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SoxNeuro orchestrates central nervous system
specification and differentiation in Drosophila and
is only partially redundant with Dichaete
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Abstract

Background: Sox proteins encompass an evolutionarily conserved family of transcription factors with critical roles
in animal development and stem cell biology. In common with vertebrates, the Drosophila group B proteins
SoxNeuro and Dichaete are involved in central nervous system development, where they play both similar and
unique roles in gene regulation. Sox genes show extensive functional redundancy across metazoans, but the
molecular basis underpinning functional compensation mechanisms at the genomic level are currently unknown.

Results: Using a combination of genome-wide binding analysis and gene expression profiling, we show that
SoxNeuro directs embryonic neural development from the early specification of neuroblasts through to the terminal
differentiation of neurons and glia. To address the issue of functional redundancy and compensation at a genomic
level, we compare SoxNeuro and Dichaete binding, identifying common and independent binding events in
wild-type conditions, as well as instances of compensation and loss of binding in mutant backgrounds.

Conclusions: We find that early aspects of group B Sox functions in the central nervous system, such as stem cell
maintenance and dorsoventral patterning, are highly conserved. However, in contrast to vertebrates, we find that
Drosophila group B1 proteins also play prominent roles during later aspects of neural morphogenesis. Our analysis
of the functional relationship between SoxNeuro and Dichaete uncovers evidence for redundant and independent
functions for each protein, along with unexpected examples of compensation and interdependency, thus providing
new insights into the general issue of transcription factor functional redundancy.
Background
The evolution of multicellular organisms is, to a large
extent, driven by an increase in the complexity of gene
regulatory networks [1], both at the level of cis-regula-
tory elements [2] and of transcription factor (TF) diver-
sity [3]. In metazoans, many TFs have arisen through
local tandem or whole genome duplications followed by
neofunctionalisation, a process leading to the generation
of new regulatory networks or the modification of exist-
ing ones. These processes generate developmental diver-
sity and ultimately species evolution. Interestingly, some
duplicated genes can maintain redundant functions over
very substantial periods of time [4], an observation that
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appears to be counterintuitive from the perspective of
natural selection. In general, it is expected that dupli-
cated genes either diverge to generate new functions or
one of the paralogs is lost through the accumulation of
inactivating mutations [5]. It has been suggested that re-
dundancy may be maintained when duplicates have mul-
tiple functions, both common and unique, that would
otherwise be eliminated by deleterious mutations [4]. While
such models account for the maintenance of closely related
coding sequences in the genome, they do not explain why
redundant copies do not always diverge to adopt different
expression domains [5]. In some cases, it is possible that
maintaining partially redundant genes with similar expres-
sion patterns may contribute to network robustness [6];
however, we lack sufficient data on the genome-wide
activities of paralogous TFs to make reliable inferences
about the molecular mechanisms underlying redundancy.
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The Hox family of TFs, which share a conserved or-
ganisation and function during embryonic segmentation,
exemplifies the expected evolutionary trajectory of dupli-
cation events [7], with paralogous genes showing divergent
expression domains and strong phenotypes when individu-
ally deleted, although analysis of double mutants suggests
a limited degree of functional redundancy in some cases
[8]. In contrast, Sox (SRY-related high-mobility-group box)
genes, another family of metazoan TFs that have arisen
through gene duplications [9-11], exhibit a much higher
degree of functional redundancy, with closely related genes
often widely coexpressed and able to substantially com-
pensate for each other's loss [12-17]. The reasons why
some TF families have functionally diverged while others
have maintained considerable redundancy is a fascinating
unanswered question.
Sox proteins have established roles in transcriptional

regulation and may also play an architectural role in
chromatin organisation [18,19]. The 20 Sox genes in ver-
tebrates are subdivided into 8 groups (A to H), most of
which contain multiple paralogs. Group B genes are of
particular interest from an evolutionary perspective, pro-
viding examples of both neofunctionalisation and redun-
dancy. This group is divided into two further subgroups,
B1 (Sox1, Sox2, and Sox3) and B2 (Sox14 and Sox21)
[10], both playing important roles during vertebrate
neurogenesis. SoxB1 proteins primarily act as transcrip-
tional activators, in particular regulating the mainten-
ance of neural stem cell (NSC) self-renewal, while SoxB2
proteins mainly function as transcriptional repressors,
promoting the differentiation of neural precursors into
mature neurons [20-22]. In most vertebrates, the three B1
proteins are extensively coexpressed in the developing
central nervous system (CNS) and single gene mutants or
knockdowns show only mild embryonic CNS phenotypes
[23-25]. In zebrafish, where four group B1 genes are coex-
pressed in the CNS, only knockdown of all four elicits a
severe CNS phenotype, with single, double and even triple
mutant combinations showing substantial CNS develop-
ment [26]. On the one hand, the evolution of diversified
roles for B1 and B2 proteins illustrates neofunctionalisa-
tion, but on the other, the extensive coexpression of B1
proteins in the early CNS across the vertebrates represents
a prime example of conserved functional redundancy.
The Drosophila melanogaster genome encodes four group

B genes (SoxNeuro (SoxN), Dichaete (D), Sox21a, Sox21b)
[27]. While there is still some uncertainty regarding the
B1 and B2 subdivision in insects, with different views
on their grouping and evolution proposed [10,11,28,29],
at a functional level SoxB factors appear to be functionally
conserved across the metazoa, with mammalian SoxB1
proteins able to rescue Drosophila mutations [30,31].
While the functions of Sox21a and Sox21b are currently
unknown [27], SoxN and Dichaete have prominent roles
in CNS development and exhibit extensive functional re-
dundancy [32,33]. Both genes are dynamically expressed
in partially overlapping domains of the embryonic CNS
[34-38] and double mutants display far more severe CNS
phenotypes than either single mutant. Along with redun-
dant functions, each gene has unique expression domains
and, in some circumstances, the two TFs also appear to
have opposite functions in gene regulation [32,33,38,39].
The conservation in group B Sox function, combined with
the evidence that individual members can have both
unique and redundant functions, makes Drosophila an at-
tractive system for studying redundancy between paralo-
gous TFs.
SoxN and Dichaete are involved in many of the path-

ways controlling neural specification in Drosophila and
there are striking similarities to the roles played by ver-
tebrate group B Sox proteins that suggest an underlying
conservation [20]. For example, vertebrate B1 proteins
have critical roles in the maintenance of NSCs [40,41]
and both fly genes are required for the correct establish-
ment of neuroblasts (NBs), the fly equivalent of verte-
brate NSCs [33,39], with Dichaete known to be involved
in maintaining embryonic and larval NBs in a self-renewing
state [42]. At the molecular level, Dichaete interacts with
the POU protein Ventral veins lacking (Vvl) to regulate
gene expression in the CNS midline [43], a role reminis-
cent of the Sox2-Oct4 interaction required for stem
cell maintenance in mammals [44-46]. Similarly, a set of
homeodomain proteins are critical for patterning the
dorsoventral (DV) axis of the CNS in both vertebrates and
Drosophila, where they are coexpressed and interact with
SoxB proteins [20,33,38,47]. Despite these known func-
tional and molecular similarities, how widely group B Sox
functions are conserved between invertebrates and verte-
brates remains to be determined.
Genome-wide studies analysing global gene expression

changes or patterns of genomic binding can provide sig-
nificant insights into the function of TFs. Recently, a
genome-wide study in mouse neural cells highlighted ex-
tensive overlap between Sox2 and Sox3 binding, support-
ing the view that SoxB1 proteins are functionally redundant
[48]. In Drosophila, genome-wide analysis of Dichaete im-
plicates it in the regulation of hundreds of genes in the
CNS [39,49]. Here, we focus on a genomic analysis of
SoxN, identifying hundreds of putative direct SoxN target
genes. We then tackle the issues of redundancy and com-
pensation between SoxN and Dichaete by generating
binding profiles for both factors in wild-type and mutant
backgrounds. We identify instances of redundancy and
compensation at the molecular level, as well as other
changes in the binding profiles indicative of interdepend-
ency between the two factors. Our comparative analysis
provides the first molecular view of functional redundancy
and compensation between paralogous TFs at a genome-
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wide scale, and provides new insights into the functional
conservation of group B Sox genes in animals.

Results
Gene expression changes in SoxN mutants
We recently performed genomic analyses of the role of
Dichaete in the embryonic nervous system that identi-
fied hundreds of target genes with diverse roles in CNS
development [39,49]. Here, we determine the functions
of SoxN during embryonic development by profiling
temporal changes in the transcriptome of SoxN mutants
and by mapping the genome-wide binding of SoxN. To
capture expression changes and binding events rele-
vant to neural development, from the specification of
NBs through to the terminal differentiation of neurons
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genesis (Figure 1A).
We extracted RNA from SoxN hemizygous null mu-

tants and compared it with RNA from their heterozy-
gous siblings via biologically replicated hybridisations to
long oligonucleotide microarrays, across five develop-
mental time points. After normalisation and statistical
thresholding of these data, a total of 1,783 probes, corre-
sponding to 1,665 genes, were differentially expressed
across the time course (Table S1A-C in Additional file 1).
At each time point, a score of -1, 0 or 1 was attributed to
all genes showing a significant differential expression ac-
cording to the corrected P-value associated with a moder-
ated F-statistic and the direction of the expression change
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Table 1 SoxN binding datasets, intervals and genes

A FDR 1% FDR 5% FDR 10% FDR 25%

SoxNDam 6,518 11,133 14,223 19,186

SoxND1 5,830 11,988 16,786 27,272

SoxND2 5,599 7,904 9,650 13,424

SoxNPA179 Early 3,145 6,335 9,001 15,818

SoxNPA179 Late 1,556 3,502 5,348 10,437

B Intervals Genes

SoxNDam FDR 1% 6,518 3,557

SoxND1 FDR 1% 5,830 4,212

SoxND2 FDR 1% 5,599 4,073

SoxNPA179 Early FDR 5% 6,335 4,529

SoxNPA179 Late FDR 5% 3,502 2,652

(A) Number of intervals retrieved by the peak calling algorithm for the five
binding datasets at different FDRs. (B) Number of genes associated with each
high confidence binding dataset.
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at each time point. This led to the identification of genes
up- and downregulated in the mutants across the whole
time course, as well as a third set of genes more variably
expressed across the time course (Figure 1B). The enrich-
ment in Gene Ontology biological process (GO:BP) terms
in these three groups showed a marked difference (Figure
S1A in Additional file 2 and Table S1D-I in Additional
file 1). The 647 downregulated genes were the most
relevant from a neural development perspective, being
enriched in transcriptional regulation and specific terms
related to early and late CNS development. This indicates
that many of the genes directly or indirectly activated by
SoxN are involved in controlling gene expression during
neural development, in processes ranging from NB fate
commitment through to neuronal development and differ-
entiation. Conversely, while the list of 679 upregulated
genes contained a few examples of genes known to play a
role in the CNS, the list was enriched for very few nervous
system GO terms but overrepresented for stress response
terms, suggesting that at least some of the upregulated
genes may represent a reaction to development in the ab-
sence of transcriptional regulators such as SoxN and its
downstream targets. Finally, the set of variable genes,
most of which were downregulated until stage 9, showed
increased expression during stages 10 to 11 and returned
to basal levels at the latest stages analysed, showed little
significant GO enrichment, although we noticed several
genes with known roles in CNS development (for ex-
ample, beat-Ia, Fas3, frac, Kr-h1, lbl, Lim3). Overall, these
data suggest that SoxN mainly functions in the nervous
system as a transcriptional activator to promote the ex-
pression of both transcriptional regulators and effectors
involved at all stages of neural development but may also
act to repress some genes with CNS functions as well as
more generic biological functions.

A genome-wide view of SoxN binding
To map high confidence SoxN binding intervals across
the genome we employed two complementary approaches,
DNA adenine methyltransferase identification (DamID)
and chromatin immunoprecipitation (ChIP), using genome-
wide tiling arrays. We first used DamID to generate a ref-
erence profile of SoxN binding across stages 8 to 11 of
embryogenesis (SoxNDam). Next, to provide independent
validation of the DamID binding, we also produced a set
of four ChIP datasets, employing three different antisera.
Two of the antisera (SoxND1 and SoxND2) were used to
generate SoxN ChIP profiles across the same developmen-
tal stages as the DamID experiment. We also generated a
new affinity purified antiserum (SoxNPA179), showing
consistent SoxN expression by whole-mount immunohis-
tochemistry, and used this to create two further datasets
(SoxNPA179 Early, stages 7 to 10, and SoxNPA179 Late,
stages 11 to 13).
All of the DamID and ChIP data were similarly proc-
essed and bound regions were identified according to a
false discovery rate (FDR) model (Table 1A). Based on
the smoothed window score profiles and the number of
binding intervals detected, we focused on stringent FDR
1% data from the SoxNDam and the SoxND1 and SoxND2
ChIP experiments. In the case of the SoxNPA179 ChIP
datasets, we reasoned that the narrower time windows
employed could restrict the identification of comparable
binding intervals and we selected the FDR 5% datasets for
further analysis (Table 1B). We compared the binding in-
tervals and associated genes from DamID and ChIP assays
(Figure 1C; Figure S1B,C in Additional file 2) and found a
general concordance between the datasets. We then
combined the five datasets to generate a core set of SoxN
binding intervals that we used for further analysis. Since
we only selected binding intervals with supporting DamID
and ChIP evidence, this is a conservative approach and it
is likely that SoxN interacts with a larger fraction of the
genome than we report here.
These combined DamID and ChIP data identified 5,482

SoxN binding intervals associated with 3,251 genes, enriched
for GO:BP terms relating to general and nervous system
development, as well as RNA transcription and regulation
(Table S2A-C in Additional file 3). To support the reli-
ability of our analysis, we assessed the overlap between
our SoxN-bound genes and those identified in a previ-
ously published small-scale ChIP analysis of SoxN binding
[50]. Of 26 SoxN-bound genes identified in this study,
18 are present in our core binding interval set, a further
4 showed evidence of SoxN binding but below our thresh-
old and only 4 were negative in our assays. Looking at
the general properties of SoxN binding intervals, we
found they are often in close proximity to transcription
start sites (TSSs; Figure S2A in Additional file 4); however,
there does not seem to be preferential binding of SoxN
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upstream of the TSS, since the fraction of intervals map-
ping upstream (47.6%) or downstream (52.3%) is compar-
able. Interestingly, Sox2 binding in the vicinity of TSS has
also been reported [51]. We used the midpoint of each
binding interval to assess the genomic features associated
with SoxN binding and found a high proportion mapping
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for each set (Table S2D-I in Additional file 3). Remarkably,
The GO:BP enrichment computed for each of the result-
ing gene lists showed considerable differences (Figure S2B
in Additional file 4; Table S2J-L in Additional file 3). Inter-
genic hits were highly enriched in processes related to the
regulation of transcription and gene expression, while in-
tronic hits had a clear developmental signature containing
terms related to neurogenesis and morphogenesis. The
level of enrichment found for exonic hits was substantially
lower than those observed for the two other categories
and only featured generic GO:BP terms.
We examined the sequence composition of SoxN

binding intervals and noticed a marked increase in the
average GC content at the centre of the intervals com-
pared to the flanking 10 kb (Figure S2C in Additional
file 4). The GC content profile mirrored the average
phastCons score distribution calculated from multiple
genome alignments of D. melanogaster with 14 other in-
sect species (Figure S2D in Additional file 4), showing that
core SoxN binding intervals are well conserved. Sox do-
mains bind to a conserved DNA motif (5'-WTTGWW-3')
[52,53], and scanning the core binding intervals with pos-
itional weight matrices from different species revealed
high scoring matches to known Sox motifs (Figure S2E in
Additional file 4). Similarly, performing a de novo motif
discovery search identified a top-scoring motif closely
matching the Sox consensus (Figure 2B). Similar, but not
identical, motifs are reported for Dichaete [54,55]. We
mapped high scoring matches (P < 1E-4) to the new SoxN
motif across the genome [56] and identified over 43,000
matches, displayed as tracks in Figure 1C and subsequent
binding profile figures, that show a good correspondence
with the binding intervals we selected. The second and
third highest scoring motifs identified in the de novo
search are similar to homeobox binding sites. In particular,
we note that motif 2 is very similar to those reported for
Dr and Ind [54], while motif 3 closely resembles that of
Vnd [57], three proteins playing key roles in the specifica-
tion of neural identity across the DV axis. Thus, our
analysis reveals a core set of well-conserved SoxN bind-
ing intervals, enriched for a novel SoxN binding motif,
along with motifs associated with other TFs involved in
Drosophila CNS development.
We compared our core SoxN binding intervals with

binding intervals and enriched chromatin domains re-
ported by the Berkeley Drosophila Transcription Network
Project (BDTNP) [58,59] and the Model Organism
Encyclopedia of DNA Elements (modENCODE) [60,61].
We found highly significant (z-score > 200) overlaps
between binding intervals for SoxN and several TFs, in-
cluding a number known to be involved in aspects of em-
bryonic nervous system development (Hb, Kr, Dichaete,
Med, Sens and Da). Many of the genes for these TFs (Hb,
Kr, Dichaete and Med) contain SoxN binding intervals,
suggesting that SoxN may regulate as well as interact with
them during CNS development. As expected, the profile
of SoxN overlaps is very similar to those observed with
other TFs involved in CNS development (Hkb, Kr, Ubx
and Zfh1; Figure S3A in Additional file 5). We also identi-
fied significant overlaps between SoxN binding and some
histone-modifying proteins (particularly histone acetyl-
transferases and deacetylases) as well as domains enriched
for several histone modifications. The majority of the his-
tone modifications overlapping with SoxN binding are
associated with active chromatin. However, we also found
an association with histone marks normally associated
with transcriptional silencing or repression, suggesting
that SoxN may also act as a transcriptional repressor. Al-
ternatively, this may highlight bivalent areas containing
marks for both activation and repression that are poised
for transcription [62], or it may simply reflect the fact
that across the embryo some genes are repressed in par-
ticular cell lineages and active in others. As with the TF
overlap, the pattern observed with SoxN is very similar
to those observed with other nervous system regulators
(Figure S3B in Additional file 5).
To link SoxN binding with mapped cis-regulatory mod-

ules (CRMs) in the Drosophila genome, we compared the
core binding intervals with enhancer regions defined by
REDFly (1,864 CRMs from 500 genes) [63] and FlyLight
(7,113 CRMs from 970 genes) [64]. We found SoxN bind-
ing overlapping with 1,511 of 8,959 (17%) unique CRMs
defined by both databases, including 704 out of the 4,724
(15%) FlyLight enhancers reported to show CNS expres-
sion (Table 2). Taken together, these observations support
the general conclusion that SoxN acts as a transcriptional
activator, interacting with other TFs at known CRMs, to
control expression of a set of genes essential for CNS
development.

Identification of SoxN direct targets
To uncover a high confidence set of SoxN target genes, we
intersected the differential expression data (1,665 genes)
and core SoxN binding intervals (3,251), identifying 536
genes that we assigned as direct SoxN targets. We added a
further 7 genes that were not identified as SoxN bound
because of the computational approach we used to assign
intervals to genes, resulting in 543 targets (Figure 2C;
Table S3A in Additional file 6). Of these, 199 genes were
consistently downregulated, 213 upregulated and 131
variable in the microarray time course (Table S3B-D
in Additional file 6). We emphasise this is a conservative
estimate since our stringent selection criteria for binding
and differential expression are likely to exclude many bona
fide binding events and small, but functionally relevant,
changes in gene expression. In addition, loss of SoxN
binding at some genomic locations is likely to be rescued
by Dichaete activity (see below). Despite these caveats, we



Table 2 Overlaps between SoxNeuro core intervals and known cis-regulatory modules

CRMs CRMs overlapping with
SoxN core intervals

Genes Genes overlapping with
SoxN core intervals

Genes in SoxN core

REDfly 1,864 492 (26.4%) 500 135 (27.0%) 218 (43.6%)

FlyLight 7,113 1,023 (14.4%) 970 342 (35.3%) 364 (37.5%)

FlyLight CNS 4,724 704 (14.9%) 780 267 (34.2%) 307 (39.4%)

All (REDfly + FlyLight) 8,959 1,511 (16.9%) 1,302 418 (32.1%) 477 (36.6%)

Number and percentages of CRMs and associated genes from REDfly and/or FlyLight displaying overlap with SoxNeuro core intervals. 'FlyLight CNS' refers to
FlyLight CRMs reportedly driving expression in the CNS. 'All' refers to the total number of unique CRMs in the REDfly and FlyLight sets combined together.
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found that approximately a third of genes with significant
expression changes in SoxN mutant embryos were also
bound by SoxN, and that over 15% of SoxN-bound genes
showed expression changes at our significance threshold.
As expected, we found that the GO:BP enrichment was
similar to that of the two original datasets, with develop-
ment and transcription-related terms overrepresented
(Table S3E in Additional file 6). Enrichment of more spe-
cific terms associated with NB specification and fate com-
mitment, and a range of terms relating to the development
of glia, neurons and their projections was also found.
We examined the embryonic expression patterns of

the SoxN target genes using genome-wide expression
maps [65], and found that the average expression of the
target genes closely matches that of SoxN CNS expres-
sion, supporting the reliability of our dataset (Figure 2D).
Using the DroID database [66], we rendered a network
featuring all known high confidence Drosophila genetic
and protein-protein interactions, and superimposed our
list of SoxN targets onto this. All modules with more
than two nodes were selected to retrieve the most sig-
nificant known interactions between SoxN direct targets
(Figure 2E). The resulting subnetworks are highly inter-
connected and contain many proteins involved in spe-
cific aspects of nervous system development such as
asymmetric NB division (Insc, Numb, Spdo, Sna, Wor and
Esg), gliogenesis (Hkb, Gcm and Gcm2) and eye develop-
ment (Ey and Toy), as well as most of the TFs involved in
the temporal progression of NB identity (Cas, D, Kr, Nub
and Pdm2). We also identified proteins specifically in-
volved in the development of neuronal projections
(Ct, Daw, Nerfin-1 and Sema-1a), and a set of homeodomain-
containing proteins (Abd-B, Antp, Ara, Caup and Zfh2)
with various roles in the CNS.
Our analysis indicated that SoxN directly regulates a

large group of TFs and effectors with a range of diverse
functions in CNS development as illustrated with a selec-
tion of genes taken from a clustering analysis (Figure 3A).
To confirm this, 29 of the most functionally relevant
genes, including 19 from the network described above,
were selected for validation by immunohistochemistry or
in situ hybridization. These included proneural genes, TFs
controlling NB divisions and identity, as well as TFs in-
volved in aspects of glial or neuronal differentiation such
as axon fasciculation. Strikingly, the expression of all of
these was disrupted in SoxN mutants, in many cases very
severely (Figure 3B; Additional file 7). In particular, we fre-
quently observed reduced and/or altered expression pat-
terns in the most lateral domains of the neuroectoderm,
where Dichaete is not expressed and therefore unable to
functionally compensate for the loss of SoxN. We also ex-
amined the expression of a selection of these targets in
embryos ectopically expressing SoxN via a Kr-Gal4 driver
(Figure 3B). We found that Ac, Ase, Cas, Dichaete, Pros
and Wor expression was severely altered in SoxN misex-
pressing embryos, with increased and ectopic expression
in the lateral domains of the neuroectoderm, supporting
the view that our proposed targets are under direct SoxN
transcriptional control. Analysis of genes not expected to
be affected by loss or gain of SoxN (ind in the medial col-
umn of the neuroectoderm (Figure 3B), and sim in the
midline (Figure S4A in Additional file 7)) indicate that the
expression phenotypes we observe are not due to a gen-
eral disruption in the organisation of the CNS. Overall, we
have identified key roles for SoxN in all aspects of embry-
onic CNS development, and showed that it regulates sets
of TFs and effectors involved in processes ranging from
the earliest events in neural identity specification to the
terminal differentiation of neurons and glia.
To relate the activity of SoxN to its mammalian ortho-

logues, we compared the set of SoxN-bound genes with
those identified as Sox2 or Sox11 targets in mouse.
Bergsland and colleagues [48] identified 1,388 regions
bound by Sox2 in neural precursor cells that correspond to
1,100 genes. We mapped these genes to their Drosophila
orthologues and found that 443 are conserved in our set
of SoxN targets (Table S4A in Additional file 8). In other
words, more than 40% of Sox2-bound genes are also
bound by SoxN, but this core of conserved targets repre-
sents only approximately 13.5% of SoxN-bound genes,
suggesting that SoxN has more diversified functions than
Sox2 in the CNS. The list of shared targets is, as expected,
enriched for TFs and effectors with roles in CNS develop-
ment (Table S4B in Additional file 8), including the DV
patterning homeobox genes Dr and vnd, proneural genes,
bHLH genes in the Enhancer of split complex and many
other transcriptional regulators whose absence is known
to cause CNS phenotypes in both organisms. In the case
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of Sox11, a group C Sox protein involved in neural differ-
entiation, we found a much larger overlap. Over a third of
the SoxN bound genes (34%, 1,092 genes) have mouse
orthologues bound by Sox11 in neural precursors or dif-
ferentiating neural cells (Table S4C in Additional file 8),
including TFs and effectors with roles in both early neural
specification and neuron differentiation (Table S4D in
Additional file 8). We also identified 722 genes bound by
SoxN and Sox11 but not Sox2 (Table S4E in Additional
file 8), which are enriched for terms related to neuronal
projection development and morphogenesis (Table S4F in
Additional file 8). Together, these observations suggest
that the role of Sox proteins in neural development is
highly conserved and, importantly, that SoxN regulates a
set of target genes controlled by group B and group C Sox
proteins in vertebrates.

SoxN and Dichaete binding in Sox mutant embryos
In both flies and vertebrates, group B Sox proteins are
able to functionally compensate, with single gene mu-
tants showing comparatively weak phenotypes in regions
where related proteins are coexpressed. To gain a gen-
omic perspective into this functional redundancy, we
generated four additional DamID datasets, assaying the
binding of SoxNeuro and Dichaete in wild-type and null
mutant embryos lacking the other factor. We refer to
these datasets as SoxNDam (SoxN binding in wild type),
DDam (Dichaete binding in wild type), D-SoxNDam
(SoxN binding in Dichaete mutants) and SoxN-DDam
(Dichaete binding in SoxN mutants). We used null alleles
of both SoxN and Dichaete for the analysis. SoxNU6-35 has
a premature stop codon before the DNA binding domain
and is a protein null [31,32]. The Dichaeter72 allele has not
been molecularly defined but, genetically, it behaves as an
amorph in all phenotypic assays [30]. The experiments
were performed with hand-picked embryos selected be-
tween stages 12 and 17 of embryogenesis to allow suffi-
cient time for the expression of the yellow fluorescent
protein (YFP) marker used to identify homozygous mu-
tants. It should be noted that these datasets differ from
the SoxN data described above since profiles were gener-
ated from non-overlapping stages of development and uti-
lised much smaller sample sizes. While the binding we
map in this comparative experiment is not directly com-
parable with our defined SoxN core dataset or with our
previous work defining Dichaete binding, we note that
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after stage 11 there is still substantial expression of both
proteins in the CNS, particularly in the brain and in late
segregating trunk neuroblasts, GMCs and their progeny
[33,35-37,50]. In addition, post-mitotic cells, such as neu-
rons and glia, expressing the Sox-Dam fusions prior to
stage 12 will also be identified in this analysis due to per-
durance of the adenine methylation mark.
Comparing genome-wide profiles by simply overlap-

ping the genomic coordinates of peaks called individu-
ally for each dataset is a rather coarse approach and can
potentially underestimate binding similarity [67]. In sim-
ple pairwise comparisons, peaks with similar height and
area may be called in one sample but not the other be-
cause of the fixed thresholds applied to each dataset by
peak calling algorithms, thus limiting meaningful com-
parison of binding profiles in different conditions. To
overcome this issue, we developed a method to directly
compare the normalised ratios of each microarray probe
and compute similar and dissimilar genomic regions.
We named this tool SimBindProfiles [68] and used it to
perform pairwise comparisons between the four datasets
and uncover similarly or differentially bound regions
(Figure 4A-C). While SimBindProfiles identifies genomic
regions that are similar or dissimilar between the profiles
being compared, its output is not directly comparable
with the binding intervals identified by threshold-based
peak calling algorithms. Table 3 summarises the num-
bers of genomic regions and associated genes obtained
with the analysis; all of the corresponding genomic re-
gions, gene sets and corresponding GO:BP enrichments
are provided in Additional file 9.
The genome-wide binding profiles of SoxN and

Dichaete in wild-type embryos showed extensive overlap
(2,893 regions, 1,890 genes), indicating that the proteins
often bind at the same locations (Figure 4D). Consistent
with their biological roles, the set of common bound
genes were enriched for developmental, CNS and tran-
scriptional regulation GO:BP terms (Additional file 10).
The set includes major regulators of early CNS specifica-
tion, including the proneural genes of the achaete-scute
complex, the DV patterning TFs encoded by Dr and
vnd, and the NB temporal identity genes (svp, hb, kr and
pdm2). Altogether, we found that both Sox proteins
commonly bound to over a hundred genes encoding TFs
with roles in a range of CNS processes. We also identi-
fied a large number of genomic regions uniquely bound
by either SoxN (Figure 4E; 3,723 regions, 1,649 genes) or
Dichaete (Figure 4F; 3,506 regions, 1,753 genes), indicat-
ing that their binding pattern is not fully redundant and
that they exert at least some of their functions independ-
ently of one another. While the gene set uniquely bound
by Dichaete was also enriched for GO:BP terms relating to
development, CNS functions and transcription, the SoxN
unique gene set showed comparatively weak enrichments,
although it does contain a set of 95 genes annotated
with neuronal differentiation functions (Additional file 10).
Thus, Dichaete and SoxN share a common set of targets in-
volved in early and late CNS development. A set of genes
with similar functions are uniquely regulated by Dichaete,
whereas SoxN unique targets appear to be downstream ef-
fectors of basic cellular processes, perhaps indicative of a
role in terminal differentiation.
To directly address functional redundancy, we exam-

ined the binding profiles of SoxN and Dichaete in em-
bryos homozygous for null mutations in the other protein
(Figure 4B,C) and identified five different types of event: 1)
no change-the binding of each protein was not affected by
the loss of the other; 2) compensation - one Sox protein
compensated for the loss of the other by binding at loca-
tions normally occupied by the latter (Figure 5A); 3) in-
creased binding-in the absence of one Sox protein, the
other showed an increase in binding at its normally occu-
pied intervals (Figure 5B); 4) de novo binding-in the ab-
sence of one Sox protein, the other bound at new regions
not normally bound in the wild type (Figure 5C); 5) loss of
binding - lack of one Sox protein resulted in loss of bind-
ing of the other (Figure 5D).
While at a global level SoxN binding was broadly simi-

lar in wild type and Dichaete mutants (3,720 regions), a
detailed examination identified a variety of changes. In
794 instances SoxN compensated for the loss of Dichaete
and increased binding events were identified at 245 gen-
omic locations. SoxN was also often found to bind at new,
previously unbound, locations (1,893 instances), but the
scenario with the highest impact was loss or strong reduc-
tion of binding (2,497 regions), suggesting that Dichaete is
often required for the recruitment or retention of SoxN. A
considerable proportion (30%, 536 genes) of the 1,753
genes uniquely bound by Dichaete showed evidence of
compensation by SoxN at the genic level (considering
both compensation and de novo but not increased binding
events) and these were primarily genes annotated with
CNS functions and transcriptional regulation. Interest-
ingly, the majority (58%, 896 genes) of the 1,539 genes that
showed a loss of SoxN binding were genes uniquely bound
by SoxN. The gene sets for all types of event were associ-
ated with moderate to high overrepresentation of GO:BP
terms related to CNS development and transcriptional
regulation (Figure S6A in Additional file 11).
In contrast, we found that Dichaete binding was less

affected by the loss of SoxN. We observed no change in
Dichaete binding in SoxN mutant embryos at 5,175 re-
gions, while the other scenarios were observed at much
lower frequencies. Dichaete was found to compensate
for loss of SoxN at only 276 locations and showed in-
creased binding at 102. De novo and loss of binding (658
and 943 instances, respectively) were also similarly re-
duced. All the associated gene sets were somewhat less
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Figure 4 SoxN and Dichaete differential binding. (A-C) Differential binding in pairwise comparisons of the SoxNDam, DDam, D-SoxNDam and
SoxN-DDam datasets as normalised probe intensities (log2 fold change). Light grey areas are probes bound in both datasets, black regions are
not bound in either. (A) SoxNDam (dark blue) and DDam (dark green); (B) SoxNDam (dark blue) and D-SoxNDam (light blue); (C) DDam (dark green)
and SoxN-DDam (light green). (D-F) Representative SoxN and Dichaete binding profiles in wild-type embryos (dark blue and dark green, respectively).
Matches to the SoxN binding motif are displayed as thin bars, FlyLight and REDfly enhancers are displayed in light grey. (D) SoxN and Dichaete
common binding across the achaete-scute complex. (E) SoxN unique binding in proximity of robo3. (F) Dichaete unique binding in the
gus and Atf6 region.
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enriched for CNS development and gene regulation than
their SoxN counterparts (Figure S6B in Additional file 11).
Of the 1,649 genes uniquely bound by SoxN, only 14%
(232 genes) showed evidence of Dichaete compensation
(considering compensation and de novo binding events)
and these were only weakly enriched for generic GO:BP
terms. Finally, we examined the overlap with FlyLight CNS
enhancers [64] and found that the number of enhancers
bound by both SoxN and Dichaete (621 enhancers, corre-
sponding to 237 genes; Table S6A in Additional file 12)
was comparable to the number of enhancers hit by SoxN
alone (623 enhancers, 238 genes; Table S6B in Additional
file 12) or by Dichaete alone (704 enhancers, 258 genes;
Table S6C in Additional file 12), reinforcing the idea that
the two factors work independently as well as in concert to
direct gene expression in the CNS.
Our analysis of the genome-wide binding comparison

of paralogous TFs under mutant conditions strongly
supports the hypothesis that group B Sox proteins have
both independent and shared functions under normal
conditions but can functionally compensate by occupying
vacant binding sites when one of the proteins is absent.
Importantly, our observations indicate that a considerable
fraction of the redundant CNS functions is centred on a
Table 3 SoxN and D binding in wild-type, D and SoxN
mutant embryos

Binding Intervals Genes

SoxNeuro Dichaete common 2,893 1,890

SoxNeuro unique 3,723 1,649

Dichaete unique 3,506 1,753

SoxNeuro no change 3,720 2,063

SoxNeuro compensatory 794 570

SoxNeuro increased 245 195

SoxNeuro de novo 1,893 1,113

SoxNeuro loss 2,497 1,593

Dichaete no change 5,175 2,868

Dichaete compensatory 276 226

Dichaete increased 102 87

Dichaete de novo 658 522

Dichaete loss 943 705

Numbers of intervals retrieved by SimBindProfiles and associated genes for
the SoxNDam, DDam, D-SoxNDam and SoxN-DDam datasets.
core of TFs involved in aspects of neural specification and
differentiation, suggesting that both Sox proteins have
been maintained in the CNS to provide a degree of ro-
bustness to the regulatory networks driving early neuro-
genesis. Finally, the fact that SoxN targets in Drosophila
and Sox2 targets in mouse neural cells are well conserved
emphasises that SoxB gene functions are essential in the
regulatory networks underpinning the most basic aspects
of neural development across metazoa.

Discussion
In this study we performed a genome-wide analysis of
the role of the group B Sox gene SoxN during Drosophila
embryonic development and generated a genomic per-
spective on the functional redundancy of Sox TFs. We
identified a high confidence list of SoxN target genes that
places SoxN at the heart of the regulatory networks driv-
ing neural specification and differentiation. We show an
extensive overlap between SoxN and Dichaete genomic
binding, but also identify binding indicative of unique
functions for each TF during CNS development. In
addition, we uncovered unexpected complexity in the re-
lationship between SoxN and Dichaete, with evidence for
compensation, dependency and other effects that can po-
tentially explain why the coexpression of group B paralogs
has been maintained throughout evolution. The fact that
many SoxN targets have orthologs that are targets of Sox2
in mouse NSCs suggests that the roles of group B proteins
in the CNS are well conserved. The underlying regulatory
networks driving early myogenesis [69], as well as heart
[70] and eye development [71], are known to be con-
served, and it is likely that more of the core circuitry
underpinning basic developmental processes has been
maintained throughout animal evolution [72]. Together
with the evidence that mammalian group B Sox proteins
are able to rescue SoxN and Dichaete mutant phenotypes
[30,31], our data suggest an underlying conservation in
the regulatory networks driving early aspects of CNS
development across higher metazoans. In addition, the
high overlap between SoxNeuro and Sox11 targets suggest
SoxNeuro is also involved in late aspects of neural devel-
opment and differentiation.
As with many other developmentally important TFs, we

found that SoxN binds extensively across the genome, and
a significant proportion of genes in the genome are
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Figure 5 Profiles of SoxN and Dichaete binding in Dichaete and SoxN mutant embryos. Representative SoxN binding profile in Dichaete
mutant embryos (light blue) and Dichaete binding profile in SoxN mutant embryos (light green). Matches to the SoxN binding motif are
displayed as thin bars, FlyLight and REDfly enhancers are displayed in light grey. Events of (A) compensation, (B) increased binding, (C) de novo
binding and (D) loss of binding are highlighted as red shaded boxes.
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affected by its loss. However, many of the genes misregu-
lated in SoxN mutants may not be directly controlled by
SoxN, but by regulators whose expression is dependent
upon SoxN. Consistent with this, we found that many TFs
involved in different aspects of neurogenesis and gliogen-
esis are downregulated in SoxN mutants, indicating that a
prominent function of SoxN is to promote the expression
of genes required for neural development. Some of the
genes bound by SoxN may not show significant changes
in their expression levels due to functional compensation
by Dichaete and thus the network of Sox-related nervous
system genes is likely to be even larger. In support of this
view, we identified considerable overlap between SoxN
and Dichaete binding across the genome, particularly at a
number of genes with transcriptional roles in early aspects
of neural development, as well as direct evidence of sub-
stantial Dichaete compensatory binding in SoxN mutants.
Focusing on what we believe to be unambiguous SoxN

targets, genes that are both bound by SoxN and change
expression in the mutant, we identified a set of genes in-
volved in multiple aspects of embryonic development and
morphogenesis. As expected, many of the targets have
identified roles in CNS development and form a highly in-
terconnected network, emphasising that SoxN regulates a
range of processes, characterized by specific sets of target
genes. We can broadly divide SoxN functions into two
main categories: early in nervous system development,
SoxN controls a battery of genes required for the correct
specification of NBs, while at later stages it is involved in
regulating the differentiation of both neurons and glia into
mature, terminally differentiated cells. The involvement of
SoxN in the specific regulation of terminal differentiation
is supported by a previously reported analysis [50] that
showed both SoxN binding at a set of genes involved in
axonal pattering and genetic evidence that SoxN function
is directly required for correct axonal pattering.
In particular, early in development SoxN promotes the

expression of proneural genes ac and ase while repres-
sing the expression of hairy, a known proneural gene re-
pressor [73], thereby driving the acquisition of the neural
fate. Of note, SoxN and Dichaete display opposite behav-
iours during this initial stage of neural specification,
since both ac and ase are partially repressed by Dichaete
[32,38]. Dichaete and SoxN interact with the homeodo-
main proteins Ind and Vnd, which specify neural identity
across the DV axis [38,74]. We identified extensive SoxN
binding at FlyLight enhancers associated with Vnd, as well
as Dr, Egfr and Dichaete, other components of this
developmental pathway, and observe changes in Dichaete
and Dr expression in SoxN mutants. Since Dichaete also
displays widespread binding at these DV patterning genes
[38,55], it is likely that Dichaete and SoxN act redundantly
in this context. The loss of Dr expression in SoxN mutants
is consistent with this idea, since Dr is restricted to the lat-
eral column of the neuroectoderm where Dichaete is not
expressed. In addition, the de novo motif discovery search
we performed with SoxN binding intervals recovered mo-
tifs resembling those reported for Ind/Dr and Vnd [54,57].
We identified over 200 locations in the fly genome
containing combinations of Sox and DV patterning TF
binding motifs, including regions overlapping 68 FlyLight
neural enhancers. In particular, we found co-occurrence
of SoxN and Ind/Dr motifs at 43 FlyLight enhancers asso-
ciated with early neural TF genes (Dichaete, Dr, svp, pros
and gcm). Together, these data strengthen the view that
SoxN, Dichaete and the DV patterning homeodomain TFs
interact at regulatory elements in the fly genome to drive
establishment of neural fate [33,38]. Since a set of homeo-
domain proteins also cross-regulate to pattern the verte-
brate neural tube and are coexpressed with group B Sox
proteins [75], our observations support the view that the
DV neural pattering regulatory network has been con-
served across evolution [76] and indicate a crucial role for
group B Sox proteins in this key aspect of early CNS
specification.
Our analysis indicates that the role of SoxN in CNS

development extends well beyond early specification
events. We identified all the known components of the
temporal cascade of TFs regulating neural identity as
SoxN targets (hb, Kr, nub, pdm2, cas and svp). We also
found highly significant overlaps between SoxN, Dichaete,
Hb and Kr binding across the genome, suggesting the pos-
sibility of a regulatory feedback network where SoxN pro-
motes the expression of temporal identity factors and then
binds with them to orchestrate the differentiation of NBs.
Dichaete also shows extensive binding at the genes in the
temporal cascade [49] and, consistent with functional
redundancy, we found Cas, Hb, Kr, Nub and Pdm2 ex-
pression primarily affected in the lateral column of the
neuroectoderm in SoxN mutants, where Dichaete is not
expressed. As we note above, Dichaete has been shown to
function in this regulatory cascade [42,77], indicating that
group B Sox proteins generally participate in the regula-
tory networks generating neuronal diversity. We also
identified and validated targets implicating SoxN in the
regulation of genes controlling self-renewal and asymmetric
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divisions of NBs and their progeny, ganglion mother cells
(insc, numb, spdo, sna, wor and esg [78-84]), and have previ-
ously identified roles for Dichaete in these pathways [49].
We note that in vertebrates, B1 proteins are involved in the
control of NSC self-renewal and must be downregu-
lated to allow neural differentiation [20-22], further
emphasising similarities between fly and vertebrate SoxB
functions.
Finally, we identified a substantial number of SoxN

targets with known functions in the development and
morphogenesis of neuronal axons and dendrites, includ-
ing ct [85], daw [86,87], Dbx [88], kn [85], lola [89], mid
[90], nerfin-1 [91] and Sema-1a [92], thus implicating
SoxN in the direct regulation of genes involved in ter-
minal neural differentiation. Our observations support a
previous analysis that demonstrated SoxN is expressed
in a subset of postmitotic neurons and glia, binds at
genes involved in late aspects of neural differentiation
and shows axonal phenotypes when mis-expressed or in
genetic interactions with its targets (lola and beat1a)
[50]. In addition, in several cases (daw, Dbx, lola, mid,
nerfin-1 and Sema-1a), mutant phenotypes have been
described for SoxN targets that show striking similarities
to the lateral axonal phenotypes of SoxN mutants [32].
Similarly, we found that SoxN regulates the expression
of gcm and gcm2, the two TFs responsible for the speci-
fication and differentiation of all Drosophila glial cells
[93-95]. We also found that SoxN activates hkb, which
has been reported to physically interact with Gcm, trigger-
ing its autoregulation [96]. Together with the glioblast
defects reported in SoxN mutants [32], these observations
strongly link SoxN to gliogenesis.
Our findings highlight a major difference in the roles

group B Sox proteins play in fly and vertebrate CNS de-
velopment. In vertebrates, the B group has evolved two
subclasses, each with specialised and restricted func-
tions: SoxB1 proteins are required for the maintenance
of neural precursors, whereas SoxB2 proteins counteract
their action, promoting cell cycle exit and neural fate
commitment. Differentiation into mature neural cells is
promoted by other groups of Sox TFs, primarily groups C
(Sox4, Sox11 and Sox12) and E (Sox8, Sox9 and Sox10)
[20,97]. In contrast, our data suggest a simpler system in
insects, where SoxN and Dichaete are the only Sox genes
contributing to the majority of the processes in embryonic
neurogenesis, and are reused in different contexts during
CNS development. Of the remaining six Sox genes in the
fly genome, only the group B gene Sox21a and the group
D gene Sox102F show detectable expression in the embry-
onic CNS, but in both cases expression is relatively late in
development and restricted to a handful of specific cells
[27]. Thus, in Drosophila, all aspects of CNS development,
from neural specification through to terminal differenti-
ation, are under the control of group B Sox proteins. The
view that SoxB proteins have evolved different roles in in-
sects and vertebrates while maintaining their core func-
tionality is supported by the comparison of gene sets
bound by SoxN in Drosophila and Sox2 or Sox11 in
mouse, which indicates more diversified functions for
SoxN in the CNS. Core regulatory genes involved in
neural specification and NSC biology are targets of SoxN
and, while a set of later target genes involved in neural dif-
ferentiation are shared by SoxN and Sox11. We also iden-
tify a number of intriguing similarities between the roles
of Sox proteins in flies and vertebrates during neural de-
velopment. The contrast between the roles of Dichaete
and SoxN in the regulation of proneural genes, with SoxN
activating and Dichaete repressing, is reminiscent of the
opposing functions shown by vertebrate SoxB1 and SoxB2
subgroups in NSC differentiation [22], and may point to
the origin of the group B neofunctionalisation. Similarly,
the two SoxB TFs display opposite activity in the regula-
tion of pros, with SoxN acting as a transcriptional activa-
tor (this study), and Dichaete as a repressor [98]. Aside
from these two specific examples, it appears that both
SoxN and Dichaete mainly act as partially redundant acti-
vators with overlapping roles in early neural specification.
The mechanisms underlying why evolution has main-

tained substantial overlapping expression of closely re-
lated group B Sox proteins has so far remained elusive.
While the binding patterns of SoxN and Dichaete in wild-
type embryos look broadly similar, supporting a simple
model where the two factors act redundantly, a large
number of genomic locations display unique SoxN or
Dichaete binding. SoxN unique genes appear to be associ-
ated with general cellular processes, possibly reflecting a
role in terminal differentiation. In the case of Dichaete, we
identified a set of uniquely bound TF genes likely to be
linked to its roles in segmentation, early midline devel-
opment and hindgut morphogenesis [34,35]. In line
with this, we have also found the expression of many
more genes affected in Dichaete than in SoxN mutant
embryos [49]. Since genes showing substantial binding
overlap are associated with regulatory networks driving
early neural specification, we suggest coexpression has
been maintained to provide a degree of robustness to
these critical pathways that establish the foundations for
early nervous system development. On the other hand,
the different binding profiles of Drosophila group B para-
logs we report here can be interpreted as examples of
neofunctionalization.
The analysis of SoxN and Dichaete binding in their re-

spective mutants provided molecular evidence to support
the idea that each protein can functionally compensate for
the loss of the other. Of interest, we found that SoxN was
more able to substitute for Dichaete than vice versa. In
some instances, we could explain a lack of compensation
by the fact that each of the proteins has unique expression
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domains; however, since the DamID profiling method we
employed to map binding events in the mutants relies on
ubiquitous low level expression, lack of coexpression may
not be a sufficient explanation. It is possible that regions
that do not show compensatory binding reflect SoxN- or
Dichaete-specific interactions with cofactors that are not
shared between the paralogs, pointing to another level of
neofunctionalization. In this respect, we note that SoxN
has a role in cuticle patterning that is only partially
compensated by Dichaete [99,100], and some of the
genes uniquely bound by SoxN have annotated roles in
cuticle development. We also have preliminary evidence
from rescue experiments that some SoxN neural pheno-
types cannot be compensated by Dichaete and that early
Dichaete midline functions cannot be fully compensated
by SoxN [31].
We uncovered a variety of other binding profile changes

indicative of more complex interactions between Drosophila
group B proteins. We were surprised to find that loss of
binding was the most frequently observed event in both
mutant conditions, suggesting a high degree of inter-
dependency between the two factors, a novel aspect of
Drosophila SoxB gene biology. At many locations, Dichaete
binding appears to be required for the recruitment or the
retention of SoxN, and the opposite situation was also ob-
served, though to a lesser extent. It is possible that these
observations indicate obligate heterodimerisation at some
sites in the genome as occurs with vertebrate group D and
E Sox proteins [101]. Alternatively, it may reflect a re-
quirement for interactions with specific cofactors or for
the establishment of a suitable chromatin environment by
one Sox protein that is necessary for the binding of the
other Sox protein. Given the DNA bending properties of
the HMG box DNA binding domain [102], it is possible
that some of the loss of binding events we observe in mu-
tant embryos are a reflection of Sox-specific chromatin
modifications. We also observed increased and de novo
binding events in mutant embryos, and in both cases we
hypothesise that, in mutant conditions, the remaining
Sox protein cannot bind to the vacated locations, but in-
stead occupies nearby open chromatin or increases bind-
ing at its normal location to provide sufficient target gene
activation.

Conclusions
Taken together, our studies elucidate the processes coor-
dinated by SoxN during embryogenesis at a genome-
wide scale and provide evidence for the conservation of
SoxB functions in the core regulatory networks under-
pinning CNS development. We show that, unlike mamma-
lian SoxB1 proteins, SoxN activity is involved in all aspects
of neural development, from the initial specification of
NBs to their terminal differentiation into mature neural
cells. This suggests that Drosophila group B proteins may
represent baseline metazoan Sox functions that have been
elaborated and diversified as the family expanded in
vertebrates. Finally, we provide a detailed genomic per-
spective on functional redundancy between coexpressed
paralogous TFs. We describe genomic regions associated
with both redundant and independent functions, uncover
evidence for extensive interdependency between the two
paralogs and identify key regulatory genes subject to func-
tional compensation, suggesting that redundancy sup-
ports the robustness of developmental gene regulatory
networks.

Materials and methods
Fly husbandry and embryo collection
Fly stocks were obtained from the Cambridge Genetics
Department Stock Collection or from the Bloomington
Stock Center. Oregon-R was used as wild type. Fly stocks
were maintained at 18°C or 25°C on standard cornmeal
medium and dried yeast. Embryo collections were per-
formed at 25°C in collection cages on grape agar juice
plates supplemented with fresh yeast paste. For all experi-
ments, embryos were collected in Nytex baskets, dechorio-
nated for 5 minutes in 50% bleach and washed thoroughly
with water.

Gene expression experiments
Embryos from SoxNU6-35/CyO, twi-Gal4 UAS-EGFP X
Df(2 L)ED647/CyO, twi-Gal4 UAS-EGFP crosses were
used to generate gene expression profiles. For stage 10
and older, approximately 200 SoxN-/- and SoxN+/- embryos
per replicate were selected under a fluorescence dis-
secting microscope on the basis of green fluorescent
protein (GFP) expression. For earlier stages of devel-
opment, a PCR-based method for genotyping single em-
bryos was employed with 12 mutant and control embryos
used for each replicate [103]. Microarray hybridization
using four biological replicates was performed using our
standard protocols [104], with full details provided in the
Additional file 13 materials and methods. Scanned images
were imported into Dapple [105] for spot finding and
quantification, raw data were normalised with the variance
stabilization method [106] and statistical analysis of differ-
ential expression was carried out using the limma Biocon-
ductor package [107].

Genome-wide binding assays
Generation of the SoxNDam transgenic line is described
in the Additional file 13 materials and methods, and the
DichaeteDam line was previously described [49]. Embryos
from Dam, SoxNDam, DDam, SoxNU6-35/CyO, Dfd-YFP;
DDam and SoxNDam; Dr72/TM6B, Dfd-YFP stocks were
collected and processed for hybridisation to Nimblegen
tiling arrays (GEO platform 15641) using minor modifica-
tions to the protocol of Vogel and colleagues [108]. For



Ferrero et al. Genome Biology 2014, 15:R74 Page 16 of 19
http://genomebiology.com/2014/15/5/R74
mapping in the wild type we used approximately 2.5 mg
dry weight of embryos per replicate; in the case of binding
in mutants, approximately 200 YFP-negative embryos at
the appropriate stages were selected under a fluorescence
dissecting microscope. ChIP followed by hybridisation
to Nimblegen tiling arrays was performed with minor
modifications to the method described by Sandmann
and colleagues [109], as detailed in the Additional file
13 materials and methods. Three biological replicates
were performed for all DamID and ChIP experiments.
Tiling arrays were quantified using Nimblescan and
quantile normalisation was applied to the raw data before
using the Ringo Bioconductor package [110] for peak call-
ing at different FDRs. Window score (SGR) and binding
interval (BED) files were visualised with the Integrated
Genome Browser [111]. The comparative analysis of SoxN
and Dichaete binding in wild-type and mutant embryos
was performed after all datasets were quantile normalised
together. The resulting intensity ratios were used to
perform pairwise and three-way comparisons between
the datasets with SimBindProfiles [68] as detailed in
the Additional file 13 materials and methods.

Other analysis
The BEDTools suite [112] was used for operations with
BED files. Assignment of intervals to genes was per-
formed using a custom script identifying the closest TSS
in a 10 kb window. If no TSSs were found, the interval
was assigned to the closest gene boundary in the same
10 kb window or left otherwise unassigned. GO:BP term
enrichment analyses were performed using the BiNGO
Cytoscape plugin [113] and corrected for multiple hy-
pothesis testing with the Benjamini-Hochberg method.
The HOMER software suite [114] was utilised for both
de novo motif discovery and to find enrichment of previ-
ously known motifs. Mapping de novo motif matches
to the Drosophila genome was done using FIMO at a
P-value cutoff of 1E-4 [56]. Embryonic binding datasets
from the BDTNP [58,59] and modENCODE [60,61] pro-
jects were used to identify TF or chromatin feature overlaps
using a subsampling-based approach [60,115]. FlyExpress
[65] was used for the production of genome-wide expres-
sion maps. For network analysis, the whole DroID data-
base [66], with the exception of TF-gene, microRNA-gene
and predicted protein-protein interactions was used. The
resulted network was imported into Cytoscape [116] and
used for further analysis.

Immunohistochemistry and in situ hybridisation
Embryos from SoxNU6-35/CyO, twi-Gal4 UAS-EGFP X Df
(2 L)ED647/CyO and twi-Gal4 UAS-EGFP or Kr-Gal4/
CyO X UAS-SoxN were collected and processed for anti-
body staining essentially as described by Patel et al. [117]
or for in situ hybridisation as described by Tautz and
Pfeifle [118]. Full details, including the primary antibodies
used and their dilutions, are provided in the Additional
file 13 materials and methods.

Data access
All gene expression and ChIP microarray data described
in this paper are available from NCBI Gene Expression
Omnibus (GEO) in the Superseries accession [GEO:
GSE47338].
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