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Abstract

Ceruloplasmin (Cp) is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest
that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain
iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer’s,
Parkinson’s and Huntington’s diseases, coincident with areas more susceptible to insults. Because of their high metabolic
demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to
look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral
cortex of these young animals are significantly lower than wild-type (WT) controls. Also mRNA levels of the neurotrophin
brain derived neurotrophic factor (BDNF), known for its role in maintenance of cell viability, were decreased in these
brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a
posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When
the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain
damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to
ischemic injury by a mechanism that may involve reduced levels of iron and BDNF.
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Introduction

Iron is an essential nutrient that plays an important role in

myelination, energy production and cell cycling; also it serves as a

cofactor for enzymes involved in neurotransmitter production and

metabolism, DNA synthesis and purine catabolism. [1,2]. All of

these actions are mediated by the transition metal property of

iron that allows it to act as an electron donor or acceptor.

Unfortunately, the same property that makes iron so useful can

also lead to cell damage through formation of hydroxyl radicals

when ferrous iron interacts with hydrogen peroxide in the Haber-

Weiss-Fenton reaction [3]. Regulation of iron homeostasis is thus

extremely important because of its dual nature [4]. One of the

proteins involved in controlling iron trafficking is the essential

ferroxidase ceruloplasmin (Cp), which acts to convert the reactive

ferrous (Fe2+) form of iron to the much less toxic ferric (Fe3+) form ,

therefore facilitating transferrin-mediated transport [5].

Cp is an abundant plasma protein also found in the brain in

both a secreted form and a glycosylphosphatidylinositol (GPI)-

linked isoform on the plasma membrane of astrocytes [6]. Patients

affected by aceruloplasminemia lack Cp and develop progressive

iron accumulation in organs such as the liver, pancreas and

retina; as these patients age, iron also accumulates in the brain,

particularly in the basal ganglia and substantia nigra, which results

in neuronal degeneration and neurological symptoms [7].

Similarly Cp knockout (CpKO) mice develop age-dependent iron

deposits in the cerebellum, brain stem and cervical spinal cord

leading to neurological deficits [8]. Experiments have demon-

strated that the absence of Cp in both humans [9,10] and mice

[11,12] render neurons more susceptible to insults, suggesting a

role for Cp in neuronal survival.

Increases in free iron levels have been observed in the brain

during global [13] and focal ischemia [14]. The role played by

iron in ischemic brain injury is complex. The ability of iron

chelators or antioxidants treatments to reduce ischemic brain

injury has generally been linked to the capacity of Fe2+ to induce

lipid peroxidation and oxidative damage [15–17]. However,

additional mechanisms are likely involved. Iron is critical for the

function of numerous enzymes involved in neuronal metabolism,

plasticity and survival. For example, mitochondria rely upon heme
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containing cytochromes (complexes III–IV) and on iron-sulfur

clusters containing complexes (I–III), in the electron transport

chain and enzymes of the citric acid cycle [18]. Because

mitochondrial function is compromised in stroke, reduced iron

levels may exacerbate ischemia-related cellular energy deficits.

Also, enzymes involved in the production and metabolism of

monoamine neurotransmitters also require iron [19], and two of

these neurotransmitters (serotonin and norepinephrine) have been

reported to modify brain damage in animal models of stroke

[20,21]

In response to cerebral ischemia the production of several

neurotrophic factors, including fibroblast growth factor 2, insulin-

like growth factor 1 and brain-derived neurotrophic factor (BDNF)

is increased [22–24]. Activation of receptors for each of the latter

trophic factors can protect neurons against ischemic brain injury

in experimental cell culture and animal models [25–28]. The

expression of BDNF by neurons is sensitive to iron levels as

demonstrated by studies showing that dietary iron deficiency

reduce BDNF expression without affecting expression of the

BDNF receptor TrkB [29]. Also in patients with neurodegener-

ative diseases, such as Parkinson’s, Huntington’s and Alzheimer’s,

brain iron dysregulation is found together with decreases in BDNF

[30]. BDNF administration has been has also been shown to

promote cell viability after insults [31] and the increased BDNF

production after exercise and caloric restriction is believed to play

a major role in the neuroprotective effects of these treatments [32].

In the present study we demonstrate that iron levels are reduced

in the cerebral cortex and striatum of young adult CpKO mice,

and that the reduction in iron is associated with reduced BDNF

expression. CpKO mice exhibit increased brain damage in a

model of focal ischemic stroke, suggesting an important role for

cellular iron homeostasis in neuronal resistance to ischemic injury.

Results

Ceruloplasmin deficiency results in reduced
concentrations of iron in the cerebral cortex and striatum

Cp plays a key role in iron regulation. To determine if the

absence of Cp altered brain iron levels, biopsy punches were taken

from the cerebral cortex and striatum of young 3 month-old WT

and CpKO mice. These punches were analyzed for iron levels

using atomic absorption spectroscopy. Levels of iron were

normalized to the sample weight. The CpKO mice had a

significantly lower concentration of iron in both the cortex and

striatum compared to WT mice (Fig. 1). This result is very

interesting considering that 3 month-old CpKO mice already

display a hepatic iron overload phenotype [33]. The discrepancy

between brain and peripheral iron levels is likely due to the tight

control exerted by the brain blood barrier in regulating cerebral

iron influx/efflux [34].

BDNF expression is reduced in the cerebral cortex and
striatum of ceruloplasmin-deficient mice

There are several different BDNF transcripts produced in the

mouse. Their expression is stimulated through various mecha-

nisms, but all result in the same final BDNF protein [35]. Using

real-time PCR we measured levels of 4 different transcripts of

BDNF in the cerebral cortex and striatum of young 3 month old

CpKO mice. We found that levels of BDNF transcripts I, II and

IV were significantly reduced in the cortex of CpKO mice

compared to 3 month old WT mice (Fig. 2A). Levels of BDNF

transcripts I, II, III and IV were significantly reduced in the

striatum of the CpKO mice compared to WT controls (Fig. 2B).

Measurements of the transcripts of both short and long forms of

the BDNF receptor TrkB did not show differences between WT

and Cp KO animals in either the cortex or striatum (data not

shown). Western blots also demonstrated a significant decrease in

BDNF protein levels in both the striatum and cortex in the CpKO

compared to WT animals (Fig. 2C).

To better explore the connection between iron and BDNF levels

we employed a cell culture model (human SH-SY5Y neuroblas-

toma cells). The cells were treated for 24 hours with the iron

chelator deferoxamine. Similar to what was observed in vivo in

CpKO mice, decreasing iron availability resulted in a significant

decrease of BDNF transcript levels (Fig. 3A) without effecting cell

viability (Fig. 3B). When SH-SY5Y cells were transfected with

reporters for BDNF promoters I–IV and then subjected to iron

chelation, no differences in reporter activity were observed

amongst control or deferoxamine treated cells (Fig. 3C). Taken

together, our data suggest that iron regulates BDNF at a post-

transcriptional level, possibly by accelerating the decay of BDNF

mRNAs.

CpKO mice sustain greater brain damage after MCAO
Three month old WT and CpKO mice were subjected to

45 minutes of MCAO followed by 72 hours of reperfusion. Infarct

volume was measured by image analysis of TTC-stained brain

sections (Fig. 4A). We found that cell death in the striatum was

extensive and there was no significant difference in the amount of

damage between CpKO and WT mice. However, the extent of

cell death in the cerebral cortex was significantly greater in the

CpKO mice compared to WT mice (Fig. 4B). These results may

be explained by the fact that the striatum has less collateral blood

flow than cortex [36]; consequently 45 minutes of ischemia

produces near maximal damage in the striatum but submaximal

damage in the cortex. Thus, in our experimental model the ‘‘core’’

striatal damage is maximal and not impacted by CP deficiency.

On the other hand, in the cortical ‘‘penumbra’’ region the reduced

levels of total iron and BDNF in the CpKO mouse render the

Figure 1. CpKO mice have decreased concentrations of iron in
the cerebral cortex and striatum. Atomic absorption measures of
cortical and striatal biopsy punches show significant decreases in iron
concentrations in CpKO compared to wild type mice in both the
cerebral cortex ( n = 18; *p,0.02) and the striatum (n = 7; *p,0.03).
doi:10.1371/journal.pone.0025077.g001
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neurons more susceptible to death after the ischemic insult

exacerbating the stroke outcome.

Because Fe2+ may promote the generation of reactive oxygen

species (ROS), which can lead to lipid peroxidation and

peroxynitrite production [37], we measured markers of oxidative

stress that have previously been associated with ischemic brain

injury. After 24 hours reperfusion, the lipid peroxidation product 4-

hydroxynonenal and nitrotyrosines were elevated in both the

ipsilateral and contralateral cerebral hemisphere in WT mice

subjected to stroke compared to sham-operated control mice

(Fig. 5A, B). Similar results were obtained in CpKO mice with no

significant differences in levels of 4-hydroxynonenal or nitrotyrosine

between WT and CpKO mice, although trends towards reduced

levels of these markers were observed in the ipsilateral cortex of

CpKO compared to WT mice (Fig. 5A, B). In addition, we found

that levels of GFAP, a marker of reactive astrocytes, were increased

in both hemispheres in response to stroke with no significant

differences between WT and CpKO mice (Fig. 5C). Levels of

proinflammatory cytokines (IL-1Beta, TNF-alpha and IL-6)

measured in brain tissue samples collected 3 hours after reperfusion

were also not significantly different between WT and CpKO mice

in either hemisphere (Fig. 5D, E, F). These data further support the

hypothesis that the decreases in iron and BDNF in the CpKO

mouse contributes to the larger infarct volume, rather than

differences in levels of oxidative stress and inflammation.

Discussion

Ceruloplasmin is a key regulator in iron metabolism and its loss

has been shown to cause age-dependent iron dysregulation in

humans and animal models [6,33,38]. We found that total iron

levels in the cerebral cortex and striatum of young CpKO mice

were significantly lower than WT mice. This iron deficit was

concurrent with decreased levels of BDNF mRNA and protein.

The extent of brain damage caused by MCAO reperfusion was

significantly greater in the CpKO mice compared to WT mice, as

a result of the expansion of the damage in the ischemic penumbra

region of the cerebral cortex. These findings suggest that lack of

Cp can cause a change in brain iron and BDNF levels, which

normally play important roles in protecting neurons against

ischemic brain injury.

Previous studies of other lines of CpKO mice have shown that

iron levels increase in the brain stem, cerebellum and spinal cord

as they age [8,38]. However, levels of iron in striatum and cerebral

cortex, from young CpKO mice have not been reported in the

latter studies. The larger infarct volume we observed in the CpKO

mice after MCAO, suggests that lack of Cp may affect the

vulnerability of cortical and striatal neurons. While the present

study is the first to examine the effects of ceruloplasmin deficiency

on the vulnerability of the brain to ischemic stroke, Rathore et al.

[12] demonstrated that young CpKO mice show increased

secondary damage coupled with oxidative damage and a decrease

in functional recovery after spinal cord injury compared to WT

animals. Previous evidence has also shown enhanced levels of

oxidative stress markers in the brain of patients with aceruloplas-

minemia [39,40], as well as in the hippocampus of CpKO mouse

compared to WT following 4 weeks of rotenone treatment [11].

However, in our experimental model we found no evidence of

increased lipid peroxidation or astrocyte reactivity the in cortex or

Figure 2. The expression of BDNF is reduced in the cerebral cortex and striatum of ceruloplasmin-deficient mice. A. RT-PCR measures
of the 4 BDNF transcripts show a decrease in BDNF transcripts 1, 2 and 4 in the cortex of the CpKO mouse (*p,0.04, n = 5). B. RT-PCR measures of the
4 BDNF transcripts show a decrease in BDNF transcripts 1, 2, 3 and 4 in the striatum of the CpKO mouse (*p,0.05, n = 5). C. Examples of immunoblots
of BDNF protein levels in the cortex and striatum (top panel) and densitometry results showing significant decreases BDNF protein levels (normalized
to actin level) using Image J software. (*p,0.03; n = 4 WT and 3 CpKO mice).
doi:10.1371/journal.pone.0025077.g002
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striatum of young CpKO mice compared to WT mice measured

24 hours after the insult. We also did not observe increased

proinflammatory cytokine levels 3 hours after the insult. These

findings suggest that Cp deficiency and reduced iron levels do not

alter levels of membrane-associated oxidative stress or generation

of proinflammatory cytokines by glial cells. However, we cannot

exclude the possibility that Cp and/or iron levels modify oxidative

stress and inflammatory processes during the later post-stroke

period.

The majority of the literature on cerebral ischemia and iron

indicate that increased levels of iron contributing to the

exacerbation of infarct volume or functional recovery. Elevated

iron levels may contribute to ischemic brain injury by promoting

the production of hydroxyl radicals and consequent lipid

peroxidation [41]. Human studies have also shown that increased

iron stores are associated with a worse outcome after stroke [42].

Studies involving iron chelators have demonstrated reduced

infarct size with both pre and post [43–45]. The mechanisms in

which chelators promote protection though, may not be due just to

their reduction of free iron but to other factors such as HIF

activation [46,47] or reduction of brain edema [41]. Toxicity from

iron during ischemia likely arises from liberation of iron from high-

molecular weight storage proteins [13]. We found decreased

concentrations of iron in the cortex and striatum of CpKO mice in

conjunction with increased infarct volumes. This counterintuitive

result may be due to the particular importance of iron in the brain.

While high levels of iron may be toxic, it is also true that

abnormally low levels of iron will make cells more sensitive to

insults by impairing normal brain functions which rely on

adequate iron supply, such as ATP production, regulation of

cellular energy, myelination and neurotransmitter production

[41]. Interestingly, others have shown that increases in infarct

volume after MCAO in rats on high iron diets were not associated

with alterations in brain iron levels [48]. Consistently, aggressive

iron chelator treatment in rats was not able to reduce infarct

volume following ischemia [49]. This supports our hypothesis that

reduced brain iron may increase neuronal vulnerability.

Previous studies have demonstrated that BDNF can protect

neurons against cerebral ischemic damage in animal models [50–52]

and against more specific insults relevant to ischemic stroke including

glucose deprivation, excitotoxicity and oxidative stressors [53–55].

BDNF is known to promote the plasticity and survival of neurons,

playing key roles in adaptive responses of the brain to environmental

challenges [56]. Studies in rats have shown that cerebral ischemia can

differently affect BDNF levels in the core, where a decrease occurs,

and penumbra areas where an increase occurs [57], supporting a role

for protection by BDNF. Indeed studies in both mice and rats have

demonstrated that administration of exogenous BDNF can promote

Figure 3. Iron chelation decreases BDNF expression in human neuroblastoma cells. A. SH-SY5Y cells were treated with either vehicle
or 100 mM deferoxamine (DFO) for 24 hours. RT-PCR measures of BDNF transcripts show a decrease in total BDNF transcripts (tBDNF, variants 1–14,
16–18 (*p,0.01, n = 4–5). B. Iron chelation did not cause changes in cell survival as assessed by trypan blue exclusion 24 hours post-treatment (n = 5).
C. SH-SY5Y cells were transfected with luciferase reporters for the promoter regions of BDNF I–IV and were then treated with 100 mM deferoxamine
for 24 hours. No significant differences were observed between control and treated cells (n = 3–4).
doi:10.1371/journal.pone.0025077.g003
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a reduction in infarct volume and functional recovery after cerebral

ischemia [58,59,52]. Similarly, studies using interventions known to

up regulate basal BDNF levels, such as dietary restriction, enriched

environment or exercise, have shown decreased infarct volumes

following MCAO [60–63]. Conversely decreasing BDNF levels or

attenuating its effects following cerebral ischemia diminishes recovery

of function [64,65]. BDNF has been shown to exert anti-apoptotic

and neuroplastic properties, as well as to enhance neuro- and angio-

genesis. There is also evidence that BDNF levels can modulate

cortical excitability with lower levels of BDNF enhancing excitability

[66]. More specifically, lack of BDNF transcript IV has been show to

cause impairment in cortical inhibitory signaling [67]. Our finding of

reduced BDNF transcript levels, including transcript IV, in the

CpKO mice suggests a mechanism whereby perturbed cellular iron

metabolism in brain cells results in reduced BDNF levels in neurons

which renders them vulnerable to ischemic injury. Indeed, we found

that chelation of cellular iron in results in a reduction in BDNF

mRNA levels in cultured neural cells. The lack of changes in BDNF

promoter-driven luciferase activity following deferoxamine, suggests

that the reduction in BDNF mRNA is likely the result of decreased

mRNA stability. Notably, iron has been shown to play a role in the

regulation of transcript stability in various experimental models by

modifying the ability of iron-responsive proteins to bind to specific

stabilizing/destabilizing sequences at the 39 and/or 59 of mRNA

untranslated regions [68,69].

Because aceruloplasminemia’s most striking symptoms manifest

late in life, studies looking at iron brain levels in pre-symptomatic

young patients, or in young rodent models of aceruloplasminemia

may provide novel insight into the roles of cellular iron metabolism

in developmental neuroplasticity and disease vulnerability. Our

data clearly show that the lack of Cp leads to an early-on reduction

in total brain iron and BDNF levels, resulting in increased

vulnerability of neurons to ischemic injury .

Materials and Methods

Mice
Ceruloplasmin knock-out (CpKO) mice were generated as

described previously [33]. Wild type (WT) and CpKO strains were

maintained according to National Institutes of Health and Johns

Hopkins University guidelines. All procedures on animals were

approved by the Animal Care and Use Committee of the National

Institute on Aging Intramural Research Program. In addition,

procedures for producing middle cerebral artery occlusion

(MCAO) were approved by the Animal Care and Use Committee

of Johns Hopkins University.

Brain iron analysis
Brain regions (n = 16/group) were wet digested in 0.2%

ultra-pure nitric acid using standard procedures and analyzed

for iron concentration by atomic absorption spectrometry (Perkin

Elmer Analyst 600, Perkin Elmer, Norwalk, CT) [70]. Standards

were prepared by diluting a Perkin Elmer iron standard

(PE#N9300126) in 0.2% ultra-pure nitric acid, and blanks were

prepared with digesting and diluting reagents to control for

possible contamination. All standard curves exceeded r.0.99.

RNA extraction and real-time PCR
RNA was isolated using Trizol (Invitrogen) and purified with an

RNA Micro Kit (Qiagen, Valencia, CA). Following treatment with

DNAse I, RNA was quantified and equal amounts were retro-

transcribed using the SuperScript First Strand Synthesis System

(Invitrogen Life Technologies). Real-time PCR analysis was

performed with a PTC 200 Pelthier Thermo Cycler and Chromo

4 Fluorescent Detector (BioRad, Hercules, CA), and SybrH Green

PCR Master Mix according to the manufacturer’s instructions

(Applied Biosystems, Foster City, CA). Each reaction included 3 ml

of diluted (1:4) cDNA and was performed in triplicate. PCR was

performed under the following conditions: 10 min at 95uC,

followed by 40 cycles of 30 s at 95uC, 30 s at 60uC and 1 min

at 72uC. The comparative Ct method was used to determine the

normalized changes of the target gene relative to a calibrator

reference. The primers used in this study were as follows:

Figure 4. CpKO mice have increased cerebral infarct volume
after focal ischemic stroke. A. Representative images of TTC-stained
brain sections in mice subjected to 45 min MCAO with a 72 hours
post-stroke survival. B. Calculation of percent infarct volume show a
significant increase in the cortex and hemisphere of the CpKO mice
compared to WT mice. (*p,0.002; n = 8 WT and 6 KO mice).
doi:10.1371/journal.pone.0025077.g004
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mBDNF1 (NM_007540), 59- GCT TTG CGG ATA TTG CGA

AGG GTT -39 and 59- ACC TGG TGG AAC ATT GTG GCT

TTG -39; mBDNF2 (NM_001048139), 59- TGA AGT TGG CTT

CCT AGC GGT GTA -39 and 59- TGG TGG AAC TTC TTT

GCG GCT TAC -39; mBDNF3 (NM_001048141) 59- CCA GAG

CAG CTG CCT TGA TGT TTA -39 and 59- CCG CCT TCA

TGC AAC CGA AGT AT -39; mBDNF4 (NM_001048142), 59-

TGA CAA CAA TGT GAC TCC ACT GCC -39 and 59- ATG

GTC ATC ACT CTT CTC ACC TGG -39; tBDNF (X91251.1 )

59- AGA AGA GCT GTT GGA TGA GGA CCA-39 and 59-

AGG CTC CAA AGG CAC TTG ACT ACT-39; HPRT

(NM_013556), 59- CCT GCT GGA TTA CAT TAA AGC

ACT G-39 and 59- CCT GAA GTA CTC ATT ATA GTC AAG

G-39.

Cell transfection and reporter assay
Human neuroblastoma SH-SY5Y cells were transfected with 1 mg

of BDNF(I–IV)-driven luciferase reporter and 0.2 mg of pRL-TK

vector (Promega, Madison, WI) expressing renilla luciferase using

Fugene 6 (Roche, Nutley, NJ). Luciferase activity was quantified using

a Dual Luciferase Reporter System 24 hours post transfection.

Immunoblot Analysis
Proteins were extracted from cortex or striatum in WT (n = 4) or

CpKO (n = 3) mouse brain tissue; 60 mg of protein was separated

by Novex Bis-Tris PAGE (4–12%) and then transferred to a PVDF

membrane. The membrane was blocked in 5% non-fat milk for

1 hour at room temperature, followed by an overnight incubation

at 4uC with primary antibodies against: actin (Sigma); BDNF

(Santa Cruz); 4-hydroxynonenal [71] nitrotyrosine (Millipore);

GFAP (Sigma). Membranes were then washed and incubated with

secondary antibodies for 1 hour at room temperature. Protein

bands were visualized using a chemiluminescence detection kit

(Amersham Biosciences, Piscataway, NJ, USA). Densitometry

measurements were made using Image J software and protein

levels were normalized to actin.

Mouse model of MCAO
Mice were housed in a room at a temperature of 2261uC and

12 hours dark and light cycle. Standard chow pellets and water

was allowed ad libitum. CpKO and wild type mice (22–28 g) were

anesthetized with isoflurane (induction with 2,5% and main-

tained on 1%). The concentration of inspired oxygen was adjusted

Figure 5. CpKO mice do not exhibit increased levels of oxidative stress, glial reactivity or cytokine levels in the cerebral cortex. A–C.
Densitometry measures of 4-hydroxynonenal (4HNE) (A), Nitrotyrosine (B) and GFAP (C) in the cortex of sham operated animals and MCAO operated
animals from the ischemic or contralateral side (24 hours after reperfusion). No differences were seen between genotypes (n = 4). Protein levels were
normalized to actin. D–F. Bio-Plex measurements of the cytokines IL-1b, TNF-a and IL-6 in pg/mL in the cortex of CpKO and WT animals 3 hours after
reperfusion (n = 7 per group). No significant differences were seen between the two groups.
doi:10.1371/journal.pone.0025077.g005
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to 25–30%. Body temperature was maintained at 3760.5uC using

a heating pad during the surgery. Mice underwent 45 min MCAO

with 72 hours of reperfusion by the standard trans-luminal

method, which has been described in previous reports [72].

Briefly, the right common carotid artery (CCA) was exposed

through a 15 mm medial line incision of the neck beneath the jaw.

The external carotid artery (ECA) was carefully separated from

the adjacent vagus nerve and tissues and isolated for a length of 3–

5 mm away from the bifurcation of CCA, and the distal end was

coagulated and cut off. The proximal end of CCA was temporarily

ligated using a 6-0 suture. Then a 7-0 nylon monofilament coated

with silicone was inserted from the distal end of the isolated ECA

and was gently introduced into the internal carotid artery and

advanced approximately 6–8 mm past the carotid bifurcation to

the origin of the middle cerebral artery (MCA). Successful MCAO

was confirmed by decreased cerebral blood flow in the territory of

the MCA measured by laser-Doppler flowmetry (LDF; Moor

Instruments Ltd.; Model MBF3D). The onset of ischemia was

designated at the time when the blood flow had decreased to below

30% of the baseline blood flow. The suture remained in situ for

45 min, and then reperfusion of the MCA was initiated by

withdrawal of the filament and release of the CCA ligature. Mice

were euthanized 72 hours after the stroke and infarct volumes

were quantified using standard volumetric analysis with correction

for swelling. The brain was chilled and the cerebrum was sliced

into 5 pieces of 1 mm coronal sections. The slices were then

incubated in 1% triphenyltetrazolium choloride (TTC) in

phosphate buffer, and stained at 37uC for 10–15 min. Both

anterior and posterior views of 5 coronal sections were captured

with a digital camera and the infarct areas were traced using the

SigmaScan Pro, Image analysis, Version 5.0 (SPSS Inc.). Infarct

volume was analyzed on 8 WT and 6 CpKO brains.

Levels of Cytokines
Murine cytokine levels from CpKO (n = 7) and WT (n = 7) mice

were analyzed using Bio-Plex Mouse Cytokine Singleplex kits

according to the manufacturer’s instructions (Biorad Laboratories,

Hercules, CA). The results are expressed as pg/mL and all assays

were run in duplicate.

Statistical Analysis
Statistical significance was determined using the Student’s t-test

with a p-value less than 0.05 proving statistical significance. Error

bars represent the standard error.
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