section to be applied, at least some individuals in the calibration sub-study must have at least
two biomarker measurements, that is, Kij>1 for some values of (i,j).

We let μQi denote the expected self-report measurement in treatment group i (i=1, 2), and μMi denote
the expected biomarker measurement. A consequence of model 2 is that the expected difference between
self-report measurements in the two groups, μQ2

� μQ1
, is not equal to the true intervention effect,

μT2�μT1. In fact, we have μQ2
� μQ1

¼ α02 � α01ð Þ þ α12μT2 � α11μT1ð Þ. It follows that the simple dif-

ference between means of the self-report in the two groups, Q2 � Q1, does not provide an unbiased es-
timate of the true intervention effect. Therefore, to use the self-report data in estimating the intervention
effect, one needs to employ non-standard methods. A consequence of the classical error model for the
biomarkers in 3 is that μM2

� μM1
¼ μT2 � μT1. It follows that a difference in means of the biomarker

measurements in the two treatment groups does provide an unbiased estimate of the intervention effect.
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508
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However, biomarker measurements are available only in the calibration sub-study, which may be a small
proportion of the main study. This raises the question of how data on biomarkers from a calibration sub-
study can be combined with data from self-reports to efficiently estimate the intervention effect.

3. Methods for estimating the intervention effect

In this section, we outline methods for estimation of the intervention effect using data from self-reports
in the main study and data from biomarkers in a calibration sub-study. We focus on two approaches: the
first using method of moment estimation and the second using maximum likelihood estimation. Al-
though the maximum likelihood approach may be more efficient than the methods of moments ap-
proach, the latter enables us to show clearly and intuitively the relative contribution of the biomarkers
and self-reports to the intervention effect estimate. Also, in practice, the efficiency gain from using max-
imum likelihood may be rather small.

3.1. The Buonaccorsi approach using the method of moments

With models 2 and 3 as the background, Carroll et al. [11: Chapter 15] describe an approach to estima-
tion based on a series of papers by Buonaccorsi and colleagues [14,18,19]. We suppose for simplicity
here that the number of repeats of the biomarker, Kij, is the same (K) for all individuals in the sub-study
and is greater than 1. The main ideas of the approach, applied to our setting, are

(i) The statistic θ̂ ið Þ ¼ μ̂M2
� μ̂M 1 is an unbiased estimator of the intervention effect μT2�μT1, where

μ̂Mi
¼ Mi ¼ 1

ni
∑
ni

j¼1
∑
K

k¼1
Mijk=K.

(ii) The statistic θ̂ iið Þ ¼ μ̂Q2
�α̂02
α̂12

� μ̂Q1
�α̂01
α̂11

is a consistent estimator of the intervention effect μT2�μT1, where

μ̂Qi
¼ Qi ¼ 1

Ni
∑
Ni

j¼1
Qij.

The hats on the α-quantities in (ii) denote estimates that are derived from an errors-in-variables anal-
ysis of the regression of Q on M in the subsets of individuals who have biomarker measurements. We
discuss their estimation in the succeeding discussion.

The Buonaccorsi approach is to combine the estimates in (i) and (ii) by taking their weighted average,
using weights that take into account the variances and covariance of the two estimates so as to minimize
the variance of the combination.

We investigate what the contribution of statistic θ̂ iið Þ to the overall estimator is under different assump-
tions about the form of the error in the self-report. Two sets of assumptions are considered:

Differential error This is the most general case in which there are no restrictions on the α-quantities in
model 2.

Non-differential error This is the special case in which the slope and intercept parameters in model 2 are
the same in the two treatment groups, that is, α01 =α02 =α0, say, and α11 =α12 =α1, say.

For simplicity and to emphasize the main points, in the methods described in the succeeding discus-
sion, we assume that there are two biomarker measurements (K=2) for each individual in the calibration
sub-study.

3.1.1. Differential error. If the error in the self-report is differential, method of moments estimators for
α1i and α0i (i=1, 2) are

α̂1i ¼
cov Qij;Mij

� �

cov Mij1;Mij2
� � ; (4)

α̂0i ¼ Q
sð Þ
i � α̂1iMi; (5)

where the covariances in 4 are obtained among those in treatment i group and in the sub-study,Q
sð Þ
i (i=1,2)
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508
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denotes the mean of the self-reports among individuals in the sub-study and in treatment group i Q
sð Þ
i ¼

1
ni
∑ni

j¼1Qij, and Mij ¼ ∑K
k¼1Mijk=K.

Substituting these estimates into the expression for θ̂ iið Þ, we obtain

θ̂ iið Þ ¼
μ̂Q2

� α̂02
α̂12

� μ̂Q1
� α̂01
α̂11

¼ Q2 � Q
sð Þ
2

α̂12
� Q1 � Q

sð Þ
1

α̂11
þM2 �M1 (6)

Because, usually, the patients who participate in the sub-study are chosen to be representative of

those in the main study, ideally selected at random, one expects the quantities Qi � Q
sð Þ
i i ¼ 1; 2ð Þ

to approach zero as the sample size increases. Hence, for very large sample sizes, the statistic in 6
using self-reports will be very close to the statistic in θ̂ ið Þ ¼ M2 �M1. In that case, statistic θ̂ iið Þ will
add little information to that in θ̂ ið Þ. Consequently, nearly all the information about the intervention
effect will come from the biomarker measurements, and very little from the self-reported intakes.
The question arises, however, whether this is true for the sample sizes and levels of measurement er-
ror that are typical in dietary intervention studies. The overall mean of the self-report Qi and the mean

in the sub-study Q
sð Þ
i may be quite different for finite overall sample size when the proportion of in-

dividuals in the sub-study is small.

3.1.2. Non-differential error. Under the assumption of non-differential error in the self-reports, the
method of moments estimators for α0 and α1 are

α̂1 ¼
cov Qij;Mij

� �

cov Mij1;Mij2
� � ; (7)

α̂0 ¼ Q
sð Þ � α̂1M ; (8)

whereQ
sð Þ ¼ 1

n∑
2
i¼1∑

ni
j¼1Qij,M ¼ 1

n ∑
2

i¼1
∑
ni

j¼1
∑
K

k¼1
Mijk=K and n ¼ n1 þ n2 and where the covariances in 7 are

obtained using the combined data from the two treatment groups i=1, 2 from the sub-study. In this case,

therefore, the statistic based on the self-reports, θ̂ iið Þ ¼ Q2�Q1
α̂1

, provides a consistent estimator of the in-
tervention effect μT2�μT1. Thus, when the parameters α0,α1 are common to both treatment groups,
θ̂ iið Þ does not reduce to θ̂ ið Þ for large sample size, and hence, we expect that the combined estimate of

the intervention effect using θ̂ ið Þ and θ̂ iið Þ, that is, an estimate based on both biomarkers and self-reports,

will be more precise than that estimated using the biomarkers only, that is, θ̂ ið Þ.

3.1.3. Combination of estimates. To obtain the combined intervention effect estimate, we take an
inverse-variance-weighted average of θ̂ ið Þ and θ̂ iið Þ . The inverse-variance-weighted combined esti-
mate has weights that are designed to minimize the variance of the estimator. Because the estimate
based on biomarkers only is equivalent to using weights of 1 and 0 for the two components, respec-
tively, it can be thought of as a combined estimate with non-optimal weights that will have variance
larger than the inverse-variance-weighted combined estimate. Because θ̂ ið Þ and θ̂ iið Þ are functions of
other parameter estimates, we use an estimating equations approach and linear approximations to
obtain the variances of the two estimates and their covariance. Details of this approach are given
in the Appendix S1, and example R code for implementation is also provided. From equation (A2),
we see that in the combined estimate, the biomarkers estimate θ̂ ið Þ receives a larger weight than the

self-report estimate θ̂ iið Þ whenever the variance of θ̂ iið Þ is greater than the variance of θ̂ ið Þ and that

the relative contribution of θ̂ iið Þ increases as var θ̂ iið Þ
� �

=var θ̂ ið Þ
� �

decreases. Under both differential

and non-differential error, smaller error variances in the self-report (σ2Qi
) will result in a smaller var-

iance for θ̂ iið Þ , var θ̂ iið Þ
� �

. Hence, we expect the self-report to make a greater contribution to the
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508
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combined estimate, via θ̂ iið Þ, when the error variances are small. This is investigated in the simulation
study. A method of moments estimate for the biomarkers error variance is σ̂2Mi ¼ var Mijk

� ��
cov Mij1;Mij2

� �
in the case of differential error. A methods of moments estimate for the self-report error

variance is σ̂2Qi ¼ var Qij

� �
� α̂21i cov Mij1;Mij2

� �
in the case of differential error, where α̂1i is obtained from

the solution to the estimating equations given in Appendix S1. In the case of non-differential error, σ̂2M and σ̂2Q
are obtained using the same expressions, but the variances and covariances are obtained using both treatment
groups combined, and α̂1i is replaced by α̂1.

3.2. The maximum likelihood approach

The intervention effect can alternatively be estimated by maximum likelihood. Unlike the Buonaccorsi
approach, this requires assumptions about the joint distribution of the biomarker and self-report mea-
surements. In the most general case of differential error, we suppose that M1j1,M1j2,M2j1,M2j2,Q1j,
Q2j are generated from a multivariate normal distribution with mean vector

μT1;μT1;μT2;μT2; α01 þ α11μT1; α02 þ α12μT2ð ÞT (9)

and covariance matrix

σ2T1 þ σ2M1 σ2T1 0 0 a11σ2T1 0
σ2T1 σ2T1 þ σ2M1 0 0 a11σ

2
T1 0

0 0 σ2T2 þ σ2M2 σ2M2 0 a12σ2T2
0 0 σ2M2 σ2T2 þ σ2M2 0 a12σ2T2

a11σ2T1 a11σ2T1 0 0 a11σ2T1 þ σ2Q1 0
0 0 a12σ2T2 a12σ2T2 0 a212σ

2
T2 þ σ2Q2

0
BBBBB@

1
CCCCCA
: (10)

If we assume non-differential error, then the mean vector and covariance matrix are altered so that
α01 =α02 =α0 and α11 =α12 =α1. Under either set of assumptions (differential or non-differential error
in the self-report measurements), it may be reasonable to assume that the variability in true intake is
the same across the two treatment groups, σ2Ti ¼ σ2T i ¼ 1; 2ð Þ, or that the variability of the errors in
the self-reports and biomarkers are the same in the two groups, σ2Qi ¼ σ2Q; σ2Mi ¼ σ2M i ¼ 1; 2ð Þ. Such
assumptions can be tested using likelihood ratio tests. Using maximum likelihood, the expected out-
comes in the two groups, μT1 and μT2, are estimated directly alongside the other parameters, and the in-
tervention effect follows by taking their difference.

In practice, the parameters are estimated by maximizing the full likelihood for the data. The full like-
lihood is formed from the product of the likelihood for the data in the sub-study (Mij1,Mij2,Qij; j=1,…,
ni, i=1, 2) and that for the data outside the sub-study (Qij; j=ni+1,…,Ni, i=1, 2). The variance–
covariance matrix for the maximum likelihood estimates (MLEs) can be estimated in the standard
way using the inverse of the observed information matrix.

We note that in our setting of linear mixed models, all calculations for the MLEs are based only on the
first and second moments of the observed data, so the MLEs are in fact methods of moment estimators.
As such, the MLEs make no distributional assumptions and are valid even if the data do not follow a
multivariate normal distribution. However, in this case, the standard variance estimates are not valid.
Under departures from multivariable normality the variance–covariance matrix for the MLEs could be
obtained by bootstrapping or by using sandwich estimates. The sandwich estimates approach is de-
scribed in detail in Appendix S2.

4. Example: Trial of Nonpharmacologic Intervention in the Elderly (TONE)

The TONE study was a randomized controlled trial designed to investigate whether weight loss or re-
duction in sodium intake, or both, result in satisfactory blood pressure control in individuals taking an-
tihypertensive medication after removal of the antihypertensive medication. Full details of the trial are
given by Appel et al. [17]. The primary endpoints were a blood pressure of 150/90mmHg or higher, re-
sumption of antihypertensive drug therapy, or the occurrence of a blood pressure-related clinical compli-
cation during 2–3years of follow-up. Study participants were randomized to one of four intervention
arms: sodium-lowering diet, weight loss regime, sodium-lowering diet plus weight loss regime, or no
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508
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intervention. Individuals who were obese were randomized to one of the four intervention groups, while
non-obese individuals were randomized only to a sodium-lowering diet or to usual care.

In this illustration, we combine the obese and non-obese groups and focus on two intervention groups:
Group 1: usual sodium diet (with or without weight loss regime); Group 2: sodium-lowering diet (with or
without weight loss regime). The intervention effect is defined as the difference between the expected sodium
intake in the sodium-lowering diet group and the expected sodium intake in the usual sodium diet group.

Self-reported measures of nutrient intake were obtained using 24-h recalls at several time points over
the course of follow-up. Urinary biomarker measures were also available at a subset of follow-up times.
We focus on the 24-h recall measure of sodium intake at 9months of follow-up, Qij. The first biomarker
measure of the outcome, Mij1, was urinary sodium at 9months. We use a biomarker measure made at
18months of follow-up as the repeated measure, Mij2.

The TONE study involved a total of 975 randomized individuals. Of these, 850 had a 24-h measurement
of sodium intake at the 9month time point, 867 had the concurrent urinary sodiummeasure, and 804 had the
repeated urinary sodium measure. We restrict our analyses to 751 individuals who had all three measure-
ments observed; of these, 371 were in treatment Group 1 (usual sodium diet), and 380 were in treatment
Group 2 (sodium-lowering diet). Restricting our illustration to this subset of 751 individuals enables us to
compare error-corrected estimates of the treatment effect with estimates of the intervention effect using only
biomarkers, which we consider to be the gold-standard method. To assess error-corrected estimates, we will
set some of the biomarker measurements to be missing in varying proportions of the sample.

The self-reports and the biomarker measurements had skewed distributions within treatment groups,
so we transformed all measurements using a power of 0.3, as suggested by using a Box–Cox analysis
[20]. It is known that urinary sodium underestimates dietary intake of sodium and Holbrook et al [21]
found that the mean percentage of dietary sodium excreted in the urine was 86%. To account for this
in our example, we divided all urinary sodium measurements by 0.86. Thus, we assumed models 1, 2
and 3 for true intake, self-reports and biomarkers respectively (with Mijk replaced by Mijk/0.86 in 3),
for i=1, 2; j=1,…,Ni; k=1, 2.

We estimated the parameters of models 1–3 by maximum likelihood with no restrictions on the pa-
rameters in the model for the self-report, which is under differential error. Standard errors were estimated
in the standard way using the Fisher information matrix. The complete data on both biomarkers and self-
reports were used in this estimation. The parameter estimates and their estimated standard errors are
shown in Table I. Note that μTi refers to the expected value of Tij, which, in this example, is the true in-
take to a power of 0.3. The estimated intervention effect from this analysis is μ̂T2 � μ̂T1 ¼ 4:123�
4:612 ¼�0:489, which has estimated standard error 0.038. There is some evidence that the error in
the self-reports is differential; the p-value from a joint test of the null hypothesis that α11 =α12 and
α01 =α02 is 0.022. Espeland et al. [22] studied data from the TONE study and also found evidence of
differential error in the self-reports.

To investigate the methods for estimating the intervention effect that make use of the self-reports, we
considered scenarios in which the biomarker measures were available only in a subgroup of the
Table I. Estimates of model parameters in the TONE data.

Parameter Estimate SE

Group 1
μT1 4.612 0.025
σ2T1 0.123 0.018
σ2M1 0.205 0.015
α01 0.287 0.640
α11 0.799 0.139
σ2Q1 0.300 0.027

Group 2
μT2 4.123 0.029
σ2T2 0.205 0.025
σ2M2 0.246 0.018
α02 1.534 0.349
α12 0.494 0.084
σ2Q2 0.284 0.023

TONE, Trial of Nonpharmacologic Intervention in the Elderly; SE, standard error.

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508
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participants. We considered subgroups comprising 10%, 25%, 50%, and 100% of the study population.
We selected individuals at random from the study population and set the biomarker measurements of
those not selected to be missing. We estimated the intervention effect using biomarkers only and using
biomarkers and self-reports combined, the latter using both the method of moments Buonaccorsi ap-
proach and maximum likelihood, each under differential and non-differential error. The results are
shown in Table II.

Using method of moments estimation in the scenario with 10% of individuals in the calibration sub-
study, we found the same estimated intervention effect with the same standard error using the bio-
markers data only as using the biomarkers and self-reports combined using the Buonaccorsi approach
under differential error. As the proportion of individuals in the calibration sub-study increases, these
two approaches continue to give similar estimates and standard errors. These results are not unexpected
based on the theory in Section 3.1, where we showed that when there is differential error in the self-
report measurements, there may be little or nothing to gain from using the self-reports in addition to
the biomarkers. It is interesting that the self-reports appear to add nothing even when the proportion
of individuals having the biomarker measurements is small. However, as shown in the simulation studies
(in the succeeding discussion), there are cases with finite sample sizes where self-reports do add infor-
mation, even when the measurement error is differential.

The intervention effect estimates obtained using maximum likelihood estimation are close to the
method of moments estimates. The standard errors of the estimates using the biomarkers only and using
the self-reports allowing for differential error are slightly smaller than those obtained using method of
moments when the proportion with biomarkers is small. However, when the proportion reaches 50%,
the results from maximum likelihood and method of moments are nearly identical. Using maximum like-
lihood, there is a small reduction in the standard errors by including the self-reports when the proportion
with biomarkers is small, but this disappears as the proportion increases.

We have so far focused on the results obtained using biomarkers only or using the self-report assum-
ing differential error. Because there is evidence that the error is indeed differential, we would expect es-
timates of the intervention effect obtained under an assumption of non-differential error to be biased. In
fact, the estimated intervention effect under the non-differential error assumption is indeed larger than
that found under the differential error assumption or using biomarkers only. In the simulation study,
we investigate the bias from wrongly assuming non-differential error in the self-reports.

5. Simulation study

5.1. Simulating the data

We used simulation to investigate the issues raised in the preceding discussion, including those raised by
the results from the example. The simulation study was based on the TONE data. We generated data for
a study population of 1000 individuals, with 500 in each of the two treatment groups. For each individ-
ual, the true outcome measure T was generated according to model 1, a single self-report measurement Q
Table II. Results from the TONE data.

Method Percentage of individuals in the calibration sub-study

10% 25% 50% 100%

Using method of moments
Using biomarkers only �0.666 (0.138) �0.599 (0.076) �0.550 (0.053) �0.489 (0.038)
Combined: differential error �0.666 (0.138) �0.572 (0.075) �0.549 (0.051) —
Combined: non-differential error �0.705 (0.109) �0.606 (0.074) �0.565 (0.052) �0.498 (0.038)

Using maximum likelihood
Using biomarkers only �0.666 (0.131) �0.597 (0.075) �0.550 (0.053) �0.489 (0.038)
Combined: differential error �0.652 (0.122) �0.590 (0.071) �0.547 (0.051) �0.489 (0.038)
Combined: non-differential error �0.739 (0.104) �0.599 (0.066) �0.554 (0.048) �0.503 (0.037)

The estimated intervention effect and its estimated standard error (in brackets) using six approaches: using biomarkers
only (estimated using method of moments and maximum likelihood) and using biomarkers and self-reports combined
using the method of moments Buonaccorsi approach and maximum likelihood. The combined estimates were
obtained under the assumptions of differential or non-differential error in the self-reports. TONE, Trial of
Nonpharmacologic Intervention in the Elderly.
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was generated according to model 2, and two biomarker measurements, M1 and M2, were generated ac-
cording to model 3.

The parameters used in the simulation study approximately followed the values found in the TONE study
and given in Table I. We used μT1=4.6, μT2=4.1 across all simulation scenarios, giving an intervention
effect of �0.5. We chose the α-parameters of model 2 as follows: Differential error α01=0.3, α11=0.8,
α02=1.5, α12=0.5. Non-differential error α01=α02=α0=0.9, α11=α12=α1=0.65.
We used a common variance in true intake in the two treatment groups, σ2T1 ¼ σ2T2 ¼ 0:1, and in the

errors in the biomarkers, σ2M1 ¼ σ2M2 ¼ 0:2. We varied the variance in the errors in self-reports across
simulations but set it to be the same in the two treatment groups (σ2Q1 ¼ σ2Q2 ¼ 0:09; 0:3; 0:5; 0:7).
When the value is 0.09, the reliability for the self-reports averaged over the two groups is approximately
the same as the 0.5 reliability for the biomarkers.

The differential and non-differential error scenarios and the four values of error variance in the self-
reports resulted in a total of eight scenarios. In each of these, we also varied the percentage of individuals
in the calibration sub-study, that is, with the biomarker measurements available: 10%, 25%, 50%, and
100%. Both biomarker measurements were set to be missing for individuals not in the calibration
sub-study.

For each simulated data set, we estimated the intervention effect using three method of moments ap-
proaches: (i) using biomarkers only; (ii) using the combined estimate obtained using the Buonaccorsi
method assuming differential error; and (iii) using the combined estimate obtained using the
Buonaccorsi method assuming non-differential error. Note that only one of the combined estimates uses
the assumption that corresponds to the way the data were generated. We also estimated the intervention
effect using maximum likelihood.

For each scenario, we generated 1000 simulated data sets, and for each method, we calculated the av-
erage bias in the intervention effect estimate, its mean squared error, its empirical standard deviation, the
square root of its mean model-based variance, the coverage of its 95% confidence intervals, and its ef-
ficiency relative to the ‘gold standard’ situation where the biomarkers are observed for all individuals
and the method of moments or maximum likelihood applied.

We performed two additional simulations in which the true intake is not normally distributed and
therefore dietary measurements do not follow a multivariate normal distribution. These are described
in Appendix S3 and illustrate the use of sandwich estimates for the variances obtained under the max-
imum likelihood analysis.

In the Supporting Information (see Appendix S4 and additional text files), we provide example R code
that can be used to simulate data as described previously and implement the methods described in this
paper.
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5.2. Simulation study results

The results for the method of moments approach are shown in Tables III and IV. The corresponding re-
sults obtained for maximum likelihood estimation were very similar and are shown in the Tables S1 and
S2.

Table III shows results when the error in the self-report was differential. As expected, unbiased esti-
mates of the treatment effect were obtained from the analysis that used only the biomarker measurements
(‘Biomarkers only’) and the analysis that additionally used the self-reports with an assumption of differ-
ential error (‘Combined: differential error’), which is how the self-report data were generated. The cov-
erage of the estimates obtained under these two methods was at the nominal level. The analysis that used
both biomarkers and self-reports but assumed non-differential error (‘Combined: non-differential error’),
contrary to how the data were generated, resulted in biased estimates of the intervention effect and poor
coverage.

The percentage efficiency of the estimated intervention effect in a study using only the biomarker data
in the calibration sub-study relative to the ‘gold-standard’ situation in which biomarker measurements
were available in the full sample was approximately equal to the percentage of individuals in the calibra-
tion sub-study: 10%, 25%, and 50% in the calibration sub-study gave relative efficiencies of 11.3%,
27.4%, and 50.4%, respectively.

When the reliability of the self-reports was similar to that of the biomarkers, that is, when the error
variance of the self-report was relatively low (σ2Q1 ¼ σ2Q2 ¼ 0:09) (Table III(a)), there was a gain in ef-
ficiency from using the self-reports in addition to the biomarker measurements. When the calibration
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508



Table III. Simulation study results for data simulated under differential error.

Method Bias MSE Emp SD Model SE Cov Eff

(a) σ2Q1 ¼ σ2Q2 ¼ 0:09
Calibration sub-study: 10%
Biomarkers only 0.002 0.008 0.087 0.089 95.6 11.3
Combined: differential error [998]* 0.001 0.005 0.074 0.075 94.9 15.7
Combined: non-differential error �0.035 0.007 0.075 0.073 92.5 15.4

Calibration sub-study: 25%
Biomarkers only 0.001 0.003 0.056 0.057 95.0 27.4
Combined: differential error �0.000 0.002 0.048 0.048 94.4 37.2
Combined: non-differential error �0.034 0.003 0.048 0.048 88.3 37.5

Calibration sub-study: 50%
Biomarkers only �0.000 0.002 0.041 0.040 94.0 50.4
Combined: differential error �0.001 0.001 0.037 0.036 93.9 62.3
Combined: non-differential error �0.031 0.002 0.037 0.036 85.1 63.7

Calibration sub-study: 100%
Biomarkers only �0.000 0.001 0.029 0.028 94.4 100.0
Combined: differential error — — — — — —
Combined: non-differential error �0.024 0.001 0.027 0.027 85.4 114.6

(b) σ2Q1 ¼ σ2Q2 ¼ 0:3
Calibration sub-study: 10%
Biomarkers only 0.002 0.008 0.087 0.089 95.6 11.3
Combined: differential error [997]* 0.002 0.007 0.085 0.085 95.6 11.9
Combined: non-differential error �0.019 0.006 0.077 0.078 95.0 14.4

Calibration sub-study: 25%
Biomarkers only 0.001 0.003 0.056 0.057 95.0 27.4
Combined: differential error �0.000 0.003 0.054 0.054 94.8 29.5
Combined: non-differential error �0.021 0.003 0.049 0.051 93.3 35.1

Calibration sub-study: 50%
Biomarkers only �0.000 0.002 0.041 0.040 94.0 50.4
Combined: differential error �0.000 0.002 0.040 0.039 94.0 53.8
Combined: non-differential error �0.020 0.002 0.038 0.037 91.4 60.6

Calibration sub-study: 100%
Biomarkers only �0.000 0.001 0.029 0.028 94.4 100.0
Combined: differential error — — — — — —
Combined: non-differential error �0.014 0.001 0.028 0.027 91.6 111.1

(c) σ2Q1 ¼ σ2Q2 ¼ 0:5
Calibration sub-study: 10%
Biomarkers only 0.002 0.008 0.087 0.089 95.6 11.3
Combined: differential error [997]* 0.002 0.008 0.087 0.088 95.9 11.3
Combined: non-differential error �0.006 0.007 0.081 0.082 95.5 13.1

Calibration sub-study: 25%
Biomarkers only 0.001 0.003 0.056 0.057 95.0 27.4
Combined: differential error 0.000 0.003 0.056 0.056 94.7 27.9
Combined: non-differential error �0.011 0.003 0.052 0.053 94.5 32.1

Calibration sub-study: 50%
Biomarkers only �0.000 0.002 0.041 0.040 94.0 50.4
Combined: differential error �0.000 0.002 0.041 0.040 93.7 51.6
Combined: non-differential error �0.011 0.002 0.039 0.038 93.6 56.7

Calibration sub-study: 100%
Biomarkers only �0.000 0.001 0.029 0.028 94.4 100.0
Combined: differential error — — — — — —
Combined: non-differential error �0.008 0.001 0.028 0.028 93.5 106.5

(d) σ2Q1 ¼ σ2Q2 ¼ 0:7
Calibration sub-study: 10%
Biomarkers only 0.002 0.008 0.087 0.089 95.6 11.3
Combined: differential error [997]* 0.002 0.008 0.087 0.088 95.8 11.2
Combined: non-differential error 0.001 0.007 0.084 0.084 94.8 12.3

Calibration sub-study: 25%

(Continues)
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Table III. (Continued)

Method Bias MSE Emp SD Model SE Cov Eff

Biomarkers only 0.001 0.003 0.056 0.057 95.0 27.4
Combined: differential error 0.000 0.003 0.056 0.056 94.5 27.5
Combined: non-differential error �0.005 0.003 0.053 0.054 94.5 30.2

Calibration sub-study: 50%
Biomarkers only �0.000 0.002 0.041 0.040 94.0 50.4
Combined: differential error �0.000 0.002 0.041 0.040 93.7 50.9
Combined: non-differential error �0.006 0.002 0.040 0.039 94.1 54.1

Calibration sub-study: 100%
Biomarkers only �0.000 0.001 0.029 0.028 94.4 100.0
Combined: differential error — — — — — —
Combined: non-differential error �0.005 0.001 0.029 0.028 94.2 103.8

Results are shown from three analysis methods: using the biomarker data only and using the biomarker and self-re-
ports combined under the correct assumption of differential error in the self-reports and under the incorrect assumption
of non-differential error. All estimates were obtained using method of moments, and the combined estimates were ob-
tained using the Buonaccorsi approach. Results are shown separately for different values of the error variability in the
self-reports (σ2Q1 ¼ σ2Q2) and for different proportions of individuals in the calibration sub-study.
Bias, average bias in the intervention effect estimate across 1000 simulations; MSE, mean squared error of the inter-
vention effect estimate across 1000 simulations; Emp SD, standard deviation of the 1000 intervention effect estimates;
Model SE, square-root of the mean of the variances of the 1000 intervention effect estimates; Cov, percentage of the
1000 95% confidence intervals for the intervention effect, which contained the true value; Eff, ratio of the variance of
the 1000 intervention effect estimates obtained when the biomarkers are available in 100% of individuals to the var-
iance of the 1000 intervention effect estimates from a given method, expressed as a percentage.
*In the case of a small calibration sub-study, a small number of simulations resulted in negative variance estimates. In
these situations, the number of simulations on which the results are based is given in square brackets.

R. H. KEOGH ET AL.

4503
sub-study contained 10% of individuals, the relative efficiency increased from 11.3% using the bio-
marker data only to 15.7% when additionally making use of the self-report data through the Buonaccorsi
approach. When the calibration sub-study contained 25% of individuals, the relative efficiency increased
from 27.4% to 37.2%, and when the calibration sub-study contained 50% of individuals, the relative ef-
ficiency increased from 50.4% to 62.3%. The results obtained using maximum likelihood (Table S1)
showed that there is nothing to be gained by using the self-reports when biomarker data are available
for the complete study sample. Note that when all individuals have biomarker data, the Buonaccorsi-
combined estimate is identical to the biomarkers estimate.

The aforementioned results refer to the situation in which σ2Q1 ¼ σ2Q2 ¼ 0:09 (Table III(a)). When the
reliability of the self-reports decreased relative to the biomarkers, with an error variance of the self-report
equal to 0.3 (Table III(b)), which was the estimated value obtained in the TONE example, there was
minimal gain in efficiency from using the self-reports in addition to the biomarkers. For example, with
10% of individuals in the calibration sub-study, the efficiency of the intervention effect estimate relative
to the gold-standard increased from 11.3% using the biomarker data to only 11.9% when the self-reports
were additionally used. The efficiency gain declined further as the error variance of the self-reports in-
creased (Tables III(c) and (d)). In summary, the simulation results showed that if the error variance of the
self-report is high relative to that in the biomarker measure, or in other words the reliability of the self-
report is low relative to the biomarker, there is little to be gained from using the self-report data available
on all individuals over using just the biomarker data on a (possibly small) subset of those individuals.

Table IV shows the results when the error in the self-report was non-differential. In this scenario, all three
analysis methods (‘Biomarkers only’, ‘Combined: differential error’, and ‘Combined: non-differential error’)
gave unbiased estimates of the intervention effect and correct coverage. Note that we expect the combined
estimate assuming differential error to give unbiased estimates because non-differential error may be consid-
ered a special case of differential error. The combined estimate obtained using the Buonaccorsi approach that
uses the self-report data in addition to the biomarker data and assumes non-differential error in the self-report
gave a gain in precision in the intervention effect estimate relative to the analysis using the biomarker data
only. With a calibration sub-study containing 10% of the study sample, and error variance σ2Q1 ¼ σ2Q2 ¼
0:09, the relative efficiency of the intervention effect estimate increased from 11.3%when using the biomarker
data only to 18.8% when using the combined estimate under the correct assumption of non-differential error
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508



Table IV. Simulation study results for data simulated under non-differential error.

Method Bias MSE Emp SD Model SE Cov Eff

(a) σ2Q1 ¼ σ2Q2 ¼ 0.09
Calibration sub-study: 10%
Biomarkers only 0.002 0.008 0.087 0.089 95.6 11.3
Combined: differential error [998]* 0.001 0.005 0.073 0.074 94.9 16.1
Combined: non-differential error 0.002 0.005 0.068 0.070 95.7 18.8

Calibration sub-study: 25%
Biomarkers only 0.001 0.003 0.056 0.057 95.0 27.4
Combined: differential error �0.000 0.002 0.048 0.048 94.8 37.7
Combined: non-differential error 0.001 0.002 0.045 0.046 96.1 43.3

Calibration sub-study: 50%
Biomarkers only �0.000 0.002 0.041 0.040 94.0 50.4
Combined: differential error �0.000 0.001 0.037 0.036 94.0 62.6
Combined: non-differential error �0.000 0.001 0.035 0.035 94.4 68.8

Calibration sub-study: 100%
Biomarkers only �0.000 0.001 0.029 0.028 94.4 100.0
Combined: differential error — — — — — —
Combined: non-differential error �0.001 0.001 0.028 0.027 94.8 111.3

(b) σ2Q1 ¼ σ2Q2 ¼ 0:3
Calibration sub-study: 10%
Biomarkers only 0.002 0.008 0.087 0.089 95.6 11.3
Combined: differential error [997]* 0.002 0.007 0.084 0.085 95.6 12.1
Combined: non-differential error 0.007 0.006 0.076 0.077 94.8 14.9

Calibration sub-study: 25%
Biomarkers only 0.001 0.003 0.056 0.057 95.0 27.4
Combined: differential error �0.000 0.003 0.054 0.054 94.7 29.9
Combined: non-differential error 0.003 0.002 0.049 0.050 95.8 35.3

Calibration sub-study: 50%
Biomarkers only �0.000 0.002 0.041 0.040 94.0 50.4
Combined: differential error �0.000 0.002 0.040 0.039 93.9 54.2
Combined: non-differential error 0.001 0.001 0.038 0.037 94.3 59.3

Calibration sub-study: 100%
Biomarkers only �0.000 0.001 0.029 0.028 94.4 100.0
Combined: differential error — — — — — —
Combined: non-differential error �0.000 0.001 0.028 0.028 94.8 106.0

(c) σ2Q1 ¼ σ2Q2 ¼ 0:5
Calibration sub-study: 10%
Biomarkers only 0.002 0.008 0.087 0.089 95.6 11.3
Buonaccorsi: differential error [997]* 0.002 0.008 0.087 0.088 95.9 11.4
Buonaccorsi: non-differential error 0.012 0.007 0.082 0.081 93.8 12.7

Calibration sub-study: 25%
Biomarkers only 0.001 0.003 0.056 0.057 95.0 27.4
Buonaccorsi: differential error 0.000 0.003 0.055 0.056 94.7 28.0

Buonaccorsi: non-differential error 0.005 0.003 0.053 0.053 95.1 30.8
Calibration sub-study: 50%
Biomarkers only �0.000 0.002 0.041 0.040 94.0 50.4
Buonaccorsi: differential error �0.000 0.002 0.041 0.039 93.8 51.8

Buonaccorsi: non-differential error 0.001 0.002 0.040 0.038 93.8 54.4
Calibration sub-study: 100%
Biomarkers only �0.000 0.001 0.029 0.028 94.4 100.0
Buonaccorsi: differential error — — — — — —
Buonaccorsi: non-differential error �0.000 0.001 0.029 0.028 95.0 103.1

(d) σ2Q1 ¼ σ2Q2 ¼ 0:7
Calibration sub-study: 10%
Biomarkers only 0.002 0.008 0.087 0.089 95.6 11.3
Buonaccorsi: differential error [997]* 0.002 0.008 0.087 0.088 95.7 11.3
Buonaccorsi: non-differential error 0.016 0.008 0.086 0.083 93.0 11.5

Calibration sub-study: 25%

(Continues)
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Table IV. (Continued)

Method Bias MSE Emp SD Model SE Cov Eff

Biomarkers only 0.001 0.003 0.056 0.057 95.0 27.4
Buonaccorsi: differential error 0.000 0.003 0.056 0.056 94.5 27.5
Buonaccorsi: non-differential error 0.006 0.003 0.055 0.054 94.9 28.6

Calibration sub-study: 50%
Biomarkers only �0.000 0.002 0.041 0.040 94.0 50.4
Buonaccorsi: differential error �0.000 0.002 0.041 0.040 93.6 51.0
Buonaccorsi: non-differential error 0.002 0.002 0.041 0.039 93.7 52.2

Calibration sub-study: 100%
Biomarkers only �0.000 0.001 0.029 0.028 94.4 100.0
Buonaccorsi: differential error — — — — — —
Buonaccorsi: non-differential error �0.000 0.001 0.029 0.028 95.0 101.8

Results are shown from three analysis methods: using the biomarker data only and using the biomarker and self-re-
ports combined under the assumption of differential error in the self-reports and under the correct assumption of
non-differential error. All estimates were obtained using method of moments and the combined estimates were ob-
tained using the Buonaccorsi approach. Results are shown separately for different values of the error variability in
the self-reports (σ2Q1 ¼ σ2Q2) and for different proportions of individuals in the calibration sub-study.
Bias, average bias in the intervention effect estimate across 1000 simulations; MSE, mean squared error of the inter-
vention effect estimate across 1000 simulations; Emp SD, standard deviation of the 1000 intervention effect estimates;
Model SE, square-root of the mean of the variances of the 1000 intervention effect estimates; Cov, percentage of the
1000 95% confidence intervals for the intervention effect, which contained the true value; Eff, ratio of the variance of
the 1000 intervention effect estimates obtained when the biomarkers are available in 100% of individuals to the var-
iance of the 1000 intervention effect estimates from a given method, expressed as a percentage.
*In the case of a small calibration sub-study, a small number of simulations resulted in negative variance estimates. In
these situations, the number of simulations on which the results are based is given in square brackets.
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(Table IV(a)). The relative gain in efficiency was smaller but still appreciable when the error variance in the
self-report was larger, representing a lower reliability of the self-reports (Table IV(b)). This gain in efficiency
by making use of self-reports is supported by the theory presented in Section 3.1. Assuming differential error
when it was not necessary resulted in a smaller gain, which was similar to that seen under differential error
(Table III). Gains in efficiency from the combined estimate became very small when the error variance
increased beyond 0.3 under both methods.

There was little or nothing to be gained by estimating the intervention effect using maximum likeli-
hood instead of the method of moments, neither under differential nor non-differential error in the
self-report (Tables S1 and S2).

Our findings from the simulation study have important implications for the design of dietary interven-
tion trials, which we discuss in the next section.
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6. Discussion and recommendations

Although the issue of dietary measurement error has received much attention in relation to observational
studies in nutritional epidemiology, there is relatively little written on its impact in dietary intervention
studies in which the main interest is in the achievement of dietary change. In view of several reports that
the measurement error in self-reported intakes in dietary intervention studies is differential (e.g., [16] and
[22]) and the expectation that participants who are encouraged by the investigators to change their diet
will report differently from those not so encouraged, it seems inadvisable to base evaluation of interven-
tions solely on self-report data. It would seem that whenever possible, objective data on dietary intake
should be collected. In this paper, we have assumed that a biomarker that provides an unbiased assess-
ment of an individual’s dietary intake is available. Further on, we discuss the options when an unbiased
biomarker measurement is not available.

However, collection of such biomarker data often is very expensive, as in the case of doubly labeled water
for measuring energy intake [23], or imposes a high burden on the participant, as in the case 24-h urinary col-
lections. Therefore, it is important to know in what circumstances the less expensive, less burdensome collec-
tion of self-report data can be a helpful addition to the objective data, for example, by allowing the collection
of biomarker measurements on a subsample rather than the full sample.We have shown that even though such
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508
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reports provide biasedmeasures of dietary intake, they can add information about the intervention effect when
used in combination with objective biomarker data. A situation in which they are helpful is when (a) the bio-
marker is measured in a subset of participants and the self-report in all participants and (b) the reliability of the
self-report is comparable with or better than the biomarker. Although the theory suggests that asymptotically
the information from the self-reports will add little to that from biomarkers alone when the error in self-reports
is differential (Section 3.1), our simulations showed that for finite sample sizes, there is still something to be
gained by using the self-report data under the aforementioned situation (b).

It is important to note here that the self-report may be defined as the average of several administrations of an
instrument (e.g., multiple 24-h recalls), in which case the reliability of the self-report may bemade greater than
that of data from a single administration of the instrument. For example, in TONE, the reliability for a single
24-h recall was only 0.26 (in Group 1) compared with 0.60 for the biomarker, but if four repeats of a 24-h
recall were used, the reliability of the self-report would increase to 0.59, close to that of the biomarker. This
has important implications for study design decisions. Using the results of the first part of Table III (σ2Q1 ¼
σ2Q2 ¼ 0:09; final column), where the reliabilities of the self-report and biomarker are also approximately
equal, 100 persons with self-report plus biomarker measurements and another 900 with just self-report would
have similar efficiency to a design with 157 persons with biomarkers only; a design having 250 persons with
self-report and biomarkers plus another 750 with self-report only would be about as efficient as 372 persons
with biomarkers only; and a design having 500 persons with self-report and biomarkers plus another 500 with
self-report only would be about as efficient as 623 persons with biomarkers only. Clearly, cost issues and sta-
tistical power calculations would need to be factored in to arrive at the best combination, but it is clear that
there could be a role for the use of self-report data. It would be helpful to develop a sample size program, based
on the Buonaccorsi method of analysis, that includes the costs of entering and assessing a participant who
completes a self-report and biomarker relative to one who completes a self-report only.

Both theory and simulation results showed that self-reports can add information to objective
biomarkers when the measurement error in the self-report is non-differential, that is, the same in each
comparative group. The benefits of using the self-reports persisted for larger error variances in this
situation compared with when the error was differential. The non-differential situation is less likely to
apply in behavioral interventions compared with other types of interventions but may hold when the
experimental intervention does not involve close contact between the investigators and the participants,
or when the target of the intervention is not diet in itself but rather relates to shifts to environments that
are meant to support healthier eating. For example, interventions that involve provision of extra food
coupons, allowing purchase of healthier foods, may not induce differences between the intervention
and control group in the accuracy with which they report their intake.

An interesting finding in our simulations was that the methods of moments estimates obtained using
Buonaccorsi’s method appeared almost as efficient as the MLEs. One advantage of the Buonaccorsi ap-
proach is that, before combination, it naturally provides separate estimates of the intervention effect, one
based only upon the biomarker data and one based also on the self-report data, each having its own stan-
dard error. This enables the investigator to appreciate the contribution of each type of measurement to
the overall estimate of the intervention effect.

The main limitation of the work that we have presented is that the cases in which an unbiased
biomarker of dietary intake is available are currently limited (including only sodium, potassium, protein,
and energy studies). Work is ongoing to widen the class of unbiased dietary biomarkers [24]. How best
to design studies without the inclusion of such an unbiased biomarker is a matter for further research.
However, progress in this area may come from the availability of concentration biomarkers, for which
the association between intake and serum or blood levels are known from feeding studies [25]. A
concentration biomarker is one that is correlated with dietary intake but does not provide an unbiased
measure. There are many examples of such biomarkers, such as serum lipids and serum carotenoids,
many of which are correlated with intakes of dietary components that may be targets of interventions.
When data from feeding studies with these biomarkers are available, it may be possible via statistical
models to translate the biomarker levels into levels of usual intake, as has been performed previously
with the carotenoids lutein and zeaxanthin [26]. With such ‘translation’, the concentration biomarker
could then take the place of the unbiased biomarker that we have assumed in this paper.

Methods for correcting for the impact of measurement error in self-report dietary data in studies of
intervention effects on dietary outcome have so far received relatively little attention in the large litera-
ture on dietary measurement error, where the focus has been instead been on dietary intake as an expo-
sure. In this paper, we have outlined methods for error correction when dietary intake is an outcome in
an intervention trial when self-report data are available in the main study and biomarker data are
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 4493–4508
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available in a calibration study. The methods described include those for handling differential error in
self-report data, which may be common. Using both theoretical and simulation results, we have outlined
situations in which self-report data in addition to biomarker data can contribute to improve intervention
effect estimates, and others in which, perhaps surprisingly, self-report data may contribute little. Further
work is needed to develop a tool for investigators planning dietary intervention trials that incorporates
information on the cost of obtaining self-report and biomarker data in addition to information on the
relative reliability of the two instruments.
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