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As one of the oldest known human diseases, leprosy or Hansen’s disease
remains a public health concern around the world with over 200 000 new
cases in 2018. Most human leprosy cases are caused by Mycobacterium
leprae, but a small number of cases are now known to be caused by
Mycobacterium lepromatosis, a sister taxon of M. leprae. The global pattern of
genomic variation in M. leprae is not well defined. Particularly, in the Pacific
Islands, the origins of leprosy are disputed. Historically, it has been argued
that leprosy arrived on the islands during nineteenth century colonialism,
but some oral traditions and palaeopathological evidence suggest an older
introduction. To address this, as well as investigate patterns of pathogen
exchange across the Pacific Islands, we extracted DNA from 39 formalin-
fixed paraffin-embedded biopsy blocks dating to 1992–2016. Using whole-
genome enrichment and next-generation sequencing, we produced nine M.
leprae genomes dating to 1998–2015 and ranging from 4-63× depth of coverage.
Phylogenetic analyses indicate that these strains belong to basal lineages
within the M. leprae phylogeny, specifically falling in branches 0 and 5. The
phylogeographical patterning and evolutionary dating analysis of these
strains support a pre-modern introduction ofM. leprae into the Pacific Islands.

This article is part of the theme issue ‘Insights into health and disease
from ancient biomolecules’.
1. Introduction
Leprosy, or Hansen’s disease, is a chronic and progressive infectious disease
caused by the obligate intracellular pathogen Mycobacterium leprae and the more
recently discoveredMycobacterium lepromatosis [1,2]. TheM. leprae genome is com-
pact and demonstrates a low level of diversity, with less than 300 single nucleotide
polymorphisms (SNPs) segregating geographically disparate strains [3–5]. In
initial comparative genetic studies, Monot et al. [6] compared the reference TN
(India) genome sequence to 142 kb of sequence from a Brazilian strain (Br4923)
and found five SNPs; of these, three SNPs were used to identify and define M.
leprae types (SNP types 1–4) in a broader range of strains. Subsequent comparative
analyses resulted in the identification of additional SNP subtypes (A-P) [7] that
have been used for broader genotyping studies (e.g. [8–10]).

More recently, phylogenies generated from genome data were used to define
six branches (denoted by 0–5) [3,4,11]. As with the SNP subtypes, the branches
have geographical associations, with branch 0 found mainly in Eastern Asia,
branch 1 found mainly in Southern and Eastern Asia, the paraphyletic
branch 2 found in the Near East and South Asia, branch 3 primarily found in
North and Latin America, branch 4 found mainly in West Africa and South
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America, and branch 5 found in the Pacific Islands [3,7].
Monot et al. [7] suggest that the geographical patterning of
strains reflects human migration patterns and trade along
early and more modern routes, including the Silk Road.
Despite close geographical associations of branches, new
genomic data and recent work adding to the understanding
of ancient genetic diversity [3,11], the origin and dispersal
of M. leprae is still not well understood.

Leprosy was endemic in many Western Pacific and Pacific
Island countries prior to 2010 [12,13]. Today, the success of
public health campaigns and effectiveness of multidrug
therapy are evident; now most of the Pacific Islands have
prevalence rates below the elimination threshold [14,15].
The antiquity of the disease in the region, however, is not
well documented by historical or palaeopathological sources.
While cases caused by M. lepromatosis have not been ident-
ified in the Pacific Islands, two previously published whole
M. leprae genomes from the region belong to the deepest
lineages 0 and 5 [4], and genotyping studies have identified
the presence of all M. leprae SNP types in New Caledonia
[6,9]. Unfortunately, genomic data are limited for strains pre-
sent in the region, precluding a clear understanding of the
diversity and evolutionary history of this pathogen.
 582
2. Antiquity of Mycobacterium leprae globally
and in the Pacific Islands

The oldest probable skeletal evidence of leprosy comes from
Balathal, India, dating to 2000 BCE [16], although there is a
skeleton from Europe with possible rhinomaxillary signs of
leprosy dating to 1500 years earlier [17]. The oldest written
record of leprosy is described in the Suchruta samhita, an
Indian text from around 600 BCE (described in [18,19]).
Later evidence of leprosy in Southeast Asia comes from a
skeleton in Thailand, dating to 200 BCE–300 CE [20]. Skeletal
and biomolecular evidence of leprosy from around the first to
third century CE has also been identified in Central Asia
[21,22]. Lack of molecular evidence from these early skeletal
cases, however, makes confirmation of the disease difficult.

More recent discussion of M. leprae population history has
focused on entry into regions, specifically Western Eurasia,
rather than global patterning. Donoghue et al. [23] argue that
westwardmigration of groups fromCentralAsia in the firstmil-
lennium may have introduced different M. leprae strains to
Europe, whereas Schuenemann et al. [3] offer two models for
the high level of genetic diversity in medieval Europe. Either
M. leprae originated in Western Eurasia or diverse strains of
M. leprae with different geographical origins were introduced
to Europe prior to the Medieval period [3]. Recent efforts to
fill in thehistoryofM. lepraehave introducedmanymore ancient
lineages to the family tree, however these ancient isolates are
largely limited to Western Europe and Eurasia [3,11].

Despite the considerable number of palaeopathological
investigations in the Pacific Islands, particularly on the
United States territory of Guam (see [24]), there is little pub-
lished evidence of premodern skeletal leprosy. This could be
owing to its mis-diagnosis as treponemal disease [25], com-
pounded by the poor preservation of hand and foot
bones—important for identifying skeletal leprosy—in tropi-
cal environments. The oldest convincing skeletal evidence
of leprosy from the Pacific Islands comes from the Mariana
Islands. Trembly [26] describes six skeletons with destruction
of the metatarsals, metacarpals, and manual and pedal pha-
langes, including concentric atrophy of the diaphyses,
indicating probable leprosy infection [27]. One of these indi-
viduals dates to 830 ± 170 CE, and the three others for which
radiocarbon dating was performed, date between 1140 and
1370 CE, suggesting the disease was present in the Pacific
Islands prior to Portuguese and Spanish contact in the 1500s.

The earliest skeletal evidence of leprosy in Japan is later,
with the oldest known skeletal case dated to the medieval
period (1200–1400 CE) [28]. Suzuki et al. [29,30] present skel-
etal and biomolecular evidence of leprosy infection from later
time periods (1400–1800 CE). Historical evidence of leprosy
in Japan, however, can be traced back to the eighth century
CE in the Chronicles of Japan (Nihon Shoki) (described in
[31]). Called rai, the disease description matches that of
leprosy and was said to have been introduced by a migrant
from the Korean peninsula [31, p. 20].

Following the World Health Organization’s regional
country designations [15], the earliest historical and skeletal
evidence of leprosy from the Southeast Asia region and the
continental portion of the Western Pacific region predates the
earliest evidence from the Western Pacific Islands. While
there is no published skeletal evidence of leprosy from premo-
dern China, a passage from the medical text Lingshu describes
signs consistent with leprosy, such as collapse of the nose, leg
deformity, eyebrow loss, and hoarseness [32]; this text has
been used to establish the presence of leprosy in China before
the first century CE [33, pp. 19–25].

Based on the lack of diagnostic evidence and unclear
descriptions of signs and symptoms, somehistorians andphys-
icianshave concluded that leprosywas introduced to the Pacific
Islands during the nineteenth century, first in Hawaii and then
to other Pacific Islands by Chinese migrants [34,35]. Native
Hawaiians report that a mysterious disease arrived in the
Hawaiian Islands from China, brought by Chinese sailors or
by native Hawaiians who had been sent to China on trade mis-
sions. They call the diseasema‘i pake, meaning ‘Chinese disease’
and m‘ai ali‘i, meaning ‘chief’s or royal disease’ [36,37]. It has
been argued that an uptick in leprosy cases occurred across
the Pacific Islands during the 1800s [38]; this is probably a
bias introduced by Western physicians diagnosing the disease
and geopolitical pressure to isolate those affected on island
colonies, for example Kalaupapa on Molokai or Makogai in
Fiji [39]. Because the convincing skeletal evidence of leprosy
on the Mariana Islands by 800 CE [26,40] is limited, it remains
unresolved whether M. leprae was introduced during the
initial island migrations or later during subsequent periods of
colonialism and imperialism [41].

To further the understanding of the origins of M. leprae in
the Pacific Islands as well as the phylogeography and genetic
diversity of strains in an undersampled region, we present
phylogenetic and evolutionary dating analyses of nine
M. leprae genomes from Samoa (n = 2), Hawaii (n = 5), and
Guam (n = 2) isolated from formalin-fixed paraffin-embedded
(FFPE) tissue samples. Such archival tissue specimens are
valuable resources for clinical genomics, however, fragmenta-
tion and low DNA yield can make sufficient recovery difficult
[42]. We applied techniques used more commonly on ancient
DNA, and after analyses of the genomic data, we determined
that these isolate lineages fall into branches 0 and 5, which
form the deepest lineages of the M. leprae family tree. These
data also support a strong geographical association of
modern lineages, with a temporal and geographical



r

3
distribution that indicates an introduction of the pathogen
during the peopling of the Pacific Islands.
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3. Material and methods
(a) Sampling
Data and sampleswere retrospectively collected from thepathology
database at Hawaii Pathologists Laboratory, Honolulu, HI. Biopsies
were pathologically diagnosed with leprosy between 1991 and
2016. In order to focus on the Pacific Islander population, presump-
tive Hawaiian or Polynesian ethnicities were determined by the
patient’s first or last name. Thirty-nine FFPE samples from Pacific
Islanders were obtained for this study. Patient samples were
received throughout the Austronesian region; Oahu (n = 18),
Hawaii neighbour islands (n = 6), Guam (n = 3), Saipan (n = 2),
American Samoa (n = 6), Marshall Islands (n = 2) and Palau (n =
2). There were 21 males and 18 females. The study population
ranged from 9 to 79 years of agewith an average age of 34 years old.

(b) DNA extraction and quantitative real-time
polymerase chain reaction analyses

Thirty-nine FFPE tissue biopsies from 34 people were sectioned
using a microtome; one to three 40–46 µm slices were removed
from the FFPE block. In some cases, almost all of the sample was
used. Other genetic studies using FFPE blocks removed 2–10
slices at 5–20 µm per slice. We chose to use fewer but thicker
slices so that we could manually excise the tissue sample from
the paraffin, thereby reducing the amount of paraffin in the extrac-
tion reaction and inhibition in downstream polymerase chain
reaction (PCR). Excess paraffin was manually removed from
each slice using a scalpel blade, and extractions were performed
directly on the excised tissue samples. The microtome blade and
scalpel were sterilized with a 10% bleach solution, followed by
water and 70% ethanol between sampling of each FFPE block.

DNA extractions were performed on 28 FFPE block samples
following Purification of Total DNA fromAnimal Tissues protocol
from the Qiagen DNeasy Blood and Tissue (DBT) kit with no
FFPE-specific pre-treatments (following [43]) and some modifi-
cations: lysis occurred for 24 h with intermittent vortexing,
Qiagen MinElute spin columns were used in place of the DBT
spin columns, and DNAwas eluted twice in 100 ul of Tris EDTA
buffer with 0.05% Tween-20 (TET). Owing to low yields, further
extractions were performed using a protocol developed for extract-
ing ancient DNAwith a modified digest step (DAB) [44,45]. DAB
was used to extract DNA from 19 samples, including 11 new
samples and eight of the samples previously extracted using
DBT. To improve yields further, the DAB protocol was modified
to include a 15 min heat treatment at 98°C during digestion and
prior to the addition of proteinase K, following Gilbert et al. [43].

All extracts, 1 : 10 dilutions of the extracts, and extraction
blanks were screened for M. leprae DNA in triplicate using
TaqMan quantitative real-time PCR (qPCR) assays designed to
target two M. leprae-specific elements: 85B and RLEP. The
qPCR assays amplify an 80 bp fragment of the single-copy
gene 85B [46] and a 70 bp region of the multicopy repeat element
RLEP [47]. Samples were chosen for whole-genome capture
based on how many replicates amplified for both assays.

(c) Library preparation and whole-genome capture
Fragment shearing was not necessary owing to the already short
fragment lengths (less than 300 bp). The 8 DBT and 11 DAB
extracts that had the best qPCR signals were converted into
double-indexed libraries following Meyer & Kircher [48]. Nucleo-
tide misincorporation patterns were identified in the DBT
sequencing data, so the 11 DAB extracts were treated with
uracil-DNA glycosylase (UDG) during library preparation. For
the DBT libraries, 35–290 ng were enriched for the M. leprae
genome using an Arbor Biosciences myBaits kit V 3.02. The in-
solution capture reaction used biotinylated baits prepared from
M. leprae Br4923, Thai53, and NHDP strains. After a 48 h hybridiz-
ation reaction, capture products were amplified for 14 cycles using
AccuPrime™ Pfx DNA polymerase. The DBT enriched libraries,
extraction blank, and library blankwere sequenced on the Illumina
HiSeq2500 with 2 × 100 cycles. For the DAB libraries, 542–2890 ng
were enriched for the M. leprae genome using the myBaits kit V
3.02 with the same bait preparation as above. The enriched DAB
libraries, extraction blank and library blank were sequenced with
2 × 75 cycles across two Illumina Mi-Seq runs.

(d) Data acquisition and processing
Owing to their low depth of coverage after DBT extraction,
samples 511, 515, 519 and 523A1 were re-extracted using DAB,
re-captured and re-sequenced. The quality of the raw data for
these four samples from both sequencing runs was visualized
using fastqc v.0.11.7 [49] and determined to be of high enough
and consistent quality to concatenate, thus increasing genome
coverage and depth of coverage. Paired-end reads from all
samples were trimmed and merged using ADAPTERREMOVAL v.2
v.2.2.3, with the following parameters – minquality 20 – min-
length 30 [50]. The resulting merged reads were mapped to the
M. leprae TN strain (NCBI NC_002677.1) using Burrows-Wheeler
Alignment tool (BWA) v.0.7.17 with the following commands and
parameters: aln samse -l 1000 -n 0.1 [51]. Unmapped reads were
removed using samtools view and PCR duplicates were removed
using samtools markdup -r v.1.9 [52]. Given that samples not
treated with UDG exhibited terminal misincorporations (elec-
tronic supplementary material, figures S1 and S2), MAPDAMAGE

2.0 (v.2.0.9) was used to rescale the quality scores for terminal
bases prior to variant calling [53]. Coverage and mapping quality
estimates were generated using QUALIMAP 2 (v.2.2.1) [54].

For comparative purposes, genomic data for 164 modern and
ancient M. leprae samples were downloaded from the NCBI
Sequence Read Archive in FASTQ and FASTA format (electronic
supplementary material, table S1). Raw fastq data were down-
loaded using SRAToolkit v. 2.8.0 (https://github.com/ncbi/sra-
tools) fastq-dump command. The 164 comparative samples used
in this analysis do not include published samples with an average
depth of coverage of less than 5×. Samples that have been ident-
ified as hypermutators were included in the maximum-
likelihood and maximum-parsimony phylogenetic trees but not
in the BEAST analysis [4]. Ancient sample data were processed
exactly as the study samples. Modern sample data were processed
similarly to the above samples, except that paired-end reads were
not merged, and the mapping qualities were not rescaled.
Assembled genomes in FASTA format, TN, Br4923, Kyoto-2 and
M. lepromatosis JRPY were mapped to the reference genome
using bwa mem with default parameters [55].

(e) Variant calling and analysis
SNPs were called for all samples using GATK UnifiedGenotyper
v. 3.5 with default parameters except for – out_mode EMIT_ALL_
SITES [56]. The resulting VCF files were filtered for homozygous
SNPs with a coverage depth of at least 5× and a GATK genotyp-
ing quality of at least 30 and aligned using MULTIVCFANALYZER

v.0.85.1 (https://github.com/alexherbig/MultiVCFAnalyzer/
releases) [57]. Also using MULTIVCFANALYZER, positions that are
in known repeat regions and that were covered in the SK12 nega-
tive control were excluded, following Honap et al. [58] and
Schuenemann et al. [11]. SNPs in the M. lepromatosis outgroup
were only called if they were also present in M. leprae. For the
full genomes, the VCF files were manually edited for a coverage
depth of greater than 5× and a genotyping quality of at least 30

https://github.com/ncbi/sra-tools
https://github.com/ncbi/sra-tools
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so that they could be filtered simultaneously with the raw fastq
data. An alignment of 3521 SNPs was generated; after removing
sites with less than 95% coverage across the dataset, a final align-
ment of 2736 SNPs was used for phylogenetic analyses. After
removing genomes previously identified as hypermutators [3]
and sites with less than 95% site coverage, a final alignment of
2184 SNPs was used for BEAST [59] analysis.

To investigate the effects of the unique SNPs in our samples that
are shared among the Pacific Island strains, the VCF files for the
samples generated in this study were processed using SNPEFF

v.3.1 to annotate variants and determine their functional effects
[60].Default parameterswere used, except the upstreamanddown-
stream interval size was set to 100. SNPEFF v.3.1 was used to ensure
compatibility with the MULTIVCFANALYZER SNP table output.

( f ) Phylogenetic analysis
To examine consistency in topology across different methods, two
phylogenetic trees were made. A maximum-likelihood tree was
constructed using the GTR nucleotide substitution model with
the GAMMA model of rate heterogeneity (-m GTRGAMMA)
with 1000 bootstrap replicates using RAXML v.8.2.12 [61].
A maximum-parsimony (MP) tree was made using the subtree-
pruning-regrafting inference model and a bootstrap test of
phylogeny with 1000 replicates in MEGA7 [62]. All trees were
rooted using M. lepromatosis as the outgroup.

We also estimated the time to most recent common ancestor
(tMRCA) and substitution rates through application of Bayesian
methods using BEAST 2.4.5 [59]. A concatenated SNP alignment
of 2184 informative sites was used in the analysis. Additionally,
counts of invariant sites shared by all strains and the reference
were included to avoid ascertainment bias of only using variant
sites. The alignment was run through the JMODELTEST2 tool [63,64]
to determine a best-fit model of nucleotide substitution. The align-
ment was analyzed using a Bayesian Skyline model, assuming a
variable population size [59] with a relaxed clock and aGTR substi-
tution model [65,66]. The alignment was also run again using a
strict clockwith a GTR substitutionmodel and a lognormal relaxed
clock with an HKY substitution model. Each run was completed
with 300 000 000 iterations and a 30 000 000 burn-in. Calibrated
radiocarbon dates were used for ancient strain tip dates and
sampling/isolation dates were used for modern samples.
4. Results
(a) DNA extraction and screening
DNA extraction for DBT and DAB [44,45] methods yielded
between less than 0.01 ng ul−1 and 18.2 ng ul−1. For the initial
28 DBT extractions, the yields were between less than
0.01 ng ul−1 and 0.7 ng ul−1. Owing to these low yields, further
extractions were performed on 19 samples, eight of which had
also been extracted using DBT. The DAB extraction yields were
between 0.516 and 18.2 ng ul−1. All samples and 1 : 10 dilutions
of each sample underwent qPCR assays in triplicate for 85B and
RLEP regions. Samples with all three replicates amplifying for
at least one assay were considered for whole-genome capture,
including assays of 1 : 10 diluted extracts (table 1). In addition to
the number of replicates amplified, the mean number of cycles
of amplification, DNA quantity, and leprosy typewere evaluated
beforeasubsetof sampleswasselected forwhole-genomecapture
and sequencing (electronic supplementary material, table S2).

(b) Genome-wide analyses
Of the 15 samples chosen for whole-genome sequencing, nine
have sufficient coverage for whole-genome analysis (table 2).
Of these samples, the depth of coverage ranges from 4x to
63×, with the per cent of the reference genome being covered
at 5× ranging from 43% to 98%. The mapping statistics of the
comparative data and a comparison of the mapping statistics
for the four samples that underwent extraction using both
methods are available in the electronic supplementary
material, tables S2 and S3, respectively.

The average fragment lengths of merged reads mapped to
theM. leprae reference range from 38 to 71 bp for all 15 samples,
and from 52 to 71 bp for the nine sampleswith an average depth
of coverage greater than 4×. For the eight samples that were
sequenced without UDG treatment, fragment misincorporation
ranged from 1.5% to 3.5% at the terminal 30 base and from 1.8%
to 3.7% at the terminal 50 base (electronic supplementary
material, table S4). A visual comparison of a sample that was
sequenced with and without UDG treatment can be seen in
the electronic supplementary material, figures S1 and S2.

Using SNPEFF, a range of 31 to 184 SNPs was identified in the
new genomes presented here (table 2). Additionally, samples
have between 7 and 57non-synonymous SNPs in coding regions.
A summary of SNPs and their effects can be found in the elec-
tronic supplementary material, table S5. Only five samples have
unique SNPs located within genes, 515 (n= 1), 516 (n= 2), 517
(n= 3), 518 (n= 2) and 520 (n= 1); details of these unique SNPs
can be found in the electronic supplementary material, table S6.

The genomes generated in this study were found to have
all previously identified branch-defining SNPs for either
branch 0 or 5 (electronic supplementary material, table S7)
[3]. Additionally, the Pacific Island clade of four genomes
within branch 5 (515, 523A1, 536, US57) was found to share
four non-synonymous SNPs, and the Pacific Island clade of
six genomes within branch 0 (511, S9-96008, 516, 518, 519,
520) was found to share 20 non-synonymous SNPs, including
one in a gene associated with drug resistance (rpoB).

(c) Phylogenetic analyses
Phylogenetic analyses show that the newM. leprae genomes fall
within the most basal branches, branches 0 and 5. Specifically,
the genomes from Samoa (n = 2) fall onto branch 0, the genomes
fromGuam (n = 2) fall onto branch 5, and genomes fromHawaii
fall onto branch 0 (n = 3) andbranch 5 (n = 2) (figure 1). All of our
phylogenetic trees reveal a topology that is consistent with pre-
viously published studies [3,4,11], as well as a consistent branch
placement for the ninenewgenomeswe introduce here (figure 2;
electronic supplementary material, figure S3).

The inclusion of the Pacific Island genomes creates geo-
graphically associated substructure within branch 0. The
Pacific Island genomes, including S9-96008 from New Caledo-
nia, form a clade, as do the East Asian lineages and the
medieval European lineages. Additionally, the branch 0 Pacific
Island genomes are more closely related to a strain isolated
from a naturally infected crab-eating macaque from the Philip-
pines [58] than they are to other branch 0 strains. In branch 5,
the two genomes from Hawaii (515 and 523A1) and one
genome from Guam (536) are closely related to a strain that
was isolated from the Marshall Islands (US57), while one
genome fromGuam (517) ismore closely related to a strain pre-
viously isolated from the Ryukyu islands of Japan (Ryukyu-2).

(d) BEAST analyses
The tMRCA forM. leprae strains was estimated to be 3766 y BP
(3011 y – 4572 y 95% highest posterior density (HPD)) under



Table 1. Summary of DNA extraction concentrations and qPCR assay results for samples sequenced in this study. (The number of successfully amplified
replicates out of three is given for each assay.)

sample ID type DNA extraction type DNA concentration (ng ul−1) 85B 85B 1 : 10 RLEP RLEP 1 : 10

511 LL DBT 0.414 3/3 2/3 3/3 3/3

DAB 6.68 0/3 0/3 3/3 3/3

515 LL DBT 0.198 3/3 1/3 3/3 3/3

DAB 9.96 0/3 0/3 1/3 3/3

516 LL DBT <0.01 3/3 3/3 3/3 3/3

DAB 2.56 0/3 0/3 3/3 3/3

517 LL DBT 0.436 3/3 3/3 3/3 3/3

DAB 6.9 0/3 0/3 3/3 3/3

518 BL DBT 0.67 3/3 3/3 3/3 3/3

DAB 1.56 0/3 0/3 0/3 3/3

519 BL DBT 0.26 3/3 3/3 3/3 3/3

DAB 6.06 0/3 0/3 0/3 3/3

520 BL DBT 0.138 3/3 3/3 3/3 3/3

DAB 2.46 0/3 0/3 0/3 3/3

523A1 BL DBT <0.01 3/3 3/3 3/3 3/3

DAB 1.75 0/3 0/3 0/3 3/3

536 LL DAB 18.2 0/3 0/3 0/3 3/3

537 LL DAB 6.3 3/3 0/3 3/3 3/3

538 LL DAB 1.23 1/3 1/3 0/3 3/3

539 BL DAB 0.516 3/3 0/3 3/3 3/3

540 BL DAB 3.28 0/3 0/3 0/3 3/3

542 BT DAB 0.952 0/3 1/3 0/3 3/3

543 BT or BB DAB 2.98 0/3 0/3 0/3 3/3
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the Bayesian Skyline model with a relaxed lognormal clock
and a GTR substitution model (figure 2b). The mutation rate
for M. leprae was estimated to be 3.255 × 10−9 (2.706 × 10−9−
3.821 × 10−9, 95% HPD) substitutions site−1 y−1, which is
slightly slower than previous estimates [3,4,58]. The Bayesian
Skyline analysis run under a strict clock model with a GTR
substitution model produced a tMRCA of 3878 y BP
(3284 y – 4510 y BP 95% HPD) with a substitution rate of
3.101 × 10−9 (2.654 × 10−9–3.554 × 10−9, 95% HPD) substi-
tutions site−1 y−1. The Bayesian skyline analysis run under a
relaxed clock model with an HKY substitution model pro-
duced a tMRCA of 3765 y BP (2973–4623 BP 95% HPD) with
a substitution rate of 3.221 × 10−9 (2.643 × 10−9–3.834 × 10−9,
95% HPD) substitutions site−1 y−1. Further analyses run
using two demographic models using alignments without
novel samples, as well as without low coverage 523A1 and
536 samples, had similar results (electronic supplementary
material, table S8).
5. Discussion
Here, we report nine M. leprae genomes from the Pacific
Islands. Phylogenetic analyses show that they all belong to
branches 0 and 5, which previously have been identified in
modern contexts only in the Western Pacific, including
Japan, China, and the Philippines, and, interestingly, in
medieval Hungary and Denmark [3,4,58]. Prior to this
study, only two whole genomes from the Pacific Islands
had been published, with sample US57 (Marshall Islands)
falling within branch 5 and sample S9-96008 (New Caledo-
nia) falling within branch 0 [3,4]. In addition to creating
geographically associated substructure in branch 0, the Pacific
Island genomes we sequenced tripled the number of
whole-genome samples within branch 5.

Our tMRCA estimate of 3766 y BP (3011 y – 4572 y 95%
HPD) is very close to that of Benjak et al. [4] and about 300–
750 years younger than the Schuenemann et al. [3] estimate.
Analyses completed with different demographic and substi-
tution models also have estimates of tMRCA within decades
of our initial estimate. The estimated rates of substitution, how-
ever, differ slightly, both with different demographic and
substitution models and between other studies. The estimated
substitution rate site−1 y−1 of 3.255 × 10−9 (2.706 × 10−9–3.821 ×
10−9, 95% HPD) is similar but slightly slower than those esti-
mated previously [3,4,11,67], with non-overlapping 95% HPD
ranges in some cases [3,4,67]. Our analyses suggest a margin-
ally younger tMRCA and slower substitution rate that is
within the same magnitude as previous estimates. Despite
these differences with previously published studies, our over-
lapping HPD ranges obtained when using multiple models
and different combinations of samples indicate that our data
are robust and informative (electronic supplementarymaterial,
table S8).



Ta
bl
e
2.
W
ho
le-
ge
no
m
e
an
aly
sis

su
m
m
ar
y
of
sa
m
pl
es
se
qu
en
ce
d
in
th
is
stu
dy
.(
No
te
th
at
re
ad
s
ge
ne
rat
ed

fro
m
se
pa
rat
e
ex
tra
cti
on
s
we
re
co
nc
at
en
at
ed

fo
rs
am
pl
es
51
1,
51
5,
51
9
an
d
52
3A
1.
)

sa
m
pl
e

or
ig
in

le
pr
os
y

fo
rm

no
n-
du
pl
ica
te
,

un
iq
ue
ly

m
ap
pe
d
re
ad
s

av
er
ag
e

de
pt
h
of

co
ve
ra
ge

(X
)

%
re
fe
re
nc
e

co
ve
re
d
>
=

1×

%
re
fe
re
nc
e

co
ve
re
d
>
=

5×

av
er
ag
e

fra
gm

en
t

le
ng
th

en
do
ge
no
us

co
nt
en
ta
%

br
an
ch

nu
m
be
r

of
SN
Ps

no
n-

sy
no
ny
m
ou
s

co
di
ng

SN
Ps

51
1

Sa
m
oa

LL
57
6
69
0

9.
8

96
77

56
8.
7

0
14
1

38

51
5

Ha
wa
ii

LL
63
5
82
4

10
.1

95
73

52
15

5
10
1

20

51
6

Sa
m
oa

LL
63
5
18
6

13
.1

98
94

67
64
.2

0
17
2

54

51
7

Gu
am

LL
1
57
4
10
3

31
.4

98
97

65
93
.2

5
15
4

32

51
8

Ha
wa
ii

BL
2
89
9
28
0

63
.2

98
98

71
80
.5

0
18
4

57

51
9

Ha
wa
ii

BL
54
5
81
6

10
.3

97
87

62
42
.8

0
15
2

42

52
0

Ha
wa
ii

BL
1
61
6
04
6

32
.7

98
97

66
94

0
18
3

56

52
3A
1

Ha
wa
ii

BL
24
2
30
3

4.
3

94
43

58
15
.2

5
31
b

7b

53
6

Gu
am

LL
p

37
4
29
5

6.
1

91
52

53
20

5
69
b

12
b

53
7

No
rth
er
n
M
ar
ian
a
Isl
an
ds

LL
63
08

0.
1

8
0

44
0.
4

–
–

–

53
8

Sa
m
oa

LL
13
65

0
2

0
38

11
–

–
–

53
9

No
rth
er
n
M
ar
ian
a
Isl
an
ds

BL
20
38
8

0.
3

30
0

57
6.
2

–
–

–

54
0

No
rth
er
n
M
ar
ian
a
Isl
an
ds

BL
46
91

0.
1

7
0

54
1.
3

–
–

–

54
2

Pa
lau

BT
15
89

0
2

0
53

5.
7

–
–

–

54
3

Pa
lau

BT
or
BB

18
89

0
3

0
49

1.
3

–
–

–
a N
um

be
ro
fr
ea
ds
aft
er
m
ap
pi
ng

be
fo
re
du
pl
ica
te
re
m
ov
al/
nu
m
be
ro
ft
rim

m
ed

an
d
m
er
ge
d
re
ad
s.

b T
he

low
nu
m
be
ro
fS
NP
s
in
sa
m
pl
es
52
3A
1
an
d
53
6
re
fl
ec
ts
th
e
ov
er
all

low
co
ve
ra
ge

of
th
os
e
ge
no
m
es
at

≥
5×

de
pt
h
of
co
ve
ra
ge
.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190582

6



20°S

10°S

0°

10°N

20°N

30°N

40°N

50°N

100° E 120° E 140° E 160° E 180° 160° W
longitude

la
tit

ud
e

branch 0 
branch 5 

Figure 1. Map of the Pacific showing source locations of novel and previously sequenced M. leprae strains from branch 0 and branch 5. Novel strains from this study
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Our data suggest thatM. lepraemay have been in the Pacific
Islands since the initial peopling of Remote Oceania and was
possibly re-introduced during newly recognized subsequent
migrations [68,69]. Remote Oceania was occupied beginning
around 3000 BP by Austronesian-speaking people who orig-
inally expanded out of East Asia [68,70–72]. Ancient DNA
data suggest that another migration wave from New Guinea
nearly replaced these original inhabitants by 2300 BP [68,69].
Because the Pacific Island M. leprae genomes form a clade
within branch 0, and the date of the last common ancestor of
branch 0 clades is 3229 BP, it is possible that the Austronesian
migration brought this basal lineage to Remote Oceania. This
scenario also aligns with a South Asian origin of leprosy,
which has been suggested elsewhere [6]. Because branch 5
strains share a common ancestor with branches 1–4 at 2964
BP and only consist of genomes from Pacific Islands, it is poss-
ible that these younger lineages were introduced during
subsequent migrations into Remote Oceania.

The Pacific Island clade within branch 0 is differentiated
from other branch 0 strains by a high number of non-synon-
ymous SNPs, in contrast to the Pacific Island clade within
branch 5 and the overall low genetic diversity of M. leprae,
which probably reflects the older age of this clade. The low
diversity within the branch 0 Pacific Island clade could
reflect an introduction and radiation of these strains within
the Pacific Islands around 350–400 years ago. The low diver-
gence among these lineages, however, could be the result of
sampling bias or genetic drift during infection and trans-
mission across the Polynesian Islands during this time.
Multiple lines of evidence, such as oral histories [73], geochem-
ical analysis of traded stone tools [74,75], and population
genetics of the Polynesian rat [76], demonstrate that voyaging
among islands was common after initial settlement until
approximately 1600 CE [74,77]. This cessation of inter-island
voyaging roughly aligns with the age of the branch 0 Pacific
Island clade and may have served as a bottleneck for
M. leprae diversity. Nonetheless, the tight geographical cluster-
ing of clades, particularlywithin branch 0, coupledwith the old
age of the last common ancestor of Japanese and Pacific Island
strains, strongly supports a more ancient introduction.

Despite palaeopathological evidence for leprosy in the Paci-
fic Islands prior to 1000 CE, some researchers have suggested
that leprosy was absent in the Pacific Islands until the nine-
teenth century CE and was introduced as a result of
European and Japanese imperialism or large-scale Chinese
migration throughout the region [38,41,78–80]. However, if
strains were introduced during the Japanese imperial occu-
pations beginning in 1890, we would not expect to see such
deep divergence between Japanese and Pacific Island strains.
Furthermore, we would expect the Pacific Island genomes to
be more closely related to the genome from China (S10-Ch-
04), instead of having diverged over 3000 years ago. Likewise,
if European colonists introducedM. leprae to the Pacific Islands,
we would expect at least some modern infections to be caused
by branch 3 lineages, since (i) this branch was suspected to
have been introduced to the Americas by European colonists,
(ii) strains falling within branch 3 have been isolated from
modern squirrels in the UK, and (iii) members of the branch
have been identified in high frequency, along with branch 2,
inmedieval European skeletons [3,4,67]. Additionally, if strains
were introduced in the sixteenth century during European
exploration, then we would expect the Pacific Island strains
in branch 0 to be more closely related to the ancient European
strains within branch 0 (SK11 and Jorgen 507).
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Although the timeline we propose based on the phylogeo-
graphical and evolutionary dating analysis is not corroborated
by the archaeological record, this is probably owing to the
poor preservation on tropical islands, as well as the paucity of
large documented skeletal assemblages from these earlier time
periods across Asia. Additionally, it is possible that these earlier
lineages of M. leprae did not elicit the same skeletal response as
they do today, obscuring the identification of the disease in the
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archaeological record. We also have a poor understanding of
what animal reservoirs exist in this region and the extent of
exchange among species. Though the Pacific Island branch 0
strains are closely related to one isolated from a crab-eating
macaque from the Philippines [58], it is unclear when and in
which direction the exchange occurred. Further sampling is
clearly needed to expandourunderstanding of genetic diversity;
however, in regionswithout sufficientarchaeological evidenceof
leprosy and few surveys of potential animal reservoirs, clinical
specimens, such as FFPE samples, are valuable resources for
characterizing modern diversity ofM. leprae in humans.

For this study FFPE samples allowed us to expand upon
our knowledge of modern standing diversity in branches 5
and 0. Such samples have been successfully used in past M.
leprae research [4,81], although both studies used aDNAextrac-
tion kit more specific to FFPE DNA. We found that DNA
extraction protocols commonly used for ancient DNA were
also effective. Our small comparison between the DAB and
DBT extraction techniques found marginal improvements in
coverage and mapping quality in the ancient DNA-specific
DAB methods, but the limited sample size prevents a conclus-
ive comparison. Interestingly, the DAB extracts had an
increased extraction quantification of 2–50 fold over the DBT
extracts but had fewer replicates amplifying for the qPCR
assays. This could reflect the inclusion of more inhibitors
through the DAB extraction or, because all 85B assays on the
DAB extracts were performed during the same experiment,
an inefficient qPCR run. The small sample size of this study
precludes definitive conclusions about which extraction
method is best for FFPE material. The added heat treatment
step and extended proteinase K treatment targeted DNA cross-
links and protein-DNA crosslinks, which are commonly
induced during the formalin fixation step [82,83]. DAB
methods and downstream bioinformatics pipelines can also
address extensive DNA fragmentation found in FFPE samples,
as well as the duplicates accumulated during the multiple
rounds of amplification required for targeting low-concen-
tration endogenous DNA [42,45]. Despite the difficulties of
dealing with FFPE samples, methods are available to address
their shortcomings and add a useful resource to answer further
questions regarding M. leprae evolutionary history.
6. Conclusion
The phylogeographical and evolutionary dating analyses of
nine new M. leprae genomes from the Pacific Islands suggest
that M. leprae may have been introduced to Remote Oceania
during the first human migrations at approximately 3000 BP,
with re-introduction during subsequent migrations. Although
a better understanding of M. leprae genomic diversity in Near
Oceania and China is needed to support this hypothesis
further, the data presented here strongly suggest a premodern
introduction of leprosy into the Pacific Islands and refute its
initial introduction either during European exploration or nine-
teenth century imperialism and colonialism.
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