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Abstract: Background: The hypothalamus harbors high levels of cholinergic neurons and axon 
terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neuro-
transmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regu-
latory role for nicotine in the regulation of the stress responses. The present review will discuss the 
hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The ana-
tomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete 
hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and 
nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level 
will be analyzed in view of the different neuropeptides involved.  

Methods: Published research related to nicotinic cholinergic regulation of the HPA axis activity at 
the hypothalamic level is reviewed.  

Results: The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. 
There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic 
acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypotha-
lamic neuropeptides have employed systemic administration of nicotine. Additionally, we know 
little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypo-
thalamus and the physiological responses they trigger in these neurons.  

Conclusion: Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pa-
thologies such as depression, anxiety disorders and obesity, which are common and significant 
health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides 
will aid in drug development and provide means to cope with these diseases. Considering that nico-
tine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system 
on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation. 
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1. INTRODUCTION 

 Stress, reward and eating behavior all have evolutionary 
significance, display similar neurobiological regulation in 
shared brain regions, and interact. Several reviews published 
during the past decade emphasize the role of the hypothala-
mus and the hypothalamic neuropeptides in addiction, in-
cluding nicotine/tobacco addiction, and the stress response 
[1-9]. The hypothalamus lies at the intersection of homeo-
static and reward pathways, and harbors high levels of  
cholinergic neurons and axon terminals [10, 11]. Nicotinic 
acetylcholine receptors, which play an important role in  
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cholinergic neurotransmission, are expressed abundantly in 
the hypothalamus [12-14]. Accumulating evidence reveals a 
regulatory role for nicotine in diverse functions mediated by 
the hypothalamus, including the regulation of stress (Re-
viewed in [1, 15]). 

 Neuropeptides were discovered nearly five decades ago 
[16]. Although neuropeptides are produced by neurons, they 
reach farther and affect not only synaptic but also extrasyn-
aptic receptors; this provides them with the opportunity to 
regulate different behaviors harmoniously. Neuropeptides 
released by hypothalamic neurons regulate stress, reward and 
feeding as well as autonomic nervous system activity. Most 
of these neuropeptides [melanin-concentrating hormone 
(MCH), hypocretins/orexins, α-melanocyte stimulating hor-
mone (α-MSH), agouti-gene related protein (AgRP), neu-
ropeptide Y, oxytocin, ghrelin, cocaine and amphetamine-
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regulated transcript (CART), neuropeptide W and the 
galanin-like peptides] have been initially noted for their im-
pact on feeding behavior [17]. Eating is a complex behavior 
and is closely related to addiction and stress. Subsequently, 
following the discovery and localization of most of the hypo-
thalamic peptides involved in feeding behavior, other func-
tions and modulatory mechanisms were evaluated. This re-
view will describe the anatomical distribution of the cho-
linergic neurons, axon terminals and nicotinic receptors in 
discrete hypothalamic nuclei, and will examine the possible 
regulatory role of the nicotinic cholinergic system and ex-
ogenous nicotine on the stress response. It is worth noting 
that, although this review will cover only stress, nicotine and 
the nicotinic cholinergic system are implicated as important 
actors in the modulation of almost all of the physiological 
functions of the hypothalamic neuroactive peptides that are 
included in this review. The hypothalamic neuropeptides that 
will be evaluated in the current review are: 

• Corticotropin-Releasing Hormone (CRH) 

• Orexin 

• Melanin Concentrating Hormone (MCH) 

• Pro-OpioMelanoCortin (POMC) and Alpha- Mela-
nocyte Stimulating Hormone (α-MSH 

• Cocaine and Amphetamine Regulated Transcript 
(CART) 

• Neuropeptide Y (NPY) and Agouti-Related Peptide 
(AgRP) 

• Opioid Peptides 

2. HYPOTHALAMIC-PITUITARY-ADRENAL AXIS 

 The hypothalamic-pituitary-adrenal (HPA) axis initiates 
the main endocrine response to a homeostatic challenge [18]. 
When the organism is confronted with a stressful condition, 
neural mechanisms activate the HPA and this activation is 
required for both basal and stress-induced glucocorticoid 
hormone release from the adrenal cortex. Neuroendocrine 
cells located in the medial parvocellular subdivision of the 
paraventricular nucleus (PVN) of the hypothalamus release 
CRH, into the hypothalamo-hypophysial portal system, 
which in turn induces adrenocorticotropic hormone (ACTH) 
secretion from the anterior pituitary cells. Neuroendocrine 
CRH cells co-express arginine-vasopressin (AVP) as well as 
other neuropeptides. The AVP synthesis in the parvocellular 
PVN is remarkably upregulated with chronic stress (re-
viewed in [19]). Thus, chronic stress increases the number of 
CRH+AVP co-expressing cells in the PVN and axons in the 
median eminence [20, 21]. AVP is co-released with CRH 
from the axon terminals in the external layer of median emi-
nence and potentiates CRH-induced ACTH release from 
anterior pituitary. Adrenal cortex is a major target for ACTH 
in the systemic circulation. In the final step of the HPA axis, 
ACTH stimulates glucocorticoid hormone release from the 
adrenocortical fasciculata cells [22]. 

 Sex hormones are among the important regulators of the 
HPA axis activity and the stress response [23]. Although 
today we know that there are sex hormone receptors 

throughout the entire brain that affect brain and behavior, 
these receptors were initially discovered in the hypothalamus 
[24]. Sex hormone receptors are expressed in various hypo-
thalamic nuclei including the PVN, as well as in other brain 
regions, which project directly, or indirectly to the PVN [23, 
25]. Sex differences in reactivity to stress are reported in 
rodent studies, and women are more vulnerable to stress re-
lated pathologies, e.g. post traumatic stress disorder, than 
men [26]. Sex differences depicted in the hypothalamus and 
hypothalamic functions point to the importance of including 
sex as a variable in experimental studies and in designing 
therapeutic interventions in pathologies involving the hypo-
thalamus. 

3. CORTICOTROPIN-RELEASING HORMONE: 

 The key role of the hypothalamus in the stress response is 
secreting corticotropin-releasing hormone (CRH), which 
triggers ACTH release. However, CRH is not only a releas-
ing factor, but is also involved in different functions in the 
central and peripheral nervous system. CRH -expressing 
neurons are distributed widely in the neocortex, limbic sys-
tem and brainstem. CRH neurons are located mainly in the 
prefrontal, cingulate and insular cerebral cortices, central 
nucleus of the amygdala, bed nucleus of the stria terminalis, 
hypothalamus, central gray matter, parabrachial nucleus, 
locus coeruleus and the nucleus of the solitary tract [22]. 
CRH neurons integrate neuronal and hormonal inputs and 
serve as a final common pathway to regulate the HPA  
axis. CRH not only activates the HPA-axis and mediates the 
stress response, but also plays an important role in addiction; 
transition from use to dependence, maintenance of depend-
ence [27] and relapse [28] are closely related to stress and 
CRH. 

 In the hypothalamus, choline acetyltransferase (ChAT) 
immunoreactive (IR) cells are found in the periventricular 
and arcuate (ARC) nuclei, posterior and lateral hypothalamic 
areas and in the perifornical region [29]. However, PVN 
does not exhibit ChAT-IR cells. Instead, ChAT-IR cells are 
demonstrated in the matrix surrounding the PVN [29]. Addi-
tionally, although the PVN contains few or no nerve termi-
nals immunoreactive for ChAT at the light microscopic 
level, they are demonstrated in the hypothalamic areas that 
immediately surround the PVN, such as zona incerta, peri-
fornical nucleus, and dorsal hypothalamic nuclei [30]. Cho-
linergic afferents may innervate the neurons in the peri-PVN 
region which, in turn, project to the PVN CRH cells [31]. 

 Nicotinic acetylcholine receptors (nAChRs) are present 
in the PVN. Radioligand binding [12, 14, 32], in situ hy-
bridization [32, 33] and immunohistochemistry [13, 34] 
studies show that there are significant numbers of nAChRs 
(especially α7, α4, β2 subtypes) in the parvocellular PVN 
and in the neuropil surrounding PVN. The activity of the 
CRH neurons, hence the activity of the HPA axis, may be 
regulated through these nicotinic receptors in the PVN or in 
the vicinity of the PVN. In vitro studies in the rat hypo-
thalamus show that nicotine increases hypothalamic CRH 
content and CRH release [35, 36]. Acetylcholine (ACh) in-
duces hypothalamic CRH release in vitro and nicotinic re-
ceptor antagonists, hexamethonium or mecamylamine inhib-
its this release [35-37]. In parallel, in rats, when mecamy-
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lamine is injected into the third ventricle, which lies adjacent 
to the PVN, basal plasma corticosterone (CORT) levels de-
crease [38]. Also, nicotine injections into the third ventricle 
elevates plasma ACTH levels in a dose-dependent manner 
[39]. In rats, intracerebroventricular (ICV) ACh induces 
CRH release into the hypothalamo-hypophyseal portal sys-
tem, which is attenuated by the administration of ICV nico-
tinic receptor antagonists [40]. However, ICV hexametho-
nium did not abolish the increase in plasma ACTH levels 
induced by ACh microinjection into the dorsolateral border 
of the PVN [41]. The mechanisms by which nicotinic recep-
tors regulate the CRH neuron activity in the PVN need fur-
ther clarification. 

 CRH synthesized in the parvocellular PVN is released 
into the hypothalamo-hypophysial portal system in the me-
dian eminence. Intense localization of cholinergic axon ter-
minals have been identified in the external layer of the me-
dian eminence [42]. Demonstration of vesicular acetylcho-
line transporter mRNA [43] and ChAT immunoreactivity 
[29] in many hypothalamic nuclei such as the ARC nucleus 
and lateral hypothalamic area (LHA) have led to the idea that 
there may be a short cholinergic projection system extending 
from the hypothalamic nuclei [e.g. ARC nucleus] to the me-
dian eminence [42]. Together with the evidence that the 
nicotinic receptors are present on CRH-IR axon terminals in 
the median eminence [44], these observations imply that 
nicotinic receptors may regulate CRH release in the median 
eminence. 

 Nicotine, when administered systemically, readily 
crosses the blood brain barrier and acts upon nicotinic recep-
tors located in the brain [45, 46]. In rats, acute systemic nico-
tine administration activates PVN CRH neurons [47] and 
increases plasma ACTH and CORT [48, 49]. However, this 
increase in ACTH and CORT levels following a single dose 
of nicotine displays sex differences: the effect on female rats 
is more pronounced than in males [50-52]. These sex differ-
ences observed in rodents may also have implications in 
clinical settings. Higher salivary cortisol levels are reported 
in boys below the age of eight than girls of the same age, but 
this difference is reversed in adulthood [53]. Sex differences 
in nicotine/tobacco addiction are also clearly demonstrated in 
rodents and human smokers [54]. Smokers aiming to quit 
attended two stress sessions, one before and one after quit-
ting smoking. About 60% of the subjects relapsed during the 
4-week follow-up; lower cortisol in men and higher cortisol 
levels in women predicted relapse [55]. Additionally, when 
smoking precedes a stressful situation, cardiovascular re-
sponses (e.g. increased blood pressure) observed in men are 
more pronounced than those in women [56]. These findings 
point to the importance of sex differences in hormonal re-
sponses to stress and may have implications in developing 
protocols with higher success rates for smokers wishing  
to quit. 

 Pretreatment with systemic dihydro-β-erythroidine, a 
nicotinic chlolinergic antagonist, prevents the CORT eleva-
tion induced by a single subcutaneous nicotine injection; this 
observation supports the role of α4β2 nicotinic receptors in 
the effects of systemic nicotine [57]. On the other hand, 
chronic systemic nicotine administrations lead to the desen-
sitization of the HPA axis activity in both male and female 

rats [50]. Chronic nicotine self-administration reduces CRH 
mRNA expression in the parvocellular PVN [58]. The rise in 
plasma ACTH and CORT levels following the first dose of 
nicotine is transient, gradually decreases and completely 
disappeares on the third day of nicotine exposure [59]. Inter-
estingly, a large number of studies report that desensitization 
response is not observed in humans receiving chronic sys-
temic nicotine [9]. Nicotine increases the activity of the HPA 
axis in habitual smokers [60-62]. Systemic nicotine may 
regulate the HPA axis activity via a direct action on nicotinic 
receptors in the hypothalamic nuclei surrounding the third 
cerebral ventricle, such as the PVN. Bugajski et al. [63] 
showed that ICV mecamylamine abolished the ACTH and 
CORT elevations induced by systemic nicotine. On the other 
hand, Fu et al. [64] had shown that microinjection of me-
camylamine into the PVN did not block the ACTH elevation 
in response to intravenous nicotine. Consequently, the 
authors proposed that the nicotinic receptors localized in the 
PVN are not involved in the stimulation of the HPA axis by 
systemic nicotine. Instead, nicotinic receptors present in the 
noradrenergic brainstem nuclei are suggested to play an im-
portant role during this regulatory action [46]. 

 Nicotinic receptors in the hypothalamus may play impor-
tant roles in the mediation of stress-induced HPA axis activ-
ity. ICV mecamylamine abolished the plasma CORT re-
sponse to auditory stress in rats [38]. In parallel, ICV ad-
ministration of anti-nicotinic acetylcholine receptor antibod-
ies inhibited the CORT response to acute ether stress [65]. 
Subcutaneous injection of a blood brain barrier crossing an-
tagonist, mecamylamine, blunted predator stress-induced rise 
in plasma CORT levels [66]. Similarly, chronic daily sys-
temic administration of mecamylamine in rats also reduced 
chronic restraint stress-induced increase of CORT levels in 
blood [67]. Additionally, there are numerous studies which 
show that there is an interaction between the regulatory ef-
fects of stress and systemic nicotine on HPA axis activity in 
rodents [38, 58, 59, 63, 68-72] and in humans [9]. 

 Nicotine is suggested to regulate the axonal release of 
neurotransmitters such as noradrenaline, glutamate and 
gamma-aminobutyric acid (GABA), which are well known 
for their regulatory effects on PVN CRH neurons. PVN re-
ceives dense catecholaminergic innervation from brainstem 
nuclei [46]. Nicotinic receptors are located presynaptically 
on catecholaminergic axon terminals in the hypothalamus 
[73]. In vitro studies show that nicotine induces noradrena-
line release from rat hypothalamic slices [74-76]. Acute, 
systemic nicotine administration also increases paraventricu-
lar noradrenaline release [77]. However, mecamylamine ad-
ministration into the PVN does not prevent the noradrenaline 
release induced by acute systemic nicotine exposure [64]. 
Thus, the same group [46] proposed that nicotinic receptors 
located in the brainstem nuclei rather than in the PVN medi-
ate the paraventricular noradrenaline release induced by sys-
temic nicotine. When nicotine is self-administered chroni-
cally, increased noradrenaline release is sustained throughout 
the acquisition, early and late maintenance phases [78]. 

 Parvocellular PVN CRH neurons receive both glutama-
tergic and GABAergic afferents [79, 80] and express 
ionotropic GABAA and glutamate receptors [81, 82]. Within 
the hypothalamus, inhibitory GABAergic axons arise from 
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peri-PVN region, medial preoptic area, dorsomedial (DMH) 
and LHA [10]. Similarly, DMH, LHA and posterior hypo-
thalamic nuclei are suggested as the potential sources of hy-
pothalamic glutamatergic inputs to the PVN [18]. Interest-
ingly, nicotinic receptors are present in all of these hypotha-
lamic nuclei, which regulate CRH neuron activity [12, 34, 
83]. Furthermore, glutamate and GABA release in PVN is 
regulated by nicotine, an effect that may occur via presynap-
tic nicotinic receptors on axon terminals in the PVN. In a 
study by Yu et al. [84], chronic nicotine self-administration 
did not affect basal levels of glutamate and GABA in the 
PVN. However, footshock-induced PVN glutamate release 
was augmented and GABA release was further decreased by 
chronic nicotine self-administration when compared to rats 
self-administering saline. On the other hand, an electro-
physiological study in hypothalamic slices showed that nico-
tine caused membrane depolarization and increased spike 
firing rate in the CRH mRNA-expressing neurons of the par-
vocellular PVN in a concentration-dependent manner, which 
is abolished by the addition of ionotropic glutamate receptor 
antagonist [85]. The authors suggested that nicotine excited 
PVN CRH mRNA-expressing neurons indirectly, through 
the enhancement of the presynaptic glutamate release. 

 Overall, nicotine and nicotinic receptor stimulation  
mediate stress induced HPA-axis activity and modulate  
the release of neurotransmitters that regulate PVN CRH  
neurons. ACTH and CORT levels are increased; this effect 
shows sex differences and is more pronounced in females 
than males. 

4. OREXIN 

 The orexin (hypocretin) neuropeptides are important in 
motivated behaviors and reward, including feeding [86]. 
Orexin is also implicated in various physiological processes 
such as sleep and wakefulness and the stress response [87]. 
Accumulating evidence supports the role of orexins in drug 
reward and stress [88]. Orexin/hypocretin neurons are lo-
cated mainly in the lateral, posterior and perifornical areas of 
the hypothalamus and project widely throughout the brain 
[89], including reward [90] and cardiovascular control cen-
ters [91]. Nicotine is one of the major abused drugs whose 
reinforcing properties are regulated by the orexin neuropep-
tide system [92]. Drugs targeting orexin signalling in the 
hypothalamus may present a possibility for treating addic-
tions and related pathologies [93]. 

 Studies suggest that the orexin system may play an im-
portant role in the endocrine and autonomic stress response. 
Orexin neurons are activated by psychological and physical 
stressors such as immobilization, restraint, cold exposure and 
swim stress [94-98]. Orexin peptides have been shown to 
increase the autonomic nervous system responses (e.g. eleva-
tion of blood pressure, heart rate and body temperature) to 
stress [95, 99-102]. 

 Orexin neurons residing in the LHA directly innervate 
the PVN [103]. Orexin receptor 1 (OX-R1) immunoreactiv-
ity was demonstrated on parvocellular CRH neurons in the 
PVN [104]. High levels of OX-R2 mRNA is also expressed 
in in the PVN [105]. Electrophysiological studies demon-
strate that orexin peptides depolarize parvocellular PVN neu-

rons in hypothalamic slices [106-108]. Furthermore, ICV 
injection of orexin peptides activate the HPA axis resulting 
in increased CRH synthesis [109] and a consequent release 
of ACTH and CORT [109-111]. Moreover, a reciprocal in-
teraction between CRH and orexin is suggested. Winsky-
Sommerer et al. [98] showed that CRH axons terminated on 
LHA orexin neurons expressing high levels of CRH-R1/2 
receptors. Furthermore, CRH depolarized membrane poten-
tial and increased firing rate in some orexin neurons. Based 
on these results, the authors proposed that CRH induces 
orexin neuron activity, which in turn, triggers arousal during 
the stress response. 

 Regulation of the CRH neurons through nicotinic recep-
tors located on LHA orexin neurons is possible. Nicotinic 
receptors (α4 subunit) are expressed on LHA orexin neurons 
[86]. In parallel, a number of studies demonstrated that 
orexin neurons are regulated via nAChRs. Acute systemic 
nicotine increased the number of Fos co-expressing orexin 
neurons [112]. This effect was reduced following treatment 
with nicotinic receptor antagonists mecamylamine and dihy-
dro-beta- erythroidine, indicating the role of α4β2 subunits. 
Nicotinic receptor blokade with systemic mecamylamine 
injections also reduced chronic nicotine-induced Fos im-
munoreactivity in orexin neurons [113]. Furthermore, 
chronic systemic nicotine injections increased prepro-orexin 
mRNA levels in rat hypothalamus, orexin A and B peptide 
levels in the rat PVN and dorsomedial nucleus [114] and 
orexin immunoreactivity in piglet hypothalamus [115]. 
Chronic exposure to cigarette smoke also upregulated pre-
pro-orexin mRNA and orexin A peptide levels in rat hypo-
thalamus [116]. Zhou et al. [117] showed that orexin neuron 
activity is modulated by postsynaptic nAChRs on orexin 
neurons and presynaptic nAChRs on glutamatergic termi-
nals. ACh enhanced the firing rate in a subset of orexin neu-
rons through postsynaptic nAChRs. The authors concluded 
that α4β2* and, to a lesser extent, α7 subunits contribute to 
this response. In another study by Pasumarthi and Fadel 
[118], a single dose of nicotine administration into the LHA 
increased ACh and glutamate release from axon terminals, 
which in turn may regulate orexin neuron activity. Further-
more, pretreatment with systemic OX-R1 antagonists 
blocked nicotine-induced anxiogenic effects and the activa-
tion of CRH neurons, which expressed OX-R1 [119]. 

 In conclusion, there appears to be a reciprocal relation-
ship between nicotinic and orexinergic systems. Nicotinic 
receptors located on the orexin neurons in the LHA may 
regulate CRH neuron activity. On the other hand, the re-
warding properties of nicotine are modulated by orexins, 
which are released under stress and increase HPA axis activ-
ity and the autonomic responses. 

5. MELANIN CONCENTRATING HORMONE 

 Melanin concentrating hormone (MCH) is involved in 
the regulation of energy homeostasis (i.e. feeding and me-
tabolism), sleep/wakefulness, anxiety and the HPA axis 
[120-122]. Similar to orexin neurons, MCH-synthesizing 
neurons are found principally in the LHA with widespread 
projections throughout the central nervous system [123]. In 
the LHA, orexin and MCH neurons constitute distinct neu-
ronal populations [124]. 
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 MCH-IR fibers are demonstrated in the PVN [125]. Fur-
thermore, MCH receptor 1 expression is found on parvocel-
lular PVN CRH neurons [126]. MCH increases CRH release 
from hypothalamic explants [127]. ICV [127-129] and intra-
PVN [127] MCH injections increase plasma ACTH and 
CORT. On the contrary, there are studies which show that 
ICV MCH inhibited ACTH release induced by stress such as 
mild handling [130] or ether stress [131]. Additionally, stress 
regulates MCH expression, indicating a possible role during 
the stress response. MCH responses under stress may vary 
according to the type of stressor encountered. Chronic re-
straint stress increased MCH immunoreactivity in the LHA 
[132], whereas chronic footshock stress decreased MCH 
mRNA levels in the hypothalamus [133]. 

 In vitro studies showed that the cholinergic agonist car-
bachol increased MCH mRNA in hypothalamic slices, an 
effect that was abolished by hexamethonium [134]. In paral-
lel, Chang et al. [135] showed that prenatal nicotine expo-
sure increased MCH mRNA levels and MCH-IR cells in the 
perifornical lateral hypothalamus. Anatomical studies also 
support the nicotinic regulation of MCH. ChAT-positive 
[134] and vesicular ACh transporter containing nerve fibers 
are located in close proximity with MCH neurons [136]. 
Bayer et al. [134] reported that most of the ChAT-positive 
axons in the LHA originated in the laterodorsal and pedun-
culopontine tegmental nuclei of the brainstem. Moreover, 
high levels of nicotinic receptors (α2, α4, α7, β2) are ex-
pressed in the LHA [32, 137]. Jo et al. [136] suggested that 
endogenous ACh and nicotine enhances GABAergic trans-
mission and inhibits LHA MCH neurons via activation of 
presynaptic α7 nicotinic receptors. All of these data imply 
that nAChRs in the LHA may exert control over CRH neu-
rons (hence the HPA axis) via modulation of LHA MCH 
neuron activity. 

6. PRO-OPIOMELANOCORTIN AND α -
MELANOCYTE STIMULATING HORMONE 

 Pro-opiomelanocortin (POMC) is a polypeptide that is 
cleaved by converting enzymes to produce peptide products, 
including melanocortins. Melanocortins are involved in feed-
ing, sexual behavior and stress [138]. POMC is synthesized 
in two principle sites in rodent brain: ARC nucleus in the 
hypothalamus and nucleus tractus solitarius in the brainstem 
(reviewed in [139]). Hypothalamic ARC nucleus harbors two 
main groups of neuropeptide co-expressing neurons: 
POMC/cocaine-and amphetamine-regulated transcript 
(CART) [140] and neuropeptide Y (NPY)/agouti-related 
peptide (AgRP) [141]. In the hypothalamus, as mentioned 
above, POMC is cleaved to yield several biologically active 
peptides such as melanocortins [e.g. α-melanocyte stimulat-
ing hormone (α-MSH)] and the opioid peptide, β-endorphin 
[142]. Alpha-MSH binds to the melanocortin 3 (MC3R) and 
melanocortin 4 (MC4R) receptors, which are the main mela-
nocortin receptor subtypes expressed in the brain [143]. α-
MSH plays important roles in the regulation of appetite, en-
ergy balance, reward and HPA axis activity [139, 144] 

 Hypothalamic CRH neurons in the PVN receive exten-
sive innervation from POMC neurons located in the ARC 
[145]. In parallel, melanocortin 4 receptors (MC4R) are ex-
pressed on PVN CRH neurons [146]. There are conflicting 

results regarding the regulatory action of α-MSH on HPA 
axis activity. Administration of α-MSH to the rat hypotha-
lamic explants increased CRH release when compared to the 
basal release [147]. Acute ICV injection of melanocortin 
receptor agonists activated the HPA axis, induced PVN CRH 
gene transcription [146] and increased plasma CORT both in 
control rats and stressed rats [146, 148]. Furthermore, intra-
PVN injection of an α-MSH analogue increased plasma 
ACTH and CORT [147]. On the other hand, there are also 
studies which suggest that α-MSH supresses the HPA axis 
activity [149-153]. Additionally, stress has been shown to 
regulate POMC expression. Acute restraint stress increases 
[154, 155], whereas acute and chronic immobilization stress 
decreases POMC [156, 157] in the ARC nucleus. 

 Chronic nicotine exposure also yielded apparently con-
flicting results. Both up-regulation [158-160] and down-
regulation [7, 161, 162] of the POMC mRNA in the ARC 
has been reported in response to chronic systemic nicotine 
administration. Additionally, maternal nicotine exposure 
during lactation increased α-MSH-containing fibers in the 
PVN [163]. Immunocytochemistry studies show that cho-
linergic axons innervate ARC POMC neurons [164]. This 
indicates that endogenous ACh may signal through nicotinic 
receptors in the ARC nucleus to regulate POMC expression. 
Indeed, electrophysiological studies demonstrated that nico-
tine excites hypothalamic POMC neurons in mice through 
activation of α4β2 and α7 nAChRs present on these neurons 
[164]. In this patch clamp study, nicotine depolarized the 
membrane and increased spike frequency of POMC neurons 
in hypothalamic slices. Mineur et al. [165] also reported that 
POMC neurons in the ARC nucleus express β4 nAChRs and 
signaling through α3β4 nAChRs activates POMC neurons, 
which leads to the activation of MC4Rs in the PVN. Taken 
together, these data suggest that regulation of the HPA axis 
through nicotinic receptors located on POMC neurons is 
possible. 

7. COCAINE- AND AMPHETAMINE-REGULATED 
TRANSCRIPT 

 Cocaine- and amphetamine-regulated transcript (CART) 
peptide is involved in the regulation of reward and rein-
forcement [166], feeding [167], endocrine and autonomic 
regulation [168, 169], anxiety [170], and stress [171]. In 
1995, Douglass et al. [172] described CART mRNA as a 
transcript that increases after acute administration of cocaine 
and amphetamine, in the striatum of rat brain. CART was a 
novel cDNA with no significant homology to any known 
cDNA. Later, CART peptide fragments were identified in 
the brain [173] and accepted as mediators of the interaction 
between stress, addiction and feeding [171]. Anatomical 
studies show that CART neurons are widely distributed 
throughout the brain [174]. In the hypothalamus, CART 
mRNA and peptides are highly expressed in the medial par-
vocellular PVN, ARC and LHA [174, 175]. 

 Functional studies demonstrate that CART regulates 
HPA axis activity [171]. ICV CART injections induce c-Fos 
expression in the CRH-synthesizing PVN neurons [176]. 
Addition of CART peptides increases CRH release from 
hypothalamic explants [177]. In parallel, ICV and intra-PVN 
CART injections increase blood ACTH and CORT levels 
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[177]. Interestingly, there is a bidirectional relation between 
glucocorticoids and CART. Studies show that CORT regu-
lates CART mRNA expression and CART immunoreactivity 
in the hypothalamus [178, 179]. Additionally, various psy-
chological and physical stress procedures affect CART ex-
pression in the hypothalamus [180-187]. 

 Systemic nicotine injections regulate hypothalamic 
CART expression and reduce body weight. Acute (two days) 
systemic nicotine treatment increased CART-IR cells and 
fibers in the PVN, CART-IR fibers in the ARC [188] and 
CART mRNA in the PVN [189]. Chronic systemic nicotine 
treatment also enhanced CART mRNA in the hypothalamus 
while reducing body weight [159]. However, maternal nico-
tine exposure during lactation decreased CART-IR cells in 
the PVN [163]. In the ARC, 90% of the CART neurons co-
express POMC [140]. Furthermore, axon varicosities which 
co-contain CART and α-MSH are demonstrated in close 
apposition to PVN CRH nerons [190]. Additionally, CART 
neurons in the LHA and perifornical area also innervate the 
PVN [191] and 70% of the CART neurons in this area co-
express MCH [192]. High level of CART co-expression with 
these two neuropeptides implies that nicotinic regulation of 
CART in the ARC nucleus and LHA is also possible. Con-
sequently, HPA axis activity may be altered through nico-
tinic regulation of CART in the ARC or LHA. 

8. NEUROPEPTIDE Y AND AGOUTI-RELATED 
PEPTIDE 

 Neuropeptide Y (NPY) has important roles in food in-
take, energy homeostasis, sleep, anxiety and the stress re-
sponse [193-195]. NPY neurons are distributed widely in 
rodent brain [196]. The highest NPY mRNA levels are found 
in the ARC nucleus [197]. On the contrary, agouti-related 
peptide (AgRP)-synthesizing neurons are restricted to the 
hypothalamic ARC nucleus [198]. 95% of ARC NPY neu-
rons co-express AgRP [199]. Initially, AgRP proteins were 
described by their important role in controlling body weight 
and leptin signaling [200]. Later, in addition to its role in the 
regulation of feeding behavior, AgRP is indicated in reward 
and HPA axis activity [144, 201]. NPY mainly binds to Y1, 
Y2 and Y5 receptors in the brain (reviewed in [195]). On the 
other hand, AgRP binds to MC3R and MC4R with high af-
finity and acts as a competitive antagonist of α-MSH at these 
receptors [200]. 

 NPY/AgRP neurons highly innervate parvocellular CRH 
neurons in the PVN [145, 202] and 80% of PVN CRH neu-
rons express NPY Y1 receptors [203]. Studies demonstrate 
contradictory results regarding the regulatory effect of NPY 
on HPA activity. In vitro studies show that NPY increased 
CRH release from rat hypothalamus [204]. In parallel, ICV 
NPY administration increased CRH gene expression, plasma 
ACTH and CORT levels [203, 205]. Furthermore, microin-
jection of NPY into the PVN also increased plasma ACTH 
and CORT levels [206]. On the other hand, an inhibitory 
action on HPA axis activity is indicated by several studies 
[207, 208]. AgRP may bind to the MC4Rs expressed on 
PVN CRH neurons and may regulate HPA axis activity. In-
deed, AgRP administration to the hypothalamic explants 
elevated CRH and AVP release and injection of AgRP into 
the PVN increased plasma ACTH levels in rats [147]. ICV 

AgRP treatment increased basal ACTH and cortisol release 
also in primates [209]. Furthermore, in this study, ICV AgRP 
enhanced interleukin-1 beta-induced ACTH levels. 

 Various stress procedures regulate NPY and AgRP ex-
pression in the ARC. Acute restraint [210], immobilization 
[211] and inescapable footshock stress [148] upregulated 
NPY mRNA in the ARC nucleus. Data regarding the effects 
of chronic stress is contradictory. One study showed an in-
crease in the ARC NPY mRNA levels [211], whereas an-
other showed a decrease in the ARC NPY immunoreactivity 
[212] following chronic immobilization stress. On the other 
hand, AgRP mRNA levels and the number of AgRP-IR cells 
decreased in the ARC nucleus with acute inescapable foot-
shock stress [148] and acute restraint stress [213], respec-
tively. Chronic footshock stress upregulated AgRP mRNA 
[214], whereas chronic restraint stress downregulated the 
number of AgRP-IR cells in the ARC [213]. Interestingly, 
some of the AgRP neurons are innervated by PVN CRH neu-
rons and express CRH-R1 type receptors [215]. This may be 
one factor contributing to the stress-induced AgRP response. 

 Regulation of the HPA axis through nicotinic receptors 
located on ARC NPY/AgRP neurons is possible. Nicotine 
regulates NPY neurons in hypothalamus. Acute systemic 
nicotine exposure decreased hypothalamic NPY mRNA and 
ARC NPY immunoreactivity [216]. Similarly, acute ICV 
administration of nicotine reduced ARC NPY immunoreac-
tivity [217]. By contrast, Rangani et al. [218] reported that 
acute systemic nicotine treatment enhanced and restored 
colchicine-induced reduction in ARC NPY-IR cells to basal 
levels. Studies report conflicting results regarding the effects 
of chronic nicotine treatment on ARC NPY. Some studies 
showed that chronic systemic nicotine administration in rats 
increased hypothalamic NPY mRNA levels [216, 219]. 
However, Martínez de Morentin et al. [162] reported a de-
crease in ARC NPY mRNA expression. Chronic maternal 
nicotine exposure reduced ARC NPY mRNA also in new-
born monkeys [220]. On the other hand, chronic systemic 
nicotine decreased ARC NPY immonureactivity in some 
studies [216, 217] and increased in another [219]. In the lit-
erature, several studies also investigated the effect of nico-
tine on hypothalamic AgRP expression. Some of these stud-
ies [158, 159] reported that chronic systemic nicotine treat-
ment increased AgRP mRNA expression in rodent hypo-
thalamus, whereas Martínez de Morentin et al. [162] re-
ported a reduction in ARC AgRP mRNA expression. In the 
study by Younes-Rapozo et al. [163], maternal nicotine ex-
posure during lactation did not change the number of AgRP-
IR cells in the ARC nucleus of adult progeny. Some ana-
tomical and electrophysiological findings also support the 
nicotinic regulation of NPY/AgRP neurons in the ARC nu-
cleus. Cholinergic axons terminate on NPY neurons [164] 
and nicotinic receptors (α4, α7, β2) are expressed in the 
ARC nucleus [13, 137, 221]. Furthermore, nicotine depolar-
ized NPY neurons, and increased the frequency of action 
potentials through α4β2 and α7 nicotinic receptors in hypo-
thalamic ARC slices [164]. Based on the observation that 
NPY neurons highly coexpress AgRP in the ARC nucleus, it 
is possible that these nicotinic receptors may also regulate 
AgRP activity. In parallel, Huang and Winzer-Serhan [158] 
showed that chronic systemic nicotine administration in-
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creased both NPY and AgRP mRNAs, an effect that was 
blocked by α4β2 nAChR antagonists. 

 Different groups, using different types of stressors and 
different nicotine exposure regimens, have investigated the 
regulation of NPY and AgRP neuron activity by nicotine 
during the stress response. However the results are some-
what contradictory and preclude reaching definite conclu-
sions. Further research in this field is warranted. 

9. OPIOID PEPTIDES 

 Opioid peptides play essential roles in diverse physio-
logical processes such as pain, feeding behavior, learning 
and memory, reward and stress [222-226]. Endogenous 
opioid peptides, β-endorphin, enkephalins and dynorphins 
are derived from three precursor peptides in the brain: 
POMC, proenkephalin (PENK) and prodynorphin (PDYN), 
respectively. As mentioned above, the one principle site for 
POMC-expressing neurons in the brain is the ARC nucleus 
in the hypothalamus. β-endorphin is released from the axon 
terminals of ARC POMC neurons [227]. On the other hand, 
the expression sites for PENK and PDYN mRNAs are more 
widespread in the rodent brain. PENK mRNA is highly ex-
pressed in the hypothalamus, especially in the anterior nu-
cleus, parvocellular PVN, ventromedial nucleus, LHA and 
perifornical area [228]. Hypothalamus also displays intense 
PDYN mRNA labeling. Among the regions expressing the 
highest levels of PDYN mRNA are the magnocellular PVN, 
supraoptic nucleus, ventromedial and dorsomedial hypotha-
lamic nuclei, LHA and perifornical area [229]. Interestingly, 
enkephalin is co-expressed in 20% of PVN CRH neurons 
and CRH is co-expressed in 40% of PVN enkephalin neu-
rons [230]. Paraventricular CRH neurons also co-express 
dynorphin immunoreactivity [231]. Endogenous opioid pep-
tides exert their effects via, µ- (MOR), δ- (DOR), and κ- 
(KOR) opioid receptors. MORs and DORs are the main re-
ceptors for β-endorphin and enkephalins. β-endorphin binds 
with a higher affinity to MOR, whereas enkephalins have a 
higher affinity for DOR [232]. Dynorphins are the main en-
dogenous ligands for KOR [233]. 

 β-endorphin, enkephalin and dynorphin-containing neu-
rons innervate the PVN [234, 235]. In parallel, MOR, DOR 
and KOR mRNAs are expressed in the PVN [236, 237]. Ad-
ditionally, MOR-IR and KOR-IR fibers are also present in 
the PVN [238, 239]. Opioid peptides are generally consid-
ered as inhibitors of the HPA axis by many studies. ICV 
[240] or intra-PVN [241] administration of β-endorphin or 
dynorphin decreased CRH secretion. Furthermore, ICV β-
endorphin blocked the hypotension induced elevation of 
CRH [240]. Addition of β-endorphin and other MOR ago-
nists, enkephalin analogs, or KOR agonists suppressed in 
vitro release of CRH from the hypothalamus [242, 243]. 
However, there are other studies, which show the excitatory 
effects of opioid peptides on the HPA axis. These studies 
showed that β-endorphin and other MOR agonists, 
enkephalin analogs or KOR agonists increased CRH release 
from hypothalamus in vitro [244-246]. ICV administration of 
β-endorphin in rats increased PVN CRH mRNA [247], 
plasma ACTH [248] and CORT [249]. Furthermore, ICV 
anti-β-endorphin gamma globulin injection attenuated re-
straint stress-induced ACTH increase [248]. Acute ICV ad-

ministration of MOR-and DOR agonists increased plasma 
ACTH and CORT in rats, whereas chronic treatments led to 
tolerance [250, 251]. ICV enkephalin administration also 
potentiated mild stress-induced plasma ACTH and CORT 
elevations [252]. 

 Studies show that opioid peptides and their mRNAs are 
regulated by stress. Psychological stress such as tail-pinch 
and fox odour [253] or forced walking stress [254] signifi-
cantly increased β-endorphin in the ARC nucleus. However, 
conditioned fear-induced stress decreased β-endorphin levels 
in the hypothalamus [255]. Cold stress, a type of physical 
stress, enhanced β-endorphin immunoreactivity and reduced 
dynorphin immunoreactivity in the hypothalamus [256]. 
Acute footshock stress increased dynorphin immunoreactiv-
ity in the hypothalamus [257]. Environment-induced condi-
tioned suppression of motility and forced swimming-induced 
immobility increased dynorphin and decreased met- and leu-
enkephalin levels in the hypothalamus [258]. In parallel, 
prolonged single housing down-regulated met-enkephalin-
Arg(6) Phe(7) levels in the hypothalamus [259]. However, 
chronic mild stress increased enkephalin gene expression in 
the PVN of hypothalamus [260]. Chronic variable stress 
[261] and social deprivation [262] also increased enkephalin 
mRNA and immunoreactivity in the hypothalamus. Addi-
tionally, maternal separation increased Met-enkephalin-
Arg6Phe7 levels in the hypothalamus. These findings indi-
cate that the response of the opioidergic systems to stress 
varies according to the type of stress encountered. 

 Approximately 90% and 30% of the orexin neurons in 
the LHA contain dynorphin and enkephalin, respectively 
[263, 264]. Additionally, 30% of POMC neurons in the ARC 
co-express dynorphin [265]. A substantial amount of evi-
dence indicating the presence of nicotinic receptors on the 
ARC POMC neurons and LHA orexin neurons implies that 
nicotinic regulation of β-endorphin and enkephalin synthesis 
in the ARC nucleus and LHA is possible. Consequently, 
nicotine may also regulate the opioid peptide release from 
the axon terminals of these neurons in the PVN and modu-
late HPA axis activity. Indeed, numerous studies demon-
strate that systemic nicotine administration changes the 
opioid peptide and mRNA levels in the hypothalamus. Acute 
nicotine injections increased β-endorphin release from hypo-
thalamic cultures, whereas the response desensitized with the 
chronic treatment [266]. In vivo studies showed that acute 
and chronic systemic nicotine treatments decreased β-
endorphin content in the hypothalamus [161, 267]. Höllt and 
Horn [268] reported that acute systemic nicotine injection 
and chronic systemic nicotine infusion via osmotic 
minipump for 4 days increased PDYN mRNA levels in the 
whole hypothalamus [268], whereas in other studies an op-
posite finding was obtained. Isola et al. [269] showed that 
chronic systemic nicotine injections for 14 days decreased 
dynorphin immunoreactivity in the hypothalamus. We [270] 
also observed decreased PDYN mRNA expression in the 
LHA following chronic systemic nicotine injections for 6 
days. Acute and chronic systemic nicotine administration did 
not change PENK mRNA [268] or [met5]-enkephalin [267] 
in the hypothalamus. Also, six nicotine injections repeated 
every 30 minutes did not alter met-enkephalin levels in the 
hypothalamus [271]. However, these studies used whole 
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hypothalamus and did not analyze subregional effects. On 
the other hand, enkephalinergic cells localized in the hypo-
thalamic PVN may be yet other targets for nicotine. Nicotine 
administration by gavage for 5 days increased enkephalin 
mRNA in the PVN [272]. In parallel, Loughlin et al. [273] 
also showed that an acute single dose of nicotine induced c-
fos expression in the enkephalin cells of PVN. Although the 
evidence mentioned above supports the possibility that 
opioidergic signaling in the hypothalamus may participate in 
the nicotine-induced activation of the HPA axis activity, 
there are some studies that argue the opposite. These studies 
reported that systemic injection of opioid receptor antago-
nists, naloxone or naltrexone, did not suppress nicotine or 
epibatidine (an agonist of nAChR)-induced blood CORT 
levels [57, 274]. However, when selective KOR antagonists 
are injected, nicotine-induced CORT elevations were 
blocked in rats [275]. 

 Human studies also show that chronic nicotine exposure 
regulates the HPA axis activity through altered opioid signal-
ing. Stress responses are reduced in smokers and stress in-
creases the vulnerability to relapse in those who quitted 
[276]. Opioid receptor antagonists increase serum ACTH 
levels both in smokers and nonsmokers with smokers exhib-
iting less ACTH elevation than nonsmokers [277]. 

 While various stressors affect the hypothalamic opioider-
gic systems differently, the effect of nicotine on opioid sig-
naling is also inconsistent. Different opioidergic peptides, 
acting on different receptors located in the hypothalamus and 
different routes and durations of nicotine administration em-
ployed in reported findings preclude making direct compari-
sons. Future research may elucidate the effect of nicotine and 
the nicotinic cholinergic system on opioidergic activity in the 
hypothalamus during the stress response. 

CONCLUSION 

 Hypothalamus and hypothalamic neuroactive peptides 
are key players in the stress response, which is the major 
survival tool an organism possesses. These peptides not only 
integrate the stess response, but also mediate in other physio-
logical functions, including, but not limited to feeding and 
energy balance, reward, autonomic responses, sleep/ 
wakefulness, and sexual behavior. The localization and con-
nections of the neuropeptide neurons, their receptors and 
mRNAs within the hypothalamic nuclei provide clues to 
their functions and interactions. The nicotinic cholinergic 
system is apparently one of the major modulators of the HPA 
axis and there is substantial evidence supporting its regula-
tory role in the hypothalamus on the neuractive peptides dis-
cussed in this review. However, most of the studies showing 
the nicotinic regulation of hypothalamic neuropeptides have 
employed systemic administration of nicotine. Currently, we 
know little about the nicotinic receptor distribution on neu-
ropeptide-synthesizing neurons in the hypothalamus and the 
physiological responses they trigger in these neurons. In ad-
dition, the effects of selective nicotinic agonists/antagonists 
on the HPA axis activity should be investigated with admini-
stration of the drugs directly into the discrete hypothalamic 
nuclei during basal and stress-induced conditions. Although 
sex, region and stressor type related differences are ob-
served, based on our current understanding, overall nicotine 

and the nicotinic cholinergic system evidently supports the 
HPA axis driven stress response and modulates the activity 
of the neuropeptides involved. However, considering the 
controversial reports in some cases, one should be cautious 
and avoid making generalizations. Especially studies that 
aim at elucidating the mechanisms underlying the nicotinic 
regulation of the hypothalamic neuropeptides directly 
through the hypothalamic nicotinic receptors are warranted 
for a clearer picture. Disturbed functioning of the HPA axis 
and hypothalamic neuropeptides results in pathologies such 
as depression, anxiety disorders and obesity, which are 
common and significant health problems. A better under-
standing of the hypothalamic peptides, their interrelations 
and their nicotinic regulation will also aid in drug develop-
ment and provide means to cope with these diseases. Con-
sidering that nicotine, specifically in the form of tobacco 
products, is also an abused substance and the major cause of 
preventable deaths, a better understanding of the role of the 
nicotinic cholinergic system on the HPA axis will aid in de-
veloping improved therapeutic strategies for smoking cessa-
tion. 
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