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Abstract: Multicasting in wireless systems is a natural way to exploit the redundancy in user requests
in a content centric network. Power control and optimal scheduling can significantly improve the
wireless multicast network’s performance under fading. However, the model-based approaches for
power control and scheduling studied earlier are not scalable to large state spaces or changing system
dynamics. In this paper, we use deep reinforcement learning, where we use function approximation
of the Q-function via a deep neural network to obtain a power control policy that matches the optimal
policy for a small network. We show that power control policy can be learned for reasonably large
systems via this approach. Further, we use multi-timescale stochastic optimization to maintain the
average power constraint. We demonstrate that a slight modification of the learning algorithm
allows tracking of time varying system statistics. Finally, we extend the multi-time scale approach to
simultaneously learn the optimal queuing strategy along with power control. We demonstrate the
scalability, tracking and cross-layer optimization capabilities of our algorithms via simulations. The
proposed multi-time scale approach can be used in general large state-space dynamical systems with
multiple objectives and constraints, and may be of independent interest.

Keywords: multicasting; scheduling; queuing; deep reinforcement learning; quality of service; power
control; dynamics tracking; multi-timescale stochastic optimization

1. Introduction

Content services, such as Netflix, Prime Video, etc., have dramatically increased the
demand for high-definition videos over mobile networks. Almost 78% of mobile data
traffic is expected to be due to these mobile videos [1]. It is observed that the request traffic
for these contents have multiple redundant requests [2]. Next generation wireless networks
are being constantly upgraded to satisfy these exploding demands by exploiting the nature
of the request traffic. Serving the redundant requests simultaneously is a natural way to
utilize network resources efficiently. Thus, efficient multicasting is studied widely in the
wireless networking community.

A multicast queue with network coding is studied in [3] with an infinite library of
files. The case of slotted broadcast systems with one server transmitting to multiple users
is studied in [4]. Some recent works [5] use coded caching to achieve multicast. This
approach uses local information in the user caches to decode the coded transmission
and provides improvement in throughput by increasing the effective number of files
transferred per transmission. This throughput may get reduced in a practical scenario,
due to queuing delays at the base station/server. Ref. [6] addresses these issues, analyzes
the queuing delays and compares it with an alternate coded scheme with LRU caches
(CDLS), which provide improvement over the coded schemes in [5]. A more recent work in
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this direction, Ref. [7] provides alternate multicast schemes and analyzes queuing delays
for such multicast systems. In [7], it is shown that a simple multicast scheme can have
significant gains over the schemes in [5,6] in a high-traffic regime.

We further study the multicast scheme proposed in [7] in this paper. This multicast
queue merges the requests for a given file from different users, arriving during the waiting
time of the initial requests. The merged requests are then served simultaneously. The gains
achieved by this simple multicast scheme, however, are quickly lost in wireless channels,
due to fading. It suffers from users with bad channels, thereby decreasing the QoS, even
for users with good channels. In [7], we studied this problem and proposed novel schemes,
which provide significant multicast gains under fading as compared to the simple multicast.
In [7], we also theoretically analyzed these queuing schemes, showed that our queues are
always stable and provided approximate theoretical expressions for mean sojourn times.
Further, in [8], we showed that state-dependent power control under an average power
constraint can significantly improve the average delays experienced by users.

The queuing schemes and the power control policy proposed in [8], though they
provide improved delays, have the following limitations. (1) The queuing scheme which
performs best depends on the system parameters, such as the size of the system, the request
rate, etc. (2) The algorithm to obtain the power control policy is not scalable with the
number of users and the number of states of the channel gains. Additionally, the policy
does not adapt to changing the system statistics, which in turn, depends on the power
control policy. (3) The queuing schemes and power control are dealt with individually.
This paper tries to overcome the above limitations of the scheme in [8].

We first provide algorithms for the two optimization problems individually and then
combine the two algorithms to obtain the overall optimal queuing strategy and the power
control. Stochastic optimization ([9]) is a useful tool to obtain the optimally parameterized
queuing strategy. However, for the convergence of stochastic optimization algorithms, a
careful approximation of stochastic gradients is necessary. One challenge here is that the
cost to be optimized is the mean stationary sojourn time of the requests to be delivered.
We propose a new deep assisted gradient approximation algorithm, where the novelty is
in deriving the gradients from a deep network assisted by a memory. This memory helps
retain the history of the explored regions and also allows adaptation to changing system
dynamics in an online fashion. The replay memory and online training of the deep network
adds an important feature called importance sampling to the stochastic optimization, which
improves the confidence (lower variance) in the gradient descent steps.

Multicast systems with power control can be conveniently modeled as a Markov
decision process (MDP) but with large state and action spaces. Obtaining transition proba-
bilities and the optimal policy, however, for such large MDPs is not feasible. Reinforcement
learning, particularly deep reinforcement learning [10], is a natural tool to address such
problems. Reinforcement learning can be used even when the transition probabilities are
not available. However, a large state/action space can still be an issue. Using function
approximation via deep neural networks can provide significant gains. Several deep
reinforcement learning techniques, such as deep Q-network [11], trust region policy op-
timization (TRPO) [12], proximal policy gradient (PPO) [13], etc., have been successfully
applied to several large state-space dynamical systems, such as Atari [14], AlphaGo [15],
etc. DQN is based on value iteration. TRPO and PPO are policy-gradient-based methods.
Policy–gradient methods often suffer from high variance in sample estimates and poor
sample efficiency [10]. Value-iteration-based deep RL methods, such as DQN, have been
theoretically shown to have better performance [16], due to target network and replay
memory and providing a global minimum.

We propose a constrained optimization variant of DQN based on multi-timescale
stochastic gradient descent [9] for power control, which can track the system statistics.
Finally, we develop an algorithm which combines the above two algorithms to obtain an
optimal queuing strategy and power control policy.

The major contributions of this paper are as follows:
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• A novel deep assisted stochastic gradient descent (DSGD) algorithm for obtaining the
best queuing strategy from a given set.

• Proposing two modifications to DQN to accommodate constraints and system adap-
tations. The constraints can be met by using a Lagrange multiplier. The appropriate
Lagrange multiplier is also learned via a two-timescale stochastic gradient descent.
We call this algorithm adaptive constrained DQN (AC-DQN).

• Unlike DQN, AC-DQN can be applied to the multicast systems with constraints, as
in [8], to learn the power control policy, online. The proposed method meets the
average power constraint while achieving the global optima as achieved by the static
policy proposed in [8] for a small-scale setup of the problem.

• We demonstrate the scalability of our algorithms with the system size (number of
users, arrival rate, complex fading).

• Finally, using the above two algorithms, we propose a generalized algorithm called
integrated DSGD and AC-DQN (IDA) to optimize systems with multiple objectives
and constraints. Particularly, this algorithm is useful in any wireless network with
cross-layer objectives, such as ours. IDA is a three-timescale stochastic optimization
algorithm for obtaining both the queuing strategy (unconstrained network layer
objective) and power control (constrained physical layer objective), simultaneously.

• We also show that AC-DQN and IDA can track the changes in the dynamics of a
non-stationary system, e.g., change of arrival rate or number of users over the time of
a day, and achieve optimal performance.

We show via simulations that our algorithms choose the optimal policy among the
given set of policies. Additionally, the power control policy obtained via our algorithm
improves the delay performance of the multicast network by more than 50%, compared
to the constant power policy. Our algorithms work equally well when we replace DQN
with its improvements, such as DDQN [17]. In fact we ran our simulations with the DDQN
variant of AC-DQN and achieved similar performance. It is worth noting that, even though
we demonstrate the power of deep (reinforcement) learning, in improving schemes in [7,8],
the proposed deep algorithms themselves are generic and can be applied to any dynamical
system with multiple objectives, constraints and large state spaces.

Related Works

Queuing and Power control in Multicast Systems: Multicast queuing and schedul-
ing is studied in [3,18–20]. The works in [3,18,19] propose schemes for network-coded
multicast systems and analyze the stability of the proposed multicast queues. Unlike these
works, we use, as in our previous work [7,8], a simple uncoded multicast queue, which is
always stable. In [7], we show that our queuing schemes perform much better than the
coded multicast schemes in high traffic regimes. In the current work, we improve the re-
sults in [7,8] by providing novel deep-learning-based queuing strategies. Ref. [20] proposes
a multicast scheduling scheme for Poisson traffic. However, there is no power control, and
the proposed queue is not always stable. The effect of multicasting and caching on energy
cost in a delay-tolerant content-centric network is studied in [21]. The work, however,
does not consider the effect of the queuing delay considered in the paper, and does not
have any constraints on the transmit power. Power control in multicast systems is studied
in [22–24]. In [22], power allocation optimizes the ergodic capacity while maintaining
certain minimum rate requirements at the users and average power constraints. In [23],
the authors minimize a utility function via linear programming under SINR constraints
at the users and transmit power constraints at the transmitter. Refs. [22,23] derive an
optimal power control policy for delivery to all the users, whereas this paper considers
delivery to a random subset of users requesting a file at that time. Additionally, the power
control policies in [22,23] require knowledge of system statistics and are not scalable for our
system. Ref. [24] considers MDP-based scheduling and power control in content-centric
multicast systems. The work in [24] uses fixed channel states, requires statistics of queue
state transitions and does not have any constraint on the average transmit power. Fur-
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ther, the state dimension of the system increases with both the number of users and files,
whereas in our work, the dependence is only on the number of users. Thus, compared to
the above-mentioned works, our scheme is more practical, computationally scalable, does
not require knowledge of system statistics (traffic intensity, and fading distributions) and
can track changing system statistics.

Deep Learning in Wireless Multicast systems: The ability of DeepRL to handle
large state-space dynamic systems is being exploited in various multicast wireless sys-
tems/networks. In [25], the authors study a resource allocation problem in unicast and
broadcast transmissions. The DeepRL agent learns and selects the power and frequency for
each channel to improve the rate under some latency constraints. Like in our work, they
also introduce constraints via Lagrange multipliers. However, the Lagrange multiplier is
constant, and the agent does not learn it. Thus, the agent also does not adapt if the system
dynamics changes, as the Lagrange constant is fixed and the learning rate decays with
time. To obtain the appropriate Lagrange multiplier is computationally expensive and
requires known system statistics. Another work, Ref. [26], applies unconstrained deep
reinforcement learning to multiple transmitters for a proportionally fair scheduling policy
by adjusting individual transmit powers. Ref. [27] applies DeepRL in queuing in a coded
caching-based multicast system, which is shown to be inferior to our multicast schemes
in high traffic rate regions. For more literature on deep learning applications to wireless
multicast systems, see the detailed survey in [28].

For a detailed exposition on constrained MDPs, see [29]. Some recent works on rein-
forcement learning provide convergence guarantees for the tabular model-free Q-learning,
using the minimax approach [30], model-based online policy optimization approach [31],
tabular model-based Q-learning approach [32], and tabular primal-dual approach [33]. The
approaches in these works are not demonstrated on large state spaces, in part due to the
increased complexity of the tabular algorithm in [30,32,33], and linear MDP assumption
in [31]. Ref. [34] introduces constrained reinforcement learning based on TRPO. Unlike
ours, the work considers discounted constraints. In [35], a Lagrange-based actor–critic ap-
proach for constrained RL is proposed. Since [31,34,35] are policy-based approaches, they
suffer from high variance when multiple evaluations are unfeasible. In [36], an alternate
approach with two value functions for reward and constraint (cost) with an actor–critic pol-
icy update is proposed. Here, at each step, a convex relaxation-based optimization is used
to obtain the optimal parameter of value functions. We note that the convex optimization
step at each iteration is computationally more intensive than a simple SGD step. Thus, the
above-mentioned policy iteration methods either have high variance in practical systems
or are computationally intensive. These issues make it difficult to track the changing
dynamics in practical systems, as we can in our case. To the best of our knowledge, ours is
the first constrained value iteration-based deep RL algorithm for constrained MDPs. The
use of replay memory and a target network helps reduce the estimator variance in our
algorithm. These features also increase the practical applicability of our algorithm.

The rest of the paper is organized as follows. Section 2 explains the system model
and motivates the problem. Section 3 presents our deep-learning-based optimal queuing
algorithm. Section 4 motivates the power control problem and briefly explains the power
control algorithm proposed in [8]. Section 5 presents the proposed DeepRL algorithm
AC-DQN for scalable, improved power control. Section 6 presents our novel deep multi-
timescale algorithm to achieve scalable cross-layer optimization of queuing and power
control and provides optimal performance for the multicast system. Section 7 demonstrates
our algorithms via simulations, and Section 8 concludes the paper.

2. System Model

We consider a system with one server transmitting files from a fixed finite library to a
set of users (Figure 1). We denote the set of users by L = {1, 2, · · · , L} and the set of files
byM = {1, 2, · · · , M}. The request process for file i from user j is a Poisson process of rate
λij, which is independent of the request processes of other files from user j and also from



Entropy 2021, 23, 1555 5 of 24

other users. The total arrival rate is λ = ∑i,j λij. The requests of a file from each user are
queued at the server until the user successfully receives the file. All the files are of length F
bits. The server transmits at a fixed rate, R bits/s. Thus, the transmission time for each file
is T = F/R.

The channels between the server and the users experience time varying fading. The
channel gain of each user is assumed to be constant during the transmission of a file. The
channel gain for the jth user at the tth transmission is represented by Hj(t). Each Hj(t)
takes values in a finite set and forms an independent identically distributed (i.i.d) sequence
in time, as in [37]. The channel gains of different users are independent of each other and
may have different distributions. Let H = (H1, · · · , HL).

Since the requests from the users are queued at the server, every request awaits
its turn for transmission, and thus experiences a queuing delay, which is random in
nature. The distribution of this random delay depends on the queuing policy. Additionally,
unsuccessful transmissions due to fading adds further delay, experienced by each request.
We denote by random variable D the overall delay experienced by each request due to
both queuing and fading. If tA is the time of arrival of a request to the server and tS is
the time instance representing the end of successful transmission/service of the request,
then the random delay/sojourn time D is given by D = tS − tR. Further, E[D] denotes the
stationary mean sojourn time experienced by each request.

Figure 1. System model.

More details of the system are described in the following sections as follows. Section 2.1
describes the basic multicast queue proposed in [7]. The queuing schemes to mitigate the
effects of fading studied in [8] are also presented. Section 2.2 parameterizes the queuing
schemes. Section 3 provides an online learning scheme to obtain the optimal policy for
a given setup. In Sections 4.1 and 4.2, we summarize the results from [8], which show
that using power control can further improve the performance and the algorithm used to
obtain the optimal power policy. We will see that this algorithm is not scalable. Then in
Section 4.3, we provide the MDP of the power control problem. In Section 5, we present
the scalable DeepRL solution for this formulation.

2.1. Multicast Queue

For scheduling transmissions at the server, we consider the multicast queue studied
in [8]. In this system, the requests for different files from different users are queued in a
single queue, called the multicast queue. In this queue, the requests for file i from all users
are merged and considered a single request. The requested file and the users requesting
it is denoted by (i,Li). In other words, Li is the list of users interested in file i. A new
request for file i from user j is merged with the corresponding entry Li if it already exists.
Otherwise, it is appended to the tail of the queue. The service/transmission of file i serves
all the users in Li, possibly with errors, due to channel fading.

The random subset of users served by the multicast queue at the tth transmission
is denoted by the random binary vector, V(t) = (V1(t), · · · , VL(t)), where Vj(t) = 1
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implies that the user j has requested the file being transmitted; otherwise, Vj(t) = 0. From
(Theorem 1, [7]), V(t) has a unique stationary distribution.

It is shown in [7] that the above multicast queue performs much better than the
multicast queues proposed in the literature before. The main difference compared to previous
multicast schemes is that in this scheme, all requests of all the users for a given file are merged
together over time. One direct consequence of this is that the queue length at the base station does
not exceed M. Thus, the delay is bounded for all traffic rates. It is worth noting that this is unique
to our queues in [7] and none of the queues proposed in the literature have this feature. In fact, the
mean delays are often better than the coded caching schemes proposed in the literature as well for
most of the traffic conditions.

In a fading scenario, where the different users have independent fading, the perfor-
mance of this scheme can significantly deteriorate because of the multiple retransmissions
required to successfully transmit to all the users needed. Thus, in [8], multiple queuing
strategies are proposed and compared to recover the performance of the system and reduce
the mean delay substantially. Some of these are also fair to different users in the sense that
the users with good channel gains do not suffer because of users with bad channel gains.
We comment more on this in the following. We now briefly present the schemes proposed
in [7,8] for clarity.

Retransmit: This is the simplest scheme proposed in [7]. Here, the multicast queue
is serviced from head to tail. The head of the line is retransmitted until all the users in it
are serviced. The new requests are added to the queue in a similar manner to the simple
multicast. This naive scheme works very well in a low request rate regime; however, it
performs poorly for high request rates and severely deteriorates the delays experienced by
users with good channels.

Single queue with loop-back (1-LB): The multicast queue is serviced from head to
tail. When a file is transmitted, some of the users receive the file successfully and some
users may receive the file with errors. In the case of unsuccessful reception by some users,
the file is retransmitted. A maximum of N (1 ≤ N ≤ ∞) transmission attempts are made.
If there are some users who have not received the file within N transmission attempts,
the request (tuple (i,Li) with Li, now modified to contain only the set of users who have
not received the file i successfully) is fed back to the queue. If there is another pending
request in the queue for the same file (a request for the file which came during the current
transmission), it is merged with the existing request. Otherwise, a new request for the same
file with unsuccessful users is inserted at the tail of the queue.

Defer queue with loop back (2-LB): This strategy has two queues for servicing the
requests: a multicast queue and a defer queue. The multicast queue is similar to the queue
mentioned in the beginning of this section and is serviced from head to tail. The defer
queue is an additional queue to handle unsuccessful transmissions as follows. When a
file is transmitted, some users may receive the file with errors. In the case of unsuccessful
reception by some users after a maximum of N transmissions, the file request and the
unserviced users are queued in the defer queue. Such requests stay in the defer queue until
a new request for the same file arrives. On the arrival of the new request, the new request
is merged with the older requests in the defer queue and moved to the tail of the multicast
queue. If no such old requests exist in the defer queue, the new request is merged/added
to the multicast queue. This queue is shown to provide lower delay to good channel users
than to bad channel users.

The performance of each of these queues depends on the system parameters, trans-
mission power policy, arrival rate, etc. If the channel gain statistics of different users are
different, say, one group with good statistics and another with bad statistics, then the rate
of transmission R and N can decide on the preference one is giving to the two groups of
users. A higher R and lower N will give more preference to the good users at the cost of
the bad users. For simplicity of presentation, we consider the case of N = 1 for all the
queuing strategies in this paper.
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2.2. Parametrization of Queueing Strategies

To adaptively optimize the queuing strategy according to the system parameters, it
is convenient to first parameterize them. We propose a simple parametrization, using
probabilities for each queuing strategy. That is, at the end of every service instance, if some
users have not received the file successfully, the multicast queue chooses to retransmit the
head of the line (HoL) request with probability p1, loopback HoL with probability p2, or
defer HoL with probability p3, such that ∑

j=3
j=1 pj = 1. Thus, p = [p1, p2, p3] parameterizes

the queuing strategy. Here, p ∈ P, where P is the probability simplex, P = {[p1, p2, p3] ∈
[0, 1]3 : ∑

j=3
j=1 pj = 1}. Observe that p = [1, 0, 0], [0, 1, 0], and [0, 0, 1] represent retransmit,

loopback, and defer strategies. In the next section, we provide an algorithm to obtain the
optimal p.

3. Deep Learning for Optimal Queueing

We are interested in finding the optimal p among the parameterized queuing strategies
in Section 2.2 that gives the least average delay. From our previous work (Proposition
1, [7]), it can be shown that for any parameter p, there exists a stationary mean sojourn
time, Ep[D], where D is the sojourn time and E is the expectation. In this section, we
propose an online deep learning algorithm to learn p∗ = argmin

p∈P
Ep[D]. However, the map

f : p 7→ Ep[D] is quite complex, and it is very difficult to obtain its closed-form expression.
Since we do not have a closed-form expression, we depend on noisy observations

of f , the mean sojourn time, from the system to obtain the optimal strategy, p∗. Here
is where the deep neural network (DNN) fits in. They are state-of-the-art tools used for
several learning problems, especially regression. Before we proceed with the motivation
for using DNN, it is worth mentioning that several stochastic approximation algorithms,
such as simultaneous perturbation stochastic approximation ([38], pp. 41–76), exist for
such noisy function optimization. However, the convergence of such algorithms is prone
to high variance in the gradient estimate and often leads to suboptimal results. In fact, we
tried SF-SPSA ([38], pp. 77–102) in our system and observed that the algorithm leads to a
suboptimal point in many cases. ReLU (rectified linear unit) based deep neural networks
(DNN), on the other hand, are adept at approximating such complex functions on compact
subsets, such as P [39]. Particularly, it is seen that DNN can provide better generalization
in function approximation, even with noisy training data [40]. Further, DNNs are also
known to provide good gradient approximations for the approximated function [41]. This
motivates us to use DNN to approximate f (p) as fθ(p), where θ is the weight parameter
of the DNN. Further, the gradients required for optimization are derived using the finite
difference method on fθ(p). Another important feature of our algorithm is the replay
memory. This idea is borrowed from the reinforcement learning setting [42]. It helps us in
storing previously seen noisy function observations and using it for training the DNN in
online fashion.

The replay memory and online training of the DNN are the important features of our
algorithm. Online training inherently adds an importance sampling [43] feature to our
algorithm, that is, we train our neural network only with samples that are more informative.
This is shown to accelerate the DNN training time [43]. We see in our algorithm that this
happens naturally, as training samples for the neural network come from the parameter p
update step. These samples give more information about the neighborhood of the point
that the algorithm is currently in, thereby improving the confidence/variance in the descent
direction. We now present our algorithm, deep assisted stochastic gradient descent, for
obtaining the optimal queuing strategy.

Deep Assisted Stochastic Gradient Descent (DSGD)

Our algorithm has three steps as follows:

• Obtaining noisy observation f̂ of the function f at random points and storing it in
replay memory, MD. This provides us with the initial training set.
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To obtain f̂ for a randomly generated point p, the system is set to follow policy p
and run until the Sapprox services are completed. Let di be the sojourn time of the
ith successfully served request in Sapprox services. These are stored in a temporary
memory D. From di, i ∈ [|D|] compute the following:

f̂ =
1
|D|

|D|

∑
i=1

di (1)

The point (p, f̂ ) is stored in MD, and D is cleared.
• Sample a minibatch of points from MD, and uniformly randomly and train fθ as

follows:
θ ← θ − η1∇θ L fθ

(2)

where L fθ
is the mean square error obtained from the minibatch sampled from the

replay memory, given by L fθ
= ∑n

i=1( fθ(pi)− f̂i)
2/n.

• Obtain the numerical gradient of fθ at the last executed point p and perform a gradient
descent as follows:

p← P(p− η2∇p fθ(p)) (3)

Obtain the noisy observation of f at the new point. Store the new (p, f̂ ) to the replay
memory, MD. P is the projection operator that projects the input to the probability
simplex as follows:

P [r1, r2, r3] = {[r1, r2, r3]}+/
3

∑
i=1
{ri}+) (4)

where the element wise operator {·}+ = max{0, ·}, and ri ∈ R, i = 1, 2, 3.
• η1 and η2 are learning parameters and must follow the learning rate relationships

of the multi-timescale stochastic gradient descent [9] given in (17) in Section 5. The
detailed algorithm is given in Algorithm 1.

Note 1: The initial training phase (t < Ttrain) and the explorative noise Uni f ([0, εt]3) in
Algorithm 1 avoid pathological zero gradients, which may stall the algorithm prematurely.
Further, we use the Adam optimizer [44] in all our SGD steps for gradient annealing.

Note 2: The online learning of the DNN weights is important for adapting to a
changing environment, which is experienced in practical systems. The samples in replay
memory MD are collected along the descent trajectory in small steps. Thus, DNN is trained
to learn the local surface/neighborhood at each step and improve the gradients as the
algorithm progresses. This is importance sampling for DNN.

Section 7.2 provides the simulation results of DSGD for a multicast system with
constant transmit power.
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Algorithm 1 Deep assisted stochastic gradient descent (DSGD) algorithm
Input:
Multicast system in Section 2.1, Replay Memory: MD, Minibatch size: n, Training
Time: Ttrain, Approximation Window: Sapprox, Initialize neural network weights:
θ of fθ , Exploration Parameter: ε(t)→ 0, θ, p learning rates: η1(t), η2(t) must
satisfy (17), Simulation Time: T, Algorithm timeline: t, Multicast System
timeline: s

for t = 1 to T do
if (t < Ttrain) then

p← P(Uni f ([0, 1]3))
else

Sample: Minibatch n from MD
/∗Perform DNN θ update and p parameter update as follows:∗/
θ ← θ − η1∇θ L fθ

p← P(p− η2∇p fθ + Uni f ([0, εt]3))

end
run Sapprox Multicast services with strategy p and store d′is in D
obtain f̂ , as in (1) → clear D
store (p, f̂ ) in MD

end
p∗ ← p
Output: p∗: Optimal Queueing Strategy

4. Power Control for Multicast Queue

We now proceed to describe the power control in the Multicast setup. Adapting the
transmit power based on the system and environment state under certain system constraints
helps in providing the power control that may improve QoS, which is quantified by the
mean user delay under stationarity. It is shown in [8] that by choosing the transmit power
based on the channel gains, the system performance improves. We describe the system
constraint, a power control model and the MADS power control algorithm proposed in [8]
in this section. We then end this section with the Markov decision process formulation of
the entire system that aids in the development of the deep reinforcement learning based
power control algorithm.

4.1. Average Power Constraint

Depending on the value of H(t) and V(t) at time t, the server chooses transmit power
Pt based on a power control policy Pt = π(H(t), V(t)). Choosing a good power control
policy is the topic of this section. The state St of the system at time t is (H(t), V(t)). Let PSt

be the power chosen by a policy for state St and let R(St, PSt) be the number of successful
transmissions for the selected power PSt during the tth service.

For a fixed transmission rate C and for a given channel gain H(t) of users, the transmit
power requirement Preq (from Shannon’s Formula) for user j is (assuming file length is
long enough) the following:

Preq(j, St) =
Ng

H2
j (t)

(2C/B − 1), (5)

where B is the bandwidth and Ng is the Gaussian noise power at receiver j. Here, for
simplicity, we take the ideal Shannon formula in (5), which can be easily modified to make
it more realistic ([45], Chapter 14). Thus, the reward for the chosen power control policy,
during the tth transmission, is given by the following:

R(St, PSt) =
L

∑
j=1

Vj,St 1{PSt>Preq(j,St)}(t), (6)
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where Vj,St = 1 if the user j has requested the file in service, and Vj,St = 0 otherwise. We
now describe the mesh adaptive direct search (MADS) power control policy.

4.2. MADS Power Control Policy

The power control policy in [8] is derived from the following optimization problem,

max
{P1,··· ,PK}

K

∑
k=1

qkRk s.t.
K

∑
k=1

qkPk ≤ P and Pk ≥ 0, k ∈ [K], (7)

where [K] := {1, · · · , K}, P is the average power constraint, K is the total number of states,
Pk is the power chosen by the policy in state k, qk is the stationary distribution of state
k ∈ [K] and are assumed to be known apriori, and Rk is the reward for state k, given as
Rk = R(St = k, Pt = Pk). This is a non-convex optimization problem since the reward in
Equation (6) is a simple function (linear combination of indicators). Mesh adaptive direct
search (MADS) [46] is used in [8] to solve this constrained optimization problem and obtain
the power control policy. Though MADS achieves a global optimum, it is not scalable, as
its computational complexity is very high.

The state space and action space of this problem can be very high, even for a moderate
number of users and channel gains, e.g., a system with L users and G channel gain states
has O(2LGL) states. Therefore, in this paper, we propose a deep reinforcement learning
framework. This not only provides optimal solution for a reasonably large system, but
does so without knowing the arrival rates and channel gain statistics. In addition, we show
via simulations that we can track an optimal solution, even when the arrival and channel
gain statistics change with time.

4.3. MDP Formulation

The above system can be formulated into a finite state, action Markov decision process
denoted by a tuple (S,A, r, P, γ—the state space, action space, reward, transition prob-
ability, and discount factor), where the transition probability P(St+1|S0, P0, ..., St, Pt) =
P(St+1|St, Pt), policy π chooses power Pt ∼ π(.|St) in state St and the instantaneous
reward rt = R(St, Pt).

The action–value function [47] for this discounted MDP for policy π is as follows:

Qπ(s, a) = E[
∞

∑
t=0

γtrt|S0 = s, P0 = a]. (8)

where 0 < γ < 1. The optimal Q-function, Q∗, is given by Q∗(s, a) = max
π

Qπ(s, a) and

satisfies the following optimality relation:

Q∗(s, a) = r(s, a) + max
a′

γE[Q∗(s′, a′)], (9)

where s′ is sampled with distribution P(.|s, a). If we know the optimal Q-function (Q∗),
we can compute the optimal policy via π(s) = arg max

a′
Q∗(s, a). We know the transition

matrix of this system and hence, can compute the Q-function. However, the state space is
very large, even for a small number of users, rendering the computations unfeasible. Thus,
we use a parametric function approximation of the Q-function via deep neural networks
and use DeepRL algorithms to obtain the optimal Q∗. Our cost function is the stationary
mean sojourn time. To obtain a policy which minimizes this, we actually should be working
with the average cost MDP instead of discounted MDP. However, the RL formulation for
this problem is defined for the discounted case, the average case being more complicated.
If we take the discount factor gamma close enough to 1, then the optimal policy obtained
via the discounted problem is often close to the average case problem.
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Further, to introduce the average power constraint in the MDP formulation, we look
at the policies achieving the following:

Q∗(s, a) = max
π:CP≤P

Qπ(s, a) (10)

where

CP = E[ lim
T→∞

∑T
t=0 Pt

T
] (11)

is the long term average power. We use the Lagrange method for constrained MDPs [29]
to achieve the optimal policy. In this method, the instantaneous reward is modified as
follows:

rt = R(St, Pt)− βPt, (12)

where β is the Lagrange constant achieving optimal Q∗ while maintaining CP ≤ P. Choos-
ing β wrongly provides the optimal policy with an average power constraint that is different
from P.

5. Deep Reinforcement Learning Based Power Control Policy

In this section, we describe the deep Q network (DQN) [11] based power control.
First, we describe the DQN algorithm. We then propose a variant of DQN for constrained
problems wherein we use a Lagrange multiplier to take care of the average power constraint.
We use a multi-time scale stochastic gradient descent approach to also learn the Lagrange
multiplier to obtain the right average power constraint. Finally, we change the learning
step size from decreasing to a constant so that the optimal power control can track the time
varying system statistics.

5.1. Deep Q Networks

DQN is a popular deep reinforcement learning algorithm to handle large state-
space MDPs with unknown/complex dynamics P(St+1|St, Pt). The DQN is a value it-
eration based method, where the action–value function is approximated by a neural
network. Though there are several follow-up works providing improvements over this
algorithm [17,48], we use this algorithm owing to its simplicity. We show that DQN itself
is able to provide us with the optimal solution and tracking. These improvements may
further improve the performance in terms of sample efficiency, estimator variance, etc.
Earlier attempts for combining nonlinear function approximators, such as neural networks
and RL, were unsuccessful due to instabilities caused by (1) correlated training samples, (2)
a drastic change in policy with small change in function approximation, and (3) correlation
between the training function and approximated function [10]. The success of DQN is
attributed to addressing these issues with two key ingredients of the algorithm: experience
replay memory M and target network, Qθ∗ . The replay memory stores the transitions of
an MDP, specifically the tuple (St, Pt, rt, St+1). The algorithm then samples, uniformly,
a random minibatch of transitions from the memory. This removes correlation between
the data and smooths the data distribution change with the iteration. The algorithm has
another neural network, approximating the value function, Qθ . The target network and
randomly sampled mini-batch from the memory M form the training set for training the
Qθ at every epoch. This random sampling provides i.i.d samples for performing stochastic
gradient descent with loss as follows:

Lπθ
Q =

1
n

n

∑
j=1

(Yj −Qθ(Sj, Aj))
2 (13)

where Yi = ri + γ max
a′

Qθ∗(Si, a′)). The iterations {θt} are given by the following:

θt+1 ← θt − η1(t)∇θ Lπθ
Q , (14)
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where η1(t), the step size, satisfies the following:

∞

∑
t=0

η1(t) = ∞,
∞

∑
t=0

η2
1(t) < ∞, η1(t) ≥ 0. (15)

The weights of the target network Q∗ are held constant for Ttarget epochs, thereby
controlling any drastic change in policy and reducing correlation between Q and Q∗. This
can be seen as a risk minimization problem in non-parametric regression with regression
function Qθ∗ and risk L

πθt
Q . Readers are referred to [16] for an elaborate analysis of DQN.

Theorem 4.4 in [16] provides a proof of the convergence and rate of convergence, using
non-parametric regression bounds, when sparse ReLU networks are used, under certain
smoothness assumptions on the reward function and the dynamics.

5.2. Adaptive Constrained DQN (AC-DQN)

The DQN algorithm is meant for unconstrained optimization. Since our problem
has an average power constraint of P, we consider the instantaneous reward in (12) with
a Lagrange multiplier β. The long-term constraint depends on the Lagrange multiplier
and can be quite sensitive to it. Thus, we design our algorithm, AC-DQN, to learn the
appropriate β. We will see later, that this enables us to further modify our algorithm to track
the changing statistics of the channel gains and arrival statistics. The AC-DQN algorithm
is given in Algorithm 2. Here, we use the multi-timescale SGD as in [9]. In this approach,
in addition to the SGD on Qθ , using a minibatch, we use a stochastic gradient descent on
the Lagrange constant, β, as follows:

βt+1 ← βt + η2(t)∇βLπθ
P , (16)

where ∇βLπθ
P = CP(St)− P. Since the expectation in (11) is not available to us, we take

CP(St) = ∑t
i=t−TW

Pi(Si)/TW , where TW is the finite horizon window. Additionally, η1 and
η2 are required to follow the following [9]:

∞

∑
i=1

η1(i) =
∞

∑
i=1

η2(i) = ∞,
∞

∑
i=1

η2
1(i) + η2

2(i) < ∞,
η2(i)
η1(i)

→ 0. (17)

Tracking with AC-DQN: The tracking of system statistics is essential to achieve
optimal power control in a non-stationary system. In multi-time scale stochastic gradient
descent, such as AC-DQN, step sizes η1(t) and η2(t) can be fixed to enable tracking. If
η2 << η1, then the Lagrange multiplier changes much more slowly than the Q-function.
Then, the two timescale theory (see, e.g., [9]) allows the Lagrange multiplier to adapt slowly
to the changing system statistics but at the same time provide average power control. The
solution reaches in a neighborhood of the optimal point. Although the convergence of this
modified algorithm is not proved yet (even for the unconstrained DQN, convergence was
proved only recently in [16]), our simulations show that the resulting algorithm tracks the
optimal solution in the time varying scenario.

The time varying scenario in our setup results due to change in the request arrival
statistics from the users and the changing channel gain statistics due to the motion of the
users.



Entropy 2021, 23, 1555 13 of 24

Algorithm 2 Adaptive constrained DQN (AC-DQN) algorithm
Input:
MDP-(S,A, r, P, γ), r as in (12), Replay Memory: M, Minibatch size: n, Initialize T,

Ttarget, θ, θ∗ of Qθ and Qθ∗ , Exploration Parameter: ε(t)→ 0, Lagrange Constant:
β, Value and Lagrange learning rates: η1(t), η2(t) must satisfy (17), Initialize TW

for t = 1 to T do
Observe state St, Apply action At = πt(St) = arg max

a′
Qθ(St, a′), ε-greedily

Observe: rt, St+1
Store: (St, At, rt, CP(St), St+1) in M
Sample: Minibatch n from M
for i = 1 to n do

Yi = ri + γ max
a′

Qθ∗(Si+1, a′)

end
/∗Perform two time-scale stochastic gradient descent as follows:∗/
θ ← θ − η1∇θ Lπθ

Q
β← β + η2∇βLπθ

P
at every t = mTtarget, m ∈ N+: update θ∗ ← θ

end
π∗ ← πT , θ∗ ← θ
Output: Qθ∗ : Optimal Q-Function, π: Optimal Policy

6. Integrated DSGD and AC-DQN (IDA)

We are now familiar with how the multi-time scale stochastic gradient descent can be
used for optimization of a stochastic system with multiple objectives. We extend this idea
to learn the optimal queuing strategy while learning the optimal power control policy and
simultaneously satisfying the average power constraint. Toward this, we add DSGD as a
third timescale to AC-DQN. Though DSGD internally has two stochastic gradient descent
steps, we consider it to be a combined third step of IDA for conceptual clarity. We present
our integrated DSGD and AC-DQN (IDA) in Algorithm 3. There are four learning rates
involved in the algorithm. The four learning rates should satisfy the following criteria for
convergence of the algorithm [9]:

∞

∑
i=1

ηj(i) = ∞, j = 1, 2, 3, 4,

∞

∑
i=1

4

∑
j=1

η2
j (i) < ∞,

ηj+1(i)
ηj(i)

→ 0, j = 1, 2, 3.
(18)

Though this criterion is required for convergence, we have seen that constant step sizes
are helpful in tracking. So, we see our simulations with η1 > η2 > η3/Tapprox > η4/Tapprox.

Note 3: IDA can be used in systems with multiple objectives, e.g., a wireless network
with cross layer objectives. It is important to select carefully the objective to be optimized
in the slower timescale and in the faster timescale. In our setup, we run the learning steps
for queuing policy (DSGD step) in a slower time scale to avoid drastic changes in the
underlying MDP (of AC-DQN step).

Note 4: Step sizes in the algorithm are important hyperparameters. A good set of
step sizes ensures a balance between speed and stability of the gradient descent steps. The
choice is problem dependent and heuristical.

We now present the simulation results of all the algorithms presented in this paper.
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Algorithm 3 Integrated DSGD and AC-DQN algorithm (IDA)
Input:
DQN Input: MDP-(S,A, r, P, γ), r as in (12), M, n, T, Ttarget, θ, θ∗ of Qθ , Qθ∗ ,

ε(t)→ 0, β, η1(t)→ 0, η2(t)→ 0 and TW are same as in Algorithm 2,
DSGD Inputs: Replay Memory: MD, Minibatch size: nD, Training Time: Strain,
Approximation Window: Tapprox, Initialize weights θ† of fθ† , Exploration
Parameter: εD(s)→ 0, Learning rates: ηi, i = 1, 2, 3, 4 satisfy, (18), System timeline:
t, DSGD timeline: s, s← 0, p← P(Uni f ([0, 1]3))
for t = 1 to T do

Observe St, Take action At and store (St, At, rt, CP(St), St+1) in M
Sample: Minibatch n from M as in Algorithm 2
/∗AC-DQN Step: Perform two time-scale stochastic gradient descent as

follows:∗/
θ ← θ − η1∇θ Lπθ

Q , β← β + η2∇βLπθ
P

at every t = mTtarget, m ∈ N+: update θ∗ ← θ

D ← append(sojourtime d′is) in current service
if t = mTapprox, m ∈ N+ then

if (s < Strain) then
p← P(Uni f ([0, 1]3))

else
Sample: Minibatch nD from MD
/∗DSGD Step: Perform DNN θ† update and p parameter update as

follows:∗/
θ† ← θ† − η3∇θ† L fθ†

,

p← P(p− η4∇p fθ†(p) + Uni f ([0, εD(s)]3))
end
obtain f̂ , as in (1) → clear D → store (p, f̂ ) in MD
s← s + 1

end
p∗ ← p, π∗ ← πT , θ∗ ← θ
Output: p∗: Optimal Queueing Strategy, Qθ∗ : Optimal Q-Function, π: Optimal

Policy

7. Simulation Results and Discussion

In this section, we first present the simulation results for our DSGD algorithm. We run
the multicast system with constant transmit power. We compare the performance of our
DSGD queuing algorithm against each queuing strategy proposed in [8]. Next, we compare
the performance of AC-DQN and MADS power control policies. We show that the deep
learning algorithm, AC-DQN, indeed achieves the global optimum obtained by the MADS
algorithm, but unlike MADS, is also scalable with the system size (number of users). We
further demonstrate that the AC-DQN algorithm tracks the changing system dynamics and
obtains the optimal policy, adaptively. Finally, we consider IDA. We show, numerically, that
the algorithm achieves the optimal point obtained by both DSGD and AC-DQN. We use
Python 3.8 with the Tensorflow 2.4.0/Keras package for system implementation (the system
and algorithm codes are available at https://github.com/rkraghu88/SchedulingPC_IDA,
accessed on 12 October 2021).

7.1. Simulation Parameters

We consider three systems with varying system configurations as follows.

7.1.1. Small User Case

Number of users L = 4, catalog size M = 100, file size F = 10 MB, transmission rate
C = 10 MB/s, bandwidth B = 10 MHz, channel gains∼Uniform([0.1 0.2 0.3]) for two users
with bad channel statistics and ∼Uniform([0.7 0.8 0.9]) for two users with good channel

https://github.com/rkraghu88/SchedulingPC_IDA
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statistics. File popularity: uniform, (Zipf exponent = 0), average power constraint P = 7,
simulation time = 105 multicast transmissions.

7.1.2. Moderate User Case

System parameters: power transmit levels = 20 (1 to 50), L = 10, M = 100, F =
10 MB, C = 10 MB/s, channel gains: exponentially distributed (∼exp(0.1) for bad channel,
∼exp(1.0) for good channel), R = 10 MB/s, B = 10 MHz, P = 7. File popularity: Zipf
distribution with Zipf exponent = 1. Simulation time: 105 multicast transmissions. In both
the cases, we set the noise power as Ng = 1.

7.1.3. Large User Case

System Parameters: Same as Section 7.1.2 except, L = 20.

7.1.4. Hyperparameters

For DSGD, we consider a fully connected neural network with two hidden layers. The
first layer has 32 nodes, and the second layer has 16 nodes. All layers have a ReLU activation
function. MD = 1000, Minibatch size: nD = 50, Ttrain = 100: Training Time, Sapprox = 100:
Approximation Window, Initialize weights θ of fθ , ε(t)→ 0, η1(t) = 0.01/(1 + 0.00001t),
η2(t) = 0.001/(1 + 0.00001t(llog(t))).

In AC-DQN, we consider fully connected neural networks with two hidden layers
for all the function approximations considered in the algorithms. Input layer nodes are
assumed to be 2L and the output layer has 20 nodes, the number of transmit power levels.
Each output represents the Q value for a particular action. The action space is restricted to
be finite, as DQN converges only with finite action spaces. We use two hidden layers for
the neural network, with 128 and 64 nodes, and the ReLU activation function is chosen.
The other parameters are as follows: replay memory size |M| = 30,000, γ = 0.9, ε0 = 1.0,
εdecay = 0.98, εt = ε0(0.98)t, η1 = 0.001, η

decay
1 = 0.00001, η2 = 0.0001, η

decay
2 = 0.00001,

minibatch size (n) = 64, Ttarget = 100, and TW = 200.
Finally, in the IDA algorithm, we combine the parameters of both DSGD and AC-DQN.

The step sizes are, however, held constant with the value of each step size at t = 0.

7.2. Optimal Queueing Using DSGD

We consider the moderate user system in Section 7.1.2 for demonstrating the per-
formance of DSGD. We assume the widely accepted IRM traffic model with unity zipf
popularity for the 100 different file requests arriving at 10 users. The server is endowed,
in different simulation runs, with different queuing strategies. We compare our DSGD
based queuing strategy at the server with the individual queuing strategies, mentioned in
Section 2. The server transmits the files with constant transmit power P = 7. We model
the wireless fading to follow Rayleigh distribution. This introduces the errors in file
transmissions.

We see in Figure 2a that different queuing strategies are optimal at different rates
for a constant transmit power P = 7 under fading. This is the typical case in practical
systems. Depending on the request load, the system might need to adapt the queuing and
service strategy. DSGD does precisely this. We can see in Figure 2b that the algorithm
converges to the optimal mean sojourn time for the given power policy. We use a constant
transmit power policy. Epochs 0 to 104 are the initial training phase, and the algorithm
starts learning thereafter and eventually converges. The policies chosen by the algorithm
for arrival rates 0.6 and 3.0 are given in Figure 3a,b, respectively. We see that for rate 3.0,
the algorithm converges to the defer strategy since it has the lowest mean sojourn time
for this rate (Figure 2a). For rate 0.6 however, we see that DSGD gives a mixed policy
with positive probabilities to retransmit and loopback and zero probability to defer. This is
because both retransmit and loopback have the same mean delay performance, and the
defer strategy performs poorly. This is the case where more than one optimal solution
may be available, and the algorithm may converge to one or oscillate between different
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optimal points as neural network training progresses. The simulations show that the DSGD
algorithm adaptively chooses the best among the three queuing policies or an equivalent
mixed policy for different system statistics (arrival rates).
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(a) DSGD mean sojourn times vs. arrival rate.
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Figure 2. DSGD performance in parameterized multicast system with constant power policy, L = 10, P = 7, Zipf Popularity
(Zipf exponent = 1), Rayleigh fading with mean, 0.1 and 1.0 for bad and good users, respectively.
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Figure 3. Probability convergence for L = 10, P = 7, Zipf popularity (Zipf exponent = 1), Rayleigh fading with mean,
0.1 and 1.0 for bad and good users, respectively.

7.3. Optimal Power Control (AC-DQN vs. MADS)

We use the system setting of the small user case, specified in Section 7.1.1, since
running MADS for a higher number of users is computationally prohibitive. We use the
uniform popularity profile for the file requests. We also use uniform distribution for fading.
This is just for the convenience of the calculations of state probabilities, {qk}, in MADS
as done in [8]. We compare the performance of AC-DQN and MADS for this system. We
demonstrate our algorithm with more realistic distribution in the next section.

We use the loopback queuing strategy for demonstrating AC-DQN. We see in sub-
sequent sections that AC-DQN works even for other queuing strategies. To show the
advantage of power control, we split the users in two equal sized groups, where one group
has good channel statistics and the other bad channel statistics. We compare the perfor-
mance of both the power control policies with the constant power control policy, where the
transmit power Pt is fixed to Pt = P. Figure 4a shows a comparison of the mean sojourn
times of constant power policy, Pt = P, MADS and AC-DQN. We see from Figure 4a that
AC-DQN achieves the same mean sojourn time as that by MADS but is much better than
the constant power policy. Additionally, from Figure 4b, we see that AC-DQN satisfies the
average power constraint.
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Figure 4. AC-DQN performance in 1-LB system with L = 4, P = 7, uniform popularity,
uniform fading.

7.4. AC-DQN Tracking Simulations in a Scaled Network

The AC-DQN provides similar improvements over the constant power scheme as
above, even for a large user case [49] with the 1-LB queuing scheme. In this section, we show
via simulations the tracking capabilities of AC-DQN for the large user case (Section 7.1.3).
We demonstrate the importance of constant step sizes for η1 and η2, and the inability of
decaying step sizes to track the changing system statistics. We consider a system where the
arrival rates change over a period of 48 h. We fix λ = 1.0 for the first 24 h. To make the
learning harder for our algorithm, we change the rates abruptly every 6 h for the next 24 h
as λ = 0.6, 0.5, 0.4, 0.8. This change in time period is just to illustrate the tracking ability in
a more emphatic manner. This also captures the real-world scenario, where the request
traffic to the base station varies with the time of the day. We fix P = 5. We calculate the
mean sojourn time and average power, using a moving average window of 1000 samples in
size. We run the AC-DQN algorithm for this system with (1) decaying η1 and η2 satisfying
(17) and (2) constant step sizes, η1 = 0.001 and η2 = 0.00003. The rest of the parameters
remain the same as in the large user case. We see in Figure 5a that the AC-DQN with a
constant step size almost always outperforms the decaying step size. Specifically, after the
first 24 h, the delay reduction is nearly 50 percent for a constant step size. The reason for
this is evident from Figure 5b,c. We see in Figure 5c that the AC-DQN with a constant step
size learns the Lagrange constant throughout the simulation time, whereas the AC-DQN
decaying step size is unable to learn the Lagrange constant after the first 24 h. As can be
seen in Figure 5b, this affects the average power achieved by the AC-DQN with a decaying
step size. While a constant step size maintains the average power constraint of P = 5,
the average power achieved by the decaying step size AC-DQN drops to 4. Hence, the
decaying step size AC-DQN suffers suboptimal utilization of the available power. Thus, in
practical systems, only constant step-size AC-DQN is capable of adapting to the changing
system statistics. The effect of fixing the learning rates is seen in the small oscillations of
average power around P = 5 in Figure 5b. This is the oscillation in a small neighborhood
around the optimal average power. The smaller the step size, the lesser the oscillations.
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Figure 5. AC-DQN tracking performance in 1-LB system with with decaying vs. constant step sizes L = 20, P = 5, Zipf(1)
popularity, Rayleigh fading.

7.5. Integrated Optimal Queueing and Power Control Using IDA

We have already seen the performance of power control for 1-LB (loopback case) for a
large user system. In this section, we compare the performance of AC-DQN for different
queuing strategies versus the IDA performance for the moderate user case (Section 7.1.2).
We use Zipf popularity and Rayleigh fading for system simulation. First, in Figure 6a,
we make an observation that AC-DQN drastically improves the mean delay performance
for all the strategies as compared to the constant power policy in Figure 2a. We see that
our IDA algorithm is able to choose a better strategy than the baselines in terms of the
mean sojourn time. The convergence of the mean sojourn time for rates 0.2 to 3.0 is shown
in Figure 6b. The more important capability of this algorithm is that it converges to a
better mean sojourn time while maintaining the average power constraint. Figure 6c shows
the convergence of the average power to P = 7 for all the rates. This is achieved by
simultaneously controlling the Lagrange variable as seen in Figure 6d. A few interesting
plots showing the convergence of probabilities for rates 0.8, 2.0 and 3.0 are shown in
Figure 7a–c, respectively.

We see, from Figure 7a, that for arrival rate 0.8, the queuing policy converges to a
mixed policy with 0.8 probability assigned to retransmit and 0.2 assigned to loopback. This
policy has the same optimal mean sojourn time as achieved by the best policy, retransmit,
in Figure 6a. Thus, IDA gives additional optimal points for the algorithm to choose from.
From Figure 6a we see that for rate 0.2, both defer and loopback have the same performance
as AC-DQN. For arrival rate 3.0 (Figure 7c), however, IDA unambiguously chooses defer
as the policy since it has the lowest mean sojourn time among the baselines in Figure 6a.
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Figure 6. IDA Performance in parameterized multicast system with L = 10, P = 7, Zipf popularity (Zipf exponent = 1),
Rayleigh fading with mean, 0.1 and 1.0 for bad and good users, respectively.
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Figure 7. IDA convergence of queuing strategies for different arrival rates. L = 10, P = 7, Zipf popularity
(Zipf exponent = 1), Rayleigh fading with mean, 0.1 and 1.0 for bad and good users, respectively.

7.6. Tracking of User and Rate Variation Using IDA

In wireless content-centric networks, such as Netflix over 5G networks, the traffic is
generally seen to start peaking in late afternoon and reach the maximum in the evening [50].
We show that power and queuing policies are tracked simultaneously via IDA in such a
non-stationary setting.
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We consider a system with a maximum of 100 users accessing a library of 100 files.
The rest of the system parameters are as described in Section 7.1.2. The total user and
rate variation mimics the real traffic as observed in [50]. The traffic starts increasing in the
late afternoon and peaks in the evening. The traffic variations over a period of four and
a half days are shown in Figure 8d. Except in the first 12 hours, the number of users and
the request rate vary every 6 hours. It is important to note that our state formulation in
AC-DQN and IDA allows for user variation in the system. The input to the neural networks
has to be chosen based on the maximum number of users of 100 that the system admits.
Thus, the state-space dimension is 200.

Due to a larger state-space dimension, to improve the sample efficiency of the Q
learning, we make the network deeper and increase the number of nodes [39]. We scale the
neural network size to three hidden layers with 256, 128, 64 nodes, and Input:200, Output:20.
For a non-stationary setting, Tapprox should be chosen appropriately. A large Tapprox gives
a bad estimate of the mean sojourn time and a small Tapprox increases the variance. Thus,
we take Tapprox = 40. Similarly, to hold only relevant samples in the memory, we reduce
the replay memory MD to 100 from 1000. This {Tapprox,MD} corresponds to a memory of
∼1 h. Additionally, to keep the exploration perpetual in a non-stationary system, we fix εD
to a value of 0.005.

Figure 8 compares the performance tracking of IDA with respect to AC-DQN for
individual queuing schemes when the arrival rate varies over time. This demonstrates the
practical applicability of IDA where the environment is non-stationary. Figure 8a shows
how IDA tracks the optimal mean sojourn time as the environment changes. During the
first 12 h, the IDA assigns high probability to the retransmit policy. Since the traffic is very
low in first 12 h, the learning process is slow. However, as the traffic picks up in the next 12
h, learning of the queuing policy and the power control policy, is accelerated, and IDA gets
closer to the optimum performance among the three queuing schemes at 18 h. From there
on, the learned optimal policy and power control are tracked near optimally. This can be
seen in Figure 8a,b at time intervals [18, 24], [42, 48], [66, 72], [90, 96] hours.

Quick adaptation of IDA to changing system statistics can be seen emphatically at
50 h. At 48 h, the mean sojourn time spikes up (Figure 8a), due to change in the system
statistics (Figure 8d). We deduce that the stochastic policy learned until 48 h is not optimal
for the statistics of the system immediately after 48 h. Thus the fθ learned in the DSGD step
starts changing rapidly after 50 h, due to the small size of the replay memory, MD. This
induces rapid change in the descent step of parameter p, leading to a drastically different
policy. We also note that such a spike in the mean sojourn time occurs at times 68 h and 96
h. However, these spikes are not large enough to warrant a drastic policy change.

We have simulated an environment which has abrupt variations. In the real scenario,
the changes are much smoother. The algorithm can only do better in such a scenario. We
also observe in Figure 8c that the IDA meets the power constraint. It does so by learning
the optimal Lagrange multiplier corresponding to the instantaneous environment.

It is also important to mention that IDA is a stochastic algorithm performing non-
convex optimization of a non-stationary system. The frequency of IDA getting stuck at a
poor local optimum can, however, be controlled by appropriately tuning the hyperparame-
ters, such as the DNN size, activation, step size, type of exploration noise, etc.
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traffic is very low in first 12 hours, the learning process is
slow. However as the traffic picks up in the next 12 hours,
learning of the queueing policy and the power control policy, is
accelerated, and IDA gets closer to the optimum performance
among the three queueing schemes at 18 hours. From there
on the learnt optimal policy and power control is tracked
near optimally till 80 hours. After that, the system learns the
optimal queueing policy and power control pair that performs
well in all the rate and user variations through the time. This
can be seen in Figures 8a and 8b at time intervals [18, 24],
[42, 48], [66, 72], [90, 96] hours.

We have simulated an environment which has abrupt
variations. In the real scenario the changes are much smoother.
The algorithm can only do better in such a scenario. We
also observe in Figure 8c that the IDA meets the power
constraint. It does so by learning the optimal Lagrange
multiplier corresponding to the instantaneous environment.

It is also important to mention that, IDA is a stochastic
algorithm performing a non-convex optimisation of a non-
stationary system. The frequency of IDA getting stuck
at a poor local optimum can however be controlled by
appropriately tuning the hyper-parameters such as DNN size,
activation, step size, type of exploration noise etc.

G. Discussion:

We see from the simulations that the novel Deep Learning
techniques such as DSGD and AC-DQN can achieve optimal
performance while providing scalability with system size.
Our two-timescale approach, AC-DQN, extends DeepRL
algorithms like DQN to systems with constrained control. It
can be extended to systems with multiple constraints also. In
such systems each constraint is associated with a Lagrange
multiplier.

For a stationary system, it is enough that the step-sizes
satisfy multi-timescale criteria similar to (17) (see [9]).
However, if AC-DQN is used in systems with changing system
statistics the step sizes shall be kept constant. Choosing
the step sizes is a trade-off between the tolerance of the
constraint and the required algorithmic agility to track the
system changes.

We have also demonstrated how IDA achieves the optimal
queuing strategy among the baselines while obtaining the
power control for such complex multicast systems. It is shown
that Deep Neural Networks when appropriately used can
provide scalable control for large wireless networks achieving
several cross-layer objectives. IDA also tracks the optimal
performance in a large non-stationary system with varying
number of users.

VIII. CONCLUSION

This paper has considered a multicast downlink in single
hop wireless network. Fading of different links to users
causes significant reduction in the performance of the system.
Appropriate change in the queueing policies and power control
can mitigate most of the losses. However, simultaneously
obtaining adaptive queueing and power control for large
systems is computationally very hard. We first develop a
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novel DNN assisted stochastic gradient descent algorithm
to achieve optimality of the system to provide lower mean
sojourn time in a parametrized multicast system. Next we
show that using Deep Reinforcement Learning, we can obtain
optimal power control, online, even when the system statistics
are unknown. We use a recently developed version of Q
learning, Deep Q Network to learn the Q-function of the
system via function approximation. Furthermore, we modify
the algorithm to satisfy our constraints and also to make the
optimal policy track the time varying system statistics. Finally,
we propose a novel deep multi-time scale algorithm which

Figure 8. Tracking of optimal performance by IDA in a non-stationary environment, where total
arrival rate to the base station/server varies over time.

7.7. Discussion

We see from the simulations that the novel deep learning techniques, such as DSGD
and AC-DQN, can achieve optimal performance while providing scalability with system
size. Our two-timescale approach, AC-DQN, extends DeepRL algorithms, such as DQN, to
systems with constrained control. It can be extended to systems with multiple constraints
also. In such systems, each constraint is associated with a Lagrange multiplier.

For a stationary system, it is enough that the step sizes satisfy multi-timescale criteria
similar to (17) (see [9]). However, if AC-DQN is used in systems with changing system
statistics, the step sizes are kept constant. Choosing the step sizes is a trade-off between the
tolerance of the constraint and the required algorithmic agility to track the system changes.
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We have also demonstrated how IDA achieves the optimal queuing strategy among
the baselines while obtaining the power control for such complex multicast systems. It is
shown that deep neural networks, when appropriately used, can provide scalable control
for large wireless networks, achieving several cross-layer objectives. IDA also tracks the
optimal performance in a large non-stationary system with varying number of users.

8. Conclusions

This paper has considered a multicast downlink in a single hop wireless network.
Fading of different links to users causes significant reduction in the performance of the
system. Appropriate change in the queuing policies and power control can mitigate most
of the losses. However, simultaneously obtaining adaptive queuing and power control
for large systems is computationally very hard. We first developed a novel DNN assisted
stochastic gradient descent algorithm to achieve optimality of the system to provide a
lower mean sojourn time in a parameterized multicast system. Next, we showed that, using
deep reinforcement learning, we can obtain optimal power control, online, even when
the system statistics are unknown. We used a recently developed version of Q learning,
the deep Q network, to learn the Q-function of the system via function approximation.
Furthermore, we modified the algorithm to satisfy our constraints and also to make the
optimal policy track the time varying system statistics. Finally, we proposed a novel deep
multi-time scale algorithm which achieves the cross-layer optimization of queuing and
power control, simultaneously. We showed that IDA also performs well in a large system
with a non-stationary environment.

One interesting extension of this work would be developing an algorithm that could
potentially provide a better state-action-dependent queuing strategy. Another future work
could possibly include the caches at the user nodes and learning the optimal caching policy
along with the power control using DeepRL. Future works may also consider applying
IDA to multiple-base-station scenarios for interference mitigation. Further, extension of the
approach to a multi-agent approach with decentralized execution as in [51] is an important
research direction.
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