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HIF-1a exerts both detrimental and beneficial actions in atherosclerosis. While there is
evidence that HIF-1a could be pro-atherogenic within the atheromatous plaque,
experimental models of atherosclerosis suggest a more complex role that depends on
the cell type expressing HIF-1a. In atheroma plaques, HIF-1a is stabilized by local hypoxic
conditions and by the lipid microenvironment. Macrophage exposure to oxidized LDLs
(oxLDLs) or to necrotic plaque debris enriched with oxysterols induces HIF-1a -dependent
pathways. Moreover, HIF-1a is involved in many oxLDL-induced effects in macrophages
including inflammatory response, angiogenesis and metabolic reprogramming. OxLDLs
activate toll-like receptor signaling pathways to promote HIF-1a stabilization. OxLDLs and
oxysterols also induce NADPH oxidases and reactive oxygen species production, which
subsequently leads to HIF-1a stabilization. Finally, recent investigations revealed that the
activation of liver X receptor, an oxysterol nuclear receptor, results in an increase in HIF-1a
transcriptional activity. Reciprocally, HIF-1a signaling promotes triglycerides and cholesterol
accumulation in macrophages. Hypoxia and HIF-1a increase the uptake of oxLDLs,
promote cholesterol and triglyceride synthesis and decrease cholesterol efflux. In
conclusion, the impact of HIF-1a on cholesterol homeostasis within macrophages and
the feedback activation of the inflammatory response by oxysterols via HIF-1a could play a
deleterious role in atherosclerosis. In this context, studies aimed at understanding the
specific mechanisms leading to HIF-1a activation within the plaque represents a promising
field for research investigations and a path toward development of novel therapies.
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INTRODUCTION

The hypoxia inducible factor (HIF)-1a transcription factor is a major regulator of the cellular
response to hypoxia. As a heterodimer with HIF-1b it contributes to the adaptation to hypoxic
conditions by binding to key target gene promoters such a vascular endothelial growth factor
(VEGF) and erythropoietin (1, 2). Under normoxic conditions, HIF-1a is rapidly hydroxylated at
specific proline residues and degraded by the proteasome. Under hypoxic conditions, the activity of
prolyl-hydroxylase domain (PHD) enzymes is inhibited which leads to the stabilization of HIF-1a
and subsequent translocation to the nucleus (3, 4).
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While cholesterol accumulation in myeloid cells is a major
driver of the atherogenic process, hypoxia and activation of HIFs
are now recognized as important players (5–9). Interestingly,
HIF-1a has been shown to impact lipid homeostasis in
macrophages and to promote cholesterol accumulation (10).
Reciprocally, cholesterol-derived molecules such as oxysterols,
present in the atheroma plaque or originating from oxidized low
density lipoproteins (oxLDLs) can trigger HIF-1a activation in
macrophages with consequences on interleukin-1b (IL1-b)
production and the metabolic rewiring of macrophages with an
induction of glycolysis and glucose uptake (11–13).

We review here some studies that investigated the regulation
of cholesterol metabolism by hypoxia and HIF-1a as well as the
mirror regulation of HIF-1a signaling by cholesterol and related
derivatives. Finally, we discuss the consequences of theses
“dangerous liaisons” in the pathogenesis of atherosclerosis and
the potential interest of pharmacological targeting the HIF-1a-
cholesterol axis.
HIF-1a AND ATHEROSCLEROSIS

The relationship between HIF-1a and atherosclerosis is well
documented and has been reviewed previously (14, 15). While
several levels of evidence support the hypothesis that HIF-1a
could be pro-atherogenic within atheroma plaques (10),
experimental models of atherosclerosis in mice suggest a
complex role that depends on the cell type or the organ in
which HIF-1a is present (16, 17).

HIF-1a is expressed and functional in most of the cells that
contribute to plaque formation and progression: endothelial
cells, vascular smooth muscle cells (VSMCs) and immune cells
such as macrophages (16, 18, 19). In human atherosclerotic
plaques, immuno-histology experiments show that HIF-1a is
mainly detected in macrophages, in pro-inflammatory regions
rich in lipids and potentially hypoxic (20). Expression of HIF-1a
in human plaques is associated with pro-angiogenic and pro-
inflammatory factors, VEGF and IL-1b, respectively (12, 20, 21).
HIF-1a expression also correlates with two markers of plaque
instability: intra-plaque hemorrhages and plaque angiogenesis
(21–23). Recently, single cell RNA sequencing studies in mice
further confirmed that HIF-1a is expressed in different
macrophage subsets as well as in monocytes within the plaque
(24, 25).

Experimental studies suggest that HIF-1a activation in
different cell types present within the plaque is mainly
associated to pro-atherogenic effects. In murine endothelial
cells, activation of HIF-1a increases the expression of VEGF
and its receptors as well as the production of nitric oxide (NO)
through NO synthase induction (26, 27). Hypoxia is also
associated with the production of reactive oxygen species
(ROS) by endothelial cells via the activation of the HIF-1a
target genes NADPH oxidases (NOXs) (28–30). Overall, HIF-
1a-dependent pathways induce endothelial cell dysfunction and
increase endothelial inflammation, which could subsequently
promote the adhesion and recruitment of immune cells (16).
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In VSMCs, hypoxia induces their migration and their
proliferation, through the recruitment of HIF-1a which will
activate several target genes including migration inhibitory
factor, VEGF and thrombospondin-1 (31–33). Because VSMCs
functions in atherosclerosis are highly complex (34, 35), the
consequences of HIF-1a-induced VSMCs migration and
proliferation are yet to be determined.

In the context of atherosclerosis, one of the best-
documented effects of HIF-1a is its action on macrophages.
Notably, HIF-1a regulates the expression of pro-angiogenic
genes such as VEGF (36) and contributes to the metabolic
reprogramming of macrophages by activating glucose uptake
and glycolysis which are hallmarks of plaque macrophage
metabolism (37). HIF-1a induces significant alterations in
macrophage lipid metabolism, leading to lipid accumulation
(10). HIF-1a signaling plays a major role in the regulation of
macrophage activation and inflammatory response and
promote macrophage polarization toward an M1 phenotype
(38, 39). IL-1b, a pro-inflammatory cytokine, is a direct HIF-1a
target (40). In activated macrophage, increased levels of
succinate stabilize HIF-1a and allow the induction of IL-1b
(41). The HIF-1a-IL-1b axis is of peculiar interest in the
context of atherosclerosis. Indeed IL-1b is a promising
therapeutic target and strategies aimed at inhibiting IL-1b
with monoclonal antibodies have led to a significantly lower
rate of cardiovascular events in high-risk patients (42).

Mouse models of atherosclerosis can be used to provide a
more direct assessment of the contribution of HIF-1a to
atherogenesis. Interestingly, the impact seems to vary
depending on the cell type considered. Low density lipoprotein
receptor-deficient mice (Ldlr-/-) mice transplanted with the bone
marrow of mice deficient for Hif1a in myeloid cells had a 72%
reduction in atheromatous lesions in the aorta. Conversely, bone
marrow transplantation from mice presenting a constitutive
activation of HIF-1a (mice deficient for Von Hippel–Lindau
tumor suppressor) increased atherosclerosis (18). Another study
in Ldlr-/-mice found that cell-specific deletion ofHif1a in LysM+
bone marrow cells did not affect the formation of atherosclerotic
lesions whereas the conditional invalidation ofHif1a in dendritic
cells (cd11c+ cells) accelerated atherosclerotic plaque formation
and increased T cell infiltration (43). In line with a potentially
beneficial role, HIF-1a overexpression in mouse lymphocytes
was associated with a reduction of IFN-g expression and a
reduced development of atherosclerosis (17).

Regarding non-immune cells, Hif1a deletion in endothelial
cells in apolipoprotein E-deficient (ApoE-/-)mice led to a decrease
in atheromatous lesions andmacrophage accumulation in carotids
and the aorta (16). Finally, in the same model of atherosclerosis-
sensitive mice, specific Hif1a deletion in smooth muscle cells
reduced vascular inflammation and atherosclerosis (19).

While these studies show contrasting effects of HIF-1a
depending on cell type, Ldlr-/- mice treated with an inhibitor
of HIF prolyl 4-hydroxylase-2 leading to the stabilization of HIF-
1a and HIF-2a were found to have decreased plasma lipid levels
and attenuated atherosclerosis development (44). These data
suggest that HIF-1a exerts systemic beneficial effects in the
March 2022 | Volume 13 | Article 868958
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liver and the adipose tissue with favorable consequences on
atherosclerosis development (44).
REGULATION OF HIF-1a BY
CHOLESTEROL AND LIPID
MICROENVIRONMENT

Mechanisms of HIF-1a Activation Within
the Atheromatous Plaque
Local hypoxic conditions within specific plaque areas certainly
play a major role in HIF-1a activation (6, 20, 37, 45). Nevertheless,
it appears that other factors associated with the macrophage
microenvironment, also contribute significantly to the activation
of HIF-1a. Pro-inflammatory cytokines and chemokines can be
detected within the plaque, as well as high levels of cholesterol and
oxidized lipids (oxysterols, lysophospholipids and oxidized
phospholipids). A variety of damage associated molecular
patterns released by dying cells are also present (46). Therefore,
inflammation and toll-like receptor (TLR) dependent pathways
can also induce HIF-1a signaling by several complementary
mechanisms. HIF-1a is a NF-kB target gene, therefore TLR
signaling activates HIF-1a at the transcriptional level. ROS
production secondary to TLR activation also promotes HIF-1a
stabilization (47–49). Finally, the metabolic reprogramming of
inflammatory macrophages leading to the accumulation of
succinate also activates HIF-1a (41).

Recent studies also demonstrate that the lipidmicroenvironment,
in particular the high concentrations of cholesterol and its oxidized
derivatives plays a significant role in the activation of HIF-1a
signaling. Accumulation of oxLDLs in the intima of arteries and
their uptake bymacrophages is a hallmark of atherosclerosis (50, 51).
Macrophages engulf oxidized lipoproteins through different
scavenger receptors without feedback inhibition by cholesterol (50,
51). Alternatively, macrophages can also acquire cholesterol and
oxidized derivatives via efferocytosis and phagocytosis of cholesterol-
rich cellular debris (12). In the context of the atheromatous plaque,
native LDL uptake or endogenous cholesterol biosynthesis, two
retro-regulated processes, certainly play less important roles (50,
51). Interestingly, various studies have shown that these different
cholesterol supply pathways are likely to modulate the activation of
HIF-1a (13, 52). Nevertheless, as discuss below, their impact differs
greatly if one considers the classic retro-regulated pathways i.e.
cholesterol biosynthesis or uptake of native LDL (52, 53), or the
pathways that are likely to be favored within the plaque, i.e. oxLDL
uptake or phagocytosis of cellular debris (Figure 1) (12, 13).

Regulation of HIF-1a by Cholesterol
Biosynthesis and Lipoprotein Uptake
Various studies have focused on the impact of statins, HMGCoA
reductase inhibitors and cholesterol-lowering agents on HIF-1a
(53, 54). In VSMCs, fluvastatin was found to inhibit the
expression HIF-1a target genes under hypoxic conditions by
accelerating HIF-1a ubiquitination (53). This could be explained
by a decrease in isoprenoids (mevalonate, farnesyl-
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pyrophosphate) and in the prenylation of several G-proteins in
statin-treated cells (53). By contrast, in endothelial cells,
simvastatin increases both HIF-1a and VEGF expression.
Mechanistically, simvastatin inhibits RhoA and promotes the
translocation of HIF-1a to the nucleus of endothelial cells (54).

The regulation of HIF-1a-dependent pathways by
lipoproteins has recently been evaluated in cellular models
(52). In human pancreatic adenocarcinoma cells, lipoprotein
depletion in the cell culture medium leads to the activation of
the HIF-1a pathways, but the addition of LDLs, the main
cholesterol transporters in the plasma, inhibits the
accumulation of HIF-1a by regulating the activity of PHDs
enzymes (52). Interestingly, it seems that cholesterol is not
directly involved. Rather, it appears that fatty acids released
by the lysosomal hydrolysis of cholesterol esters via the
lysosomal acid lipase decrease the production of mitochondrial
ROS, leading to activation of PHDs (52). Conversely, direct
addition of free cholesterol (not handled by lipoproteins) in the
culture medium of hepatocytes induces HIF-1a through a
mechanism involving mitochondrial dysfunction, generation of
mitochondrial ROS and NO production (55).

Regulation of HIF-1a by oxLDLs
and Oxysterols
Several independent studies show that macrophage exposure to
oxidized lipids markedly induces HIF-1a-dependent pathways
(12, 13). Moreover, HIF-1a seems to be required for many of the
effects induced by oxLDLs on macrophages including
angiogenesis and metabolic reprogramming (13, 56).

Treatment of macrophages with oxLDLs induces the
expression of the glucose transporter 1 (GLUT1) and glucose
uptake. This effect is mediated by the generation of ROS by the
NADPH oxidase NOX2 leading to the activation of HIF-1a (13).
OxLDL treatment strongly induces HIF-1a and VEGF in
primary human macrophages and promotes tube formation in
a co-culture model with endothelial cells (56). HIF-1a also
appears to be required for the survival of macrophages exposed
to oxLDLs by inducing several anti-apoptotic pathways (57).
Beside oxLDL treatment, phagocytosis of cellular debris also
activates HIF-1a. Incubation of macrophages with homogenates
from human carotid plaques, which contain oxidized cholesterol
derivatives, results in a global activation of HIF-1a signaling,
including IL-1b production, activation of glycolysis pathways
and VEGF production (11, 12).

From a mechanistic point of view, it appears that there are
multiple levels of regulation. OxLDLs exert pro-inflammatory
effects by activating TLR pathways that are known to promote
HIF-1a stabilization (58, 59). The generation of ROS via the
activation of several NADPH oxidases (NOX2, NOX4) is
also involved (60). The different molecular components of
oxLDLs have specific effects. OxLDLs as well as the necrotic
core of atherosclerotic plaques are rich in oxidized cholesterol
derivatives. In particular, 7-oxysterols (such as 7-ketocholesterol)
have pro-inflammatory activities and induce the production of
ROS by macrophages (61–63). Accordingly, the ability of plaque
debris to induce HIF-1a target genes correlates with their
March 2022 | Volume 13 | Article 868958
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oxysterol content (11, 12). Interestingly, this correlation is
significant not only for 7-oxysterols but also for other
oxysterols such 27-OH and 25-OH cholesterol, which are
agonists for the nuclear receptors liver X receptors (LXRs). In
line with this observation, an additional mechanism of HIF-1a
regulation by oxysterols was recently described. An increase in
the expression and in the transcriptional activity of HIF-1a
mediated by the activation of LXR was demonstrated (11, 12,
64). Indeed, LXR activation in macrophages by synthetic agonists
or with oxysterols-enriched plaque homogenates induce several
HIF-1a-dependent pathways, including lipogenesis, IL-1b
production, angiogenesis and glycolysis (11, 12, 64). The
molecular mechanisms remain to be fully characterized, but it
seems that LXR and HIF-1a may directly interact via the
ligand binding domain of LXR and the oxygen-dependent
degradation domain of HIF-1a (64). Accordingly, chromatin
immunoprecipitation experiments revealed a co-recruitment of
HIF-1a and LXR at the hypoxia response elements (HRE) of
Frontiers in Immunology | www.frontiersin.org 4
target genes (11, 12, 64). Interestingly, this pathway is relevant in
the context of atherosclerosis since HIF-1a and LXRa co-localize
in the nuclei of macrophages within the plaque (12, 64).
IMPACT OF HYPOXIA AND HIF-1a
ON CHOLESTEROL HOMEOSTASIS
IN MACROPHAGES AND ATHEROMA

As mentioned previously, within the plaque, macrophages can
acquire cholesterol and oxysterols through the uptake of oxidized
lipoproteins or the phagocytosis/efferocytosis of cells and cellular
debris (12, 50, 51). Nevertheless, free cholesterol accumulation is
deleterious for the cells because it can form cytotoxic derivatives
and pro-inflammatory microcrystals (65). Therefore, free
cholesterol is stored in the form of less toxic cholesteryl-esters
or is eliminated from the cells by efflux pathways dependent on
FIGURE 1 | Cholesterol and lipid microenvironment regulate HIF-1a. Low density lipoproteins (LDL) are taken up into the cells via endocytosis of the LDL receptor
(LDLR). Fatty acids released by the lysosomal hydrolysis of cholesteryl esters inhibit mitochondrial reactive oxygen species (ROS) production and decrease HIF1a
stability. Cholesterol synthesis may also affect HIF-1a dependent pathways through the generation of isoprenoids and subsequent isoprenylation of G-proteins. In the
context of atheroma, macrophages engulf oxidized lipoproteins and oxysterol-rich cellular debris, which leads to ROS production and increases HIF-1a stability.
Moreover, oxysterol accumulation activates the Liver X Receptor (LXR). LXR may directly interact with HIF-1a. Overall, HIF-1a activation promotes the expression of
genes implicated in inflammation (interleukin 1-b), angiogenesis (vascular endothelial growth factor (VEGF) and glycolysis (glucose transporter 1 (GLUT1), hexokinase
2 (HK2), enolase 2 (ENO2).
March 2022 | Volume 13 | Article 868958
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the ATP Binding Cassette A1 (ABCA1) and ABCG1 transporters
(50, 51). Hypoxia and HIF-1a may disrupt the balance
between cholesterol input and output, triggering cholesterol
accumulation (Figure 2). Several studies showed that hypoxic
conditions promote the formation of lipid droplets and the
transformation of macrophages into foam cells (66, 67).
However, the nature of the lipids that accumulate differs
according to the studies. For instance, Boström et al. found
only an accumulation of triglycerides (TG) without an effect on
intracellular cholesterol concentrations in human primary
macrophages under hypoxic conditions (66). TG accumulation
could be explained by a metabolic reprogramming of
macrophages characterized by the activation of lipogenesis
along with decrease in fatty acid oxidation (66). Interestingly,
this effect could be potentiated by the interaction of HIF-1a with
LXR (64). Conversely, Parathath et al. show that hypoxia and
HIF-1a increase both TG and sterol concentrations in murine
macrophages (10). Whether these discrepancies are related to
species differences is intriguing and the subject remains to be
further investigated. Interestingly, hypoxia specifically increases
Frontiers in Immunology | www.frontiersin.org 5
the proportion of unesterified cholesterol (10, 67). The
underlying mechanisms are not clear, but Acyl-CoA acyl
transferase, which is responsible for cholesterol esterification,
does not seem to be modulated at the transcriptional level
by hypoxia (10, 67). This preferential accumulation of
free cholesterol is particularly relevant in the context of
atherosclerosis since free cholesterol accumulates in advanced
plaques and contributes to inflammation, macrophage apoptosis
and necrotic core formation in hypoxic areas in the plaque
(65, 68).

While hypoxia and HIF-1a increase the uptake of oxLDLs by
macrophages (69), the main scavenger receptors expressed in
macrophages are differentially regulated in this context. The
scavenger receptor A is inhibited by hypoxic conditions, but
hypoxia and HIF-1a induce the expression of the lectin-type
oxidized LDL receptor 1 (LOX1) receptor as well as a
relocalization of CD36 at the cell surface (69, 70). Accordingly,
LOX1 inhibition was shown to decrease oxLDL uptake and foam
cell formation under hypoxic conditions (69) (Figure 2).
Regarding other cell types, hypoxia induces the expression of
FIGURE 2 | HIF-1a and hypoxia alter lipid homeostasis in macrophages. Activation of HIF-1a dependent pathways promotes triglyceride and cholesterol
accumulation in macrophages through activation of lipogenesis, cholesterol synthesis and decrease of fatty acid oxidation. Hypoxia and HIF-1a also promotes low
density lipoproteins (LDL) retention as well as oxidized LDL uptake by changing proteoglycan composition and increasing the expression of several scavenger
receptors. Finally, in murine macrophages hypoxia/HIF-1a impair cholesterol efflux by altering ABCA1 localization.
March 2022 | Volume 13 | Article 868958
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LDL receptor-related protein 1 and the uptake of aggregated LDL
in VSMCs (71) (Figure 2). The very low density lipoprotein
(VLDL) receptor, expressed in endothelial cells, is also a HIF-1a
target and promotes the cellular uptake of LDL and VLDL in
hypoxic conditions (72). Finally, hypoxic macrophages secrete
proteoglycans that present a higher affinity for LDL which may
favor the retention, oxidation and uptake of LDL in hypoxic area
in atheromatous plaques (73).

Sterol synthesis is induced in murine macrophages under
hypoxic conditions, which is consistent with the induction of
HMGCoA Reductase expression, previously described as a HIF-
1a target gene (10, 74). Accordingly, statin treatment reduces the
accumulation of cholesterol in hypoxic macrophages (10).
However, once again the regulation appears to be tissue-
specific. In the liver, HIF-1a promotes the degradation of
HMGCoA reductase by inducing insulin induced gene 2 (75).

Finally, ABCA1-dependent cholesterol efflux is substantially
reduced by hypoxia in a HIF-1a-dependent manner in murine
macrophage cell lines and in murine bone marrow-derived
macrophages (10). The mechanisms do not appear to be related
to a mechanism of transcriptional regulation, since ABCA1
mRNA levels remain unchanged under hypoxic conditions (10).
In fact, hypoxia affects the intracellular distribution of ABCA1
which leads to an alteration of ABCA1 localization at the plasma
membrane and a reduction of cholesterol efflux (Figure 2) (10). By
contrast, in primary human macrophages, the HIF-1a/HIF-1b
heterodimer was shown to bind to an HRE present in the ABCA1
gene promoter (76). Interestingly, ABCA1 and HIF-1b expression
are correlated in macrophages isolated from human
atherosclerotic lesions (76).
DISCUSSION

The studies reviewed here shed lights on the complex interplay
between hypoxia, HIF-1a, atherosclerosis and cholesterol
homeostasis. Regarding atherosclerosis, the impact of HIF-1a
appears to depend on whether we consider the cells present
within the plaque or the effects of systemic modulation of HIF-
1a (18, 44).

In addition, the mechanisms contributing to the regulation of
HIF-1a by cholesterol in macrophages vary according to the
considered pathways i.e. canonical pathways (cholesterol
biosynthesis and LDL uptake) vs unregulated cholesterol and
cholesterol derivatives uptake in plaque macrophages. These
observations further strengthen the interest of identifying the
specific mechanisms of HIF-1a activation within the plaque.
Frontiers in Immunology | www.frontiersin.org 6
Additionally, the relative impact of hypoxia vs the lipid
microenvironment remains controversial. While a wide variety
of oxidized lipids and oxysterols are present in atheroma, it
remains to be determined which oxysterols and which pathways
are more specifically involved. This represents a promising field of
investigation and potential targets for new therapeutic strategies.

The impact of HIF-1a on cholesterol metabolism depends on
the experimental models. Several studies reveal a marked
difference between human and murine macrophages in the
accumulation of cholesterol and also in the modulation of
cholesterol efflux pathways (10, 66, 76). Similarly, the interplay
between HIF-1a and LXRa leading to the activation of glycolysis
or to the induction of IL-1b seems to be a feature of human
macrophages (12). The understanding of the mechanisms
underlying these inter-species differences is still very incomplete.

In conclusion, the relationship between HIF-1a and
cholesterol is close, complex, and only partially understood.
Nevertheless, there is undoubtedly a reciprocal regulation
between HIF-1a and cholesterol in macrophages in the context
of atherosclerosis. On one side, HIF-1a modulates macrophage
cholesterol homeostasis and on the other, cholesterol-derivatives
affect HIF-1a signaling giving rise to a vicious cycle that
contribute to a worsening of the atherosclerotic process. It
therefore seems crucial to investigate the specific mechanisms
leading to HIF-1a activation in macrophages within
atheromatous plaques.
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