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Simple Summary: Cryptosporidiosis is a global, zoonotic disease of concern. Cryptosporidium spp.
can infect susceptible hosts via a main fecal–oral route due to cross-contamination of raw food
and surface water from reservoir animals in the neighborhood, farms, or slaughter houses, besides
some mechanical vectors, such as cockroaches and flies. Cryptosporidium parvum alleles are the
most common species infecting children, and its potential reservoir is cattle. Hence, understanding
the epidemiology of Cryptosporidium spp. in preweaned calves, along with the diagnosis of the
predominant species and subtypes infecting them, can play a role in preventing Cryptosporidium
spp. spread in the environment. In this study, Cryptosporidium parvum subtype IIaA15G2R1 was the
most dominant Cryptosporidium spp. detected in preweaned calves in Kuwait. This subtype was
recorded previously in Kuwaiti children suffering from diarrhea. Maintaining good personal hygiene
in humans and reducing, controlling, or eliminating the causal risk factors in preweaned calves is a
superb strategy for preventing and narrowing the spread of this disease.

Abstract: Cryptosporidium is a worldwide enteric protozoan parasite that causes gastrointestinal
infection in animals, including humans. The most notable species is Cryptosporidium parvum because
of its zoonotic importance; it is also the leading cause of cryptosporidiosis in preweaned calves.
A cross-sectional study was conducted to determine the prevalence of Cryptosporidium infection,
investigate the potential risk factors, and use molecular diagnosis to identify the predominant
Cryptosporidium spp. in preweaned calves in Kuwait. Of 175 preweaned calves, Cryptosporidium
antigens were detected in 58 (33.1%) using rapid lateral immunochromatography assay (IC). Calves
less than one month of age (OR = 4.32, p = 0.0001) and poor hygiene (OR = 2.85, p = 0.0075) were
identified as significant risk factors associated with Cryptosporidium infection. Molecular identification
revealed that C. parvum (62.8%) was the dominant species infecting preweaned calves in Kuwait. In
contrast, C. bovis and C. andersoni were recorded at 5.7% and 2.9%, respectively. All C. parvum gp60
nucleotide sequences were subtype IIaA15G2R1. Calves could be a source of C. parvum infection due
to the similarity of the subtypes recorded previously in Kuwaiti children and preweaned calves in
this study. Therefore, more research is needed to understand the Cryptosporidium transmission cycle
in Kuwait.

Keywords: Cryptosporidium spp.; C. parvum IIaA15G2R1; preweaned calves; risk factors; Kuwait

1. Introduction

Cryptosporidium is a globally distributed protozoan parasite. It accounts for most
cryptosporidiosis cases in newborn farm animals, and is a significant causative agent of
diarrhea in children in many parts of the world [1–3].
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C. parvum is one of the main enteropathogens of neonatal calf diarrhea; it infects
preweaned calves ≤ six weeks of age [4]. However, calves ranging from one to three
weeks old appear to be the most susceptible age. Infected calves suffer from acute profuse
diarrhea, high morbidity, possible mortality, and reduced growth rate as long-term effects
of cryptosporidiosis [3]. This species is also predominant in humans in the Middle East,
notably its IIa allele, implying that cattle may be involved in zoonotic infections [5–7].

Kuwait is a small country in a desert region. Vegetation is highly scarce given the type
of climate and soil. The climate is continental, with a dry, hot season (April–November)
and a mild, cold, wet season (December–March). Dust storms are expected during the hot
season, and temperatures can reach 50 ◦C. Due to this harsh climate and limited vegetation,
dairy farming presents unique challenges. The 2020 census recorded 31,484 cattle in the
country [8]. Cattle are reared for milk production under an intensive farming system with
zero grazing. The breed of most dairy cattle is Friesian, and their farms are confined to the
Sulaibiya area. Most dairy cattle were imported from Germany and Holland to rebuild the
dairy sector after the destruction of livestock during the Iraq invasion.

No studies have been conducted in Kuwait to determine the prevalence of Cryptosporid-
ium, identify Cryptosporidium spp. and subtypes in cattle, or investigate their public health
significance. In contrast, many research papers have been published on the molecular
characterization of bovine Cryptosporidium spp. and their global prevalence [1,6,7,9–15].
Consequently, the objectives of this study were to estimate the prevalence and determine
the risk factors of Cryptosporidium infection in preweaned calves (≤3 months of age) and
identify the genotypes and subtypes of Cryptosporidium in this animal species, furthermore
to assess their public health importance in Kuwait.

2. Materials and Methods
2.1. Study Design, Data, and Sample Collection

Between October 2014 and September 2015, a cross-sectional study was conducted.
A single visit was made to each farm that took part in the study to collect samples and
data. For data collection from each farm, a structured questionnaire (open-ended, closed-
ended, dichotomous, or multiple choice) was created. The host factors (breed, age, sex), the
environmental factors (location, season) were the subjects of the data collection. In addition,
management factors, such as management system, herd size, frequency of cleaning and
bedding change, presence of feed and water troughs, source of water, separation of age
groups, etc., were collected

All cattle farms in Kuwait are private dairy farms of Friesian breed, located in Sulaibiya
(29◦28′56.0′′ N, 47◦81′80.0′′ E), and reared under an intensive farming system with zero
grazing. The farms were supplied with desalinated potable water from a municipal source.
The presence of feed and water troughs, maternity facilities, and the separation of age
groups were almost identical among all the farms. Data on the frequency of cleaning and
bedding changes were consistent with on-farm cleanliness visual monitoring during the
visit to determine the hygienic farm status as poor or good. The farms were chosen without
knowing whether or not they were infected with Cryptosporidium.

Twenty-two dairy cattle farms were visited in the Sulaibiya area. The overall number
of dairy cattle on farms visited was 9365 (882 preweaned calves). Herd size of cattle ranged
from 12 to 2400 animals (median 300). The Epi Info 7-Stat Cal tool was used to determine the
sample size, and systematic random sampling was used to select animals from each visited
farm. One hundred seventy-five preweaned calves (≤3 months of age) were randomly
selected to examine their fecal samples. Using a sterile screw-capped bottle labelled with
the animal’s data (such as sex, age, and health status) and the date of the sample, 5–10 gm
of feces were obtained directly from the rectum or shortly after defecation. The specimens
were stored at 4 ◦C or processed within 48 h after being placed in an icebox and transported
to the lab.
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2.2. Processing of Samples

Each sample was divided into two portions in the laboratory: the first part for detecting
Cryptosporidium antigen by IC. The second portion was used for storage either in 2.5%
potassium dichromate or at −20 ◦C and was sent to Prof. Dr. Lihua Xiao (College of
Veterinary Medicine, South China Agricultural University, Guangdong Province, China)
for molecular diagnosis and typing of Cryptosporidium spp. if the sample was diagnosed as
positive for Cryptosporidium antigen by rapid lateral immunochromatographic assay (IC).

2.3. Detection of Cryptosporidium in Fecal Samples

A commercial rapid lateral immunochromatographic assay (Anigen Rapid BoviD-4 Ag
Test Kit; BioNote Inc., Gyeonggi-do, Korea) was used to detect Cryptosporidium, rotavirus,
coronavirus, and E. coli K99 antigens. The procedures and results’ interpretation were
performed following the manufacturer’s prescripts.

2.4. DNA Extraction, PCR Amplification, and Subtyping

For the typing and subtyping of Cryptosporidium spp., 35 IC specimens, that tested
positive for the parasite, were chosen. Prior to DNA isolation, the specimens, stored in
potassium dichromate, were centrifuged double in DH2O. Using the FastDNA SPIN kit for
soil (MP Biomedicals, Santa Ana, CA, USA), DNA was pulled from all samples. Afterward,
nested PCR, targeting an approximately 830-bp region of the small subunit (SSU) rRNA
gene, was used to check the recovered DNA for Cryptosporidium species [16,17].

By performing a restriction fragment length polymorphism (RFLP) analysis on the
secondary PCR products with SspI and MboII, as previously published [17], Cryptosporidium
spp. were distinguished. Using the negative control (reagent water) and the positive control
(Cryptosporidium baileyi DNA), each sample was examined at least twice. The secondary
PCR results from typical specimens were sequence analyzed to validate the identification
of Cryptosporidium species.

Using an ABI 3130 genetic analyzer, all gp60 gene PCR products and representative
SSU rRNA gene PCR products from C. parvum were sequenced (Applied Biosystems, Foster
City, CA, USA). In order to identify Cryptosporidium spp. (based on SSU rRNA sequences)
and subtypes, for C. parvum subtypes, bi-directional sequences were obtained and assem-
bled using the ChromasPro (version 1.5) software (Technelysium Pty Ltd, South Brisbane,
Australia. Webpage: http://technelysium.com.au/?page_id=27 accessed on 25 April 2018).
These sequences were then aligned with each other, and referenced sequences of each
gene were downloaded from Gen Bank using ClustalX (Conway Institute UCD, Dublin,
Republic of Ireland. Webpage: http://www.Clustal.Org/, accessed on 30 April 2018). The
existing Cryptosporidium subtype nomenclature approach was used to name the C. parvum
subtypes [5].

2.5. Statistical Analysis

The Microsoft Office program’s MS Access® database information system (Microsoft
Corporation, Redmond, WA, USA) was used to store test results and questionnaires.
The data was exported to SXW® for statistical analysis (Statistix 10, Analytical software,
Tallahassee, FL, USA). The independent variables under study were age group, sex, season,
herd size, and farm hygiene status. The correlation between variables and the prevalence
of Cryptosporidium-infection in calves was examined using univariate analysis (Chi-square
test, χ2) at a 95% Confidence Interval. The significant variables (p ≤ 0.05) were analyzed
using multivariate stepwise logistic regression. The Hosmer–Lemeshow test was applied
to determine the goodness of fit for the logistic regression model, and p > 0.05 indicated a
good fit model.

3. Results

The prevalence of Cryptosporidium among the examined calves was 33% (58/175). Ro-
tavirus, coronavirus, and E. coli were detected in 16 (9%), 3 (2%), and 35 (20%) of the samples,

http://technelysium.com.au/?page_id=27
http://www.Clustal.Org/
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respectively (Figure 1). Cryptosporidium spp. mono-infection was discovered in 42 preweaned
calves (72%). Co-infections with Cryptosporidium were 14% (8/58) for rotavirus, 10% (6/58) for
E. coli, and 4% (2/58) for rotavirus and E. coli (Figure 1).
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Figure 1. Results of rapid IC assay: (A) Prevalence of the four pathogens (Cryptosporidium, rotavirus-
A, coronavirus, and E. coli) detected in 175 preweaned calves. (B) Prevalence of Cryptosporidium
mono-infection and co-infections with other pathogens detected by IC.

The results of the univariate analysis showed that four variables were distinguished as
putative risk variables for Cryptosporidium infection in the examined calves (Table 1). There was
a significant distinction in Cryptosporidium prevalence rates among the various age group of
the examined calves (p = 0.0000), with the highest prevalence in calves less than one month of
age (50.6%; CI 39.4–61.7). The Cryptosporidium infection rate was higher in the wet than in the
dry season (37.6%; CI 29.1–46.7; p = 0.0476). Similarly, herd size significantly influenced the
Cryptosporidium infection rate (p = 0.0062). The prevalence rate in calves reared in large herd sizes
(42.4%; CI 32.2–53.1) was higher than those in small (22.9%; CI 14.4–33.4). Furthermore, farm
hygiene status significantly affected the rate of infection (p = 0.0005). Calves reared on farms
with poor farm hygiene (42.9%; CI 33.5–53.0) had more infections than those with good hygiene
(17.6%; CI 9.5–28.8). On the other hand, the sex of the examined calves did not significantly
affect the Cryptosporidium prevalence rate (p = 0.7412); hence, this factor was excluded from the
multivariable analysis. The four variables (age group, season, herd size, and farm hygiene) were
subjected to multivariate logistic regression, which revealed that calves less than one month of
age (OR = 4.32; CI 2.09–8.57; p = 0.0001) and poor hygiene (OR = 2.85; CI 1.32–6.13; p = 0.0075)
were the significant risk factors identified in this study, as shown in Table 2.

Molecular identification of the positive fecal samples showed that Cryptosporidium
was detected in 71.4% (25/35). The Cryptosporidium species identified by RFLP analysis of
the SSU rRNA PCR product included C. parvum in 22 (62.8%), C. bovis in 2 (5.7%), and C.
andersoni in 1 (2.9%) of the examined samples (Figure 2). Subtyping of C. parvum at the gp60
locus revealed that all 22 samples (100%) belonged to one subtype IIaA15G2R1 (Figure 2).
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Table 1. Univariate analysis results of variables associated with Cryptosporidium-infected calves
(No. 175) in Kuwait.

Risk Factors No. of Samples
Prevalence of Cryptosporidium

p-Value
No. % (95% CI) *

Age group
(in months)

<1 83 42 50.6 (39.4–61.7)
0.0000≥1–<2 43 9 20.9 (10.0–36.0)

≥2–≤3 49 7 14.3 (5.9–27.2)

Sex
Male 95 33 34.7 (25.2–45.2)

0.7412Female 80 25 31.3 (21.4–42.6)

Season
Wet 125 47 37.6 (29.1–46.7)

0.0476Dry 50 11 22.0 (11.5–36.0)

Herd Size
(heads)

Large > 300 92 39 42.4 (32.2–53.1)
0.0062Small ≤300 83 19 22.9 (14.4–33.4)

Farm hygiene Good 68 12 17.7 (9.5–28.8)
0.0005Poor 107 46 42.9 (33.5–53.0)

Overall prevalence 175 58 33.1 (26.2–40.6)

* CI Confidence Interval.

Table 2. Multivariate stepwise logistic regression analysis * of risk factors for Cryptosporidium infection
that were significant using univariate analysis.

Variables Coefficient β Std. Error p-Value OR **
95% CI ***

Lower Upper

Age group (in months) < 1 1.442 0.360 0.0001 4.23 2.09 8.57
Poor hygiene 1.046 0.391 0.0075 2.85 1.32 6.13

* p value (Hosmer–Lemeshow goodness of fit test) = 0.1315, ** OR odds ratio, *** CI Confidence Interval.
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4. Discussion

Bovine cryptosporidiosis is globally distributed and has been reported as a consider-
able risk factor for calf enteritis [3,4,18,19]. This study was the first attempt to identify the
risk factors and molecular typing of species involved in Cryptosporidium infection among
preweaned calves in Kuwait. Many epidemiological studies have been conducted to detect
cryptosporidiosis in calves worldwide [10,15,20–24].
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In the present study, the overall infection rate of Cryptosporidium in the examined calves
was 33.1% (95 % CI 26.2–40.6%). In the Middle East, previous studies of Cryptosporidium
infection in preweaned calves reported prevalence rates of 47.9% in Iraq [25], 18.7% in
Jordan [10], 14.7% in Iran [20], 84% in Algeria [13], 58.3% in Sudan [14], 9.7% in Egypt [15],
and 53.6% in Turkey [23]. These variations in infection rates could be due to geographical
differences in the prevalence of Cryptosporidium infections, besides other factors related to
differences in diagnostic methods, sampling strategies, farm management, and hygiene [3].
For instance, the rate of infection may be elevated if specimens were only collected from
diarrheic preweaned calves. Additionally, prevalence rate could be underestimated in a
cross-sectional study compared with a longitudinal study, because the shedding profile of
Cryptosporidium oocysts is intermittent and could be missed [26]. However, cross-sectional
studies can provide more consistent evaluations of disease risk factors than longitudinal
studies [27].

The present study used the rapid IC assay to diagnose cryptosporidiosis in preweaned
calves. The IC assay’s advantages are accurate, rapid, cost-effective, and easy to conduct,
as it does not require other specialized instruments compared with microscopy, ELISA,
and PCR techniques. Many investigators study the diagnostic performance of these assays.
Sensitivity rates for different commercially available IC detecting Cryptosporidium copro-
antigen have previously been reported to vary from 75% to 100%, whereas their specificity
rates ranged from 92% to 100% [28–30].

The present study observed a significant correlation between Cryptosporidium infection
and calves’ age. Calves less than one month of age were more likely to harbor Cryptosporidium,
and infection rates diminished progressively with age. These results were consistent with most
existing studies, showing that this protozoan is most common in neonatal calves [3,4,22,23]. The
highest peak of Cryptosporidium infection rate was reported in two-week-old calves [23,31]. This
could be due to their immature immune systems [32].

In the present study, multivariate analysis identified farm hygiene status as a risk
factor for Cryptosporidium infection in preweaned calves. The prevalence of Cryptosporid-
ium is approximately three times higher in farms with poor hygienic status (OR = 2.85;
95% CI = 1.32–6.13) compared to those with good hygiene. Similar results were previously
observed [24,33,34]. This result could be explained by the fact that a dirty and muddy farm
could create appropriate climatic conditions for the presence or survival of Cryptosporidium
oocysts in the farms or animal houses. Consequently, it raises the risk of calves contracting
Cryptosporidium infection by contaminating their feed and water [35].

In this study, sex, season, and herd size was not considered risk factors for Cryptosporidium
infection in preweaned calves in Kuwait. Similar results have been observed. The absence of
association between season and the presence of the infection has been formerly described, as
season is not considered a risk factor for cryptosporidiosis in countries where the temperature
never drops below the freezing point [36–38]. At the same time, previous studies found
that the sex of the animal and the herd size did not affect the prevalence of Cryptosporidium
infection [24,34,39].

Cryptosporidium parvum was the predominant species, representing 62.9% of the identified
species by RFLP, followed by C. bovis at 5.7% and C. andersoni at 2.9%. Previous studies
reported the predominance of C. parvum in preweaned calves globally [11,15,40–44]. However,
C. andersoni is mainly reported in postweaned and adults, more than in preweaned calves. It
infects the abomasum and causes maldigestion, weight loss, and a decrease in milk yield [45–47].
In this study, C. andersoni was identified in one preweaned calf. A similar result was obtained
previously; C. andersoni was detected in 1% (one 4-week-old calf/161) of Cryptosporidium spp.
isolated from preweaned calves in the USA [40]. Kváč et al. [41] reported that C. andersoni was
identified in 13% (21/161) of dairy calves of up to two months of age, suggesting that direct
contact with adult animals could be a risk factor for C. andersoni infection. Although most
researchers declared that C. bovis are found predominantly in postweaned calves and never
reported clinical disease in different age groups of infected cattle [3], C. bovis oocyst shedding
was observed in a five-day old calf [38].
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In the present study, all C. parvum isolates were subtyped as IIaA15G2R1. Similarly,
in some Middle Eastern countries, subtype IIa was the only reported subtype family with
different alleles identified from cattle [10,13]. Subtypes IIa and IId were found in other
countries, with the subtype IIa being more dominant [6,12,43], whereas in Egypt, IId was
the predominant subtype over IIa [48,49]. Subtype IId alleles were the only reported
subtype from diarrheic calves in Sudan [14].

In Kuwait, a previous study reported that the subtype IId alleles were the most
commonly identified in small ruminants [50]. Similar results were recorded in Romania,
where most of the examined cattle (86.7%) were infected with subtype IIa, while the ovine
isolates belonged to subtype IId [51]. Furthermore, a previous study in Spain recorded
that 98% of C. parvum subtypes from small ruminants belonged to subtype IId, suggesting
that this subtype is adapted to small ruminants [52]. In contrast, subtype IIa has been
reported in cattle worldwide [1]. The distribution of the two subtypes is most likely related
to animal management, rather than host adaptation. Cattle and small ruminants are kept
in separate areas in Kuwait; thus, cross-transmission is difficult due to this separation. In
Turkey, cattle herd mingling during grazing increased the opportunity for Cryptosporidium
transmission among herds, resulting in higher genetic diversity and the appearance of many
genotypically mixed isolates in animal populations [12]. Additionally, animal movement,
such as transportation or importation, may form a parasite population structure in an
infected animal population in a given area [53,54].

Cryptosporidium parvum subtype IIaA15G2R1, reported in cattle in this study, is also the
predominant allele in cattle in European countries [55]. Thus, the source of Cryptosporidium
genotypes and C. parvum subtypes in Kuwait may be Germany and Netherlands, from which
the cattle were imported to rebuild livestock after destruction during the Iraqi invasion.

Regarding zoonotic importance, only two studies previously reported C. parvum sub-
types in children in Kuwait. Iqbal et al. [56] identified C. parvum IIa as the dominant subtype
of Cryptosporidium in diarrheic children. Simultaneously, Sulaiman et al. [5] recorded the
C. parvum subtype IIaA15G2R1 as the predominant Cryptosporidium spp. in children in
Kuwait. Cryptosporidium parvum infects a broad variety of mammals, and is a significant
zoonotic diseases issue [57]. More research is required to fully understand the C. parvum
transmission cycle in Kuwait, because its predominance in Kuwaiti children suggests an
animal to human transfer, particularly when subtyping findings are taken into account.

5. Conclusions

In conclusion, calf age and farm hygiene were the most significant risk factors for
Cryptosporidiosis in preweaned calves in Kuwait. Calves less than one month of age were
more likely to harbor Cryptosporidium, and infection rates reduced progressively with age.
Cryptosporidium parvum was the most commonly identified species from preweaned calves
less than three months of age, preceded by C. bovis and C. andersoni. All C. parvum gp60
nucleotide sequences were subtype IIaA15G2R1. Since the distribution of Cryptosporidium
parvum subtypes in children and cattle is comparable, these animals could be a source
of Cryptosporidium infection in Kuwaiti humans. Further study is needed to clarify the
Cryptosporidium transmission cycle in Kuwait.
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