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Introduction
Heart rate variability (HRV) is the physiological phenomenon of variation of time 
between heartbeats [1], which is caused by the activity of autonomic nervous system [2]. 
HRV has been frequently used in the analysis of physiological signals in different clini-
cal and functional conditions [3, 4]. Low HRV is a risk factor for myocardial infarction, 
angina pectoris, and sudden cardiac death [5–8]. Other applications of HRV analysis 
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include atrial fibrillation [9], brain stroke [10–14], sleep bruxism [15] diagnosis, and 
assessment the progress of rehabilitation of patients after ischemic brain stroke [16].

HRV is traditionally obtained from electrocardiogram (ECG) [17]. Over the recent 
years, there has been interest into non-invasive heart rate monitoring without using 
electrodes [18]. Seismocardiography (SCG) is a technique of recording and analyzing 
cardiac activity by measuring precordial acceleration. Recordings are taken using accel-
erometer on subjects in supine position [19]. In the past, SCG was mainly a tool for 
physiologists, due to the need of complex recording devices [20].

Technological improvements and miniaturization of accelerometers and the availabil-
ity of low cost computational power have provided the reasons for reconsidering seis-
mocardiography in clinical practice [21, 22]. Various applications have been proposed 
for SCG, including HRV analysis, detecting heart arrhythmia, and myocardial ischemia 
[22–24].

The feasibility of HRV analysis using SCG signals has been described earlier in papers 
[17, 18, 25–28]. Ramos-Castro et al. [18] and Landreani et al. [26, 27] showed that SCG 
signal acquired by smartphones can be used to perform HRV analysis. Laurin et al. [17] 
proved the validity of HRV indices obtained from SCG signal and Tadi et al. [25] study 
showed high correlation between HRV indices obtained from ECG and SCG.

The purpose of this study is to compare HRV indices obtained from SCG and ECG on 
signals from CEBS combined measurement of ECG, breathing, and seismocardiogram 
database and to determine the influence of heart beat detector on SCG signals. CEBS 
database is a multi-channel signal database available at PhysioNet.org [29–31]. A pre-
liminary version of this work was presented in paper [28].

Materials and methods
Data set

CEBS database contains 60 multi-channel signals acquired on 20 healthy volunteers. 
Each recording consists of four channels with a sampling frequency of 5 kHz: ECG (lead 
I and II), respiratory signal and SCG. Electrocardiogram (ECG) and respiratory sig-
nal were registered using Biopac MP36 data acquisition system. ECG (channel 1) was 
recorded with a bandwidth between 0.05 and 150 Hz and channel 4 (SCG) was recorded 
using the tri-axial accelerometer LIS334ALH by ST Microelectronics and 0.5–100  Hz 
bandwidth [29–31].

Subjects were asked to be awake and stay still in supine position on a bed during the 
measurement. After attaching the sensors, the basal state (before playing the music) was 
acquired for 5 min (recordings b001–b020). Then, the subjects started listening to music 
for 50 minutes (recordings m001–m020). Finally, the subjects were monitored for 5 min 
after the music ended (recordings p001–p020) [29, 31].

ECG signal processing

Several heart beat detectors have been proposed for ECG, which detect QRS complexes 
[32, 33]. In this study, we applied Pan–Tompkins algorithm [33] implemented by Wede-
kind [34] to detect R waves in ECG lead I. Pan–Tompkins algorithm consists of the fol-
lowing steps: band-pass filtering (to reduce noise, baseline wandering, muscle noise, 
etc.), differentiation, squaring of samples, moving average filtering, and correlation 
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analysis [32, 33]. After preprocessing, amplitude thresholding is applied to identify 
R waves in the ECG signal. The interbeat intervals are calculated as differences between 
time of occurrence of successive R waves as in the following equation:

where tRR,i is the ith cardiac interval in ECG and tn denotes the occurrence of nth R wave.

SCG signal processing

Heart beat detection on seismocardiograms is based on nearly periodic appearance of 
fiducial points in SCG signal [35]. We chose Aortic valve opening (AO) wave which indi-
cates the start of ventricular contraction and is usually visible as a single sharp wave [19].

In this study, we compare two beat detection algorithms: beat detection algorithm 
proposed by Tadi et al. in paper [25] used as a reference method of heart beat detection 
and the heart beat detector on SCG signals described in paper [24] described further as 
the tested beat detector.

Reference beat detection algorithm

Algorithm presented by Tadi et al. in 2015 [25] uses R waves as reference points and is 
based on the windowing method proposed in papers [36, 37]. The first step of the algo-
rithm is applying a band-pass filter with cut-off frequencies of 4 Hz and 50 Hz. Then, the 
SCG signal is smoothed using a moving average filter, whose window has the duration of 
10–20 ms. The R waves in the ECG signal are localized using Pan–Tompkins algorithm 
and are the reference points. The location of AO wave of a cardiac cycle is determined as 
a maximum value of the SCG signal within a 90 ms window.

Tested heart beat detector

Beat detector proposed by Tadi et al. in 2016 [24] consists of the following steps: apply-
ing band-pass filtering to the signal (3rd order Butterworth filter with cut-off frequen-
cies of 1  Hz and 45  Hz), motion noise cancellation, Hilbert transform and applying 
band-pass filter with cut-off frequencies of 0.5 Hz and 3 Hz to obtain a waveform with 
the same periodicity as heart rate.

Motion noise detection consists of calculating signal power envelope, and threshold-
ing. Signal power envelope is calculated from the SCG signal using root mean square 
operation and a sliding window with a length of 500 ms. Signal parts, where the power 
envelope exceeds the threshold (twice the median value of signal power envelope), are 
classified as motion artifacts.

According to Tadi et al. [24], Hilbert transform improves the heart beat detection in 
SCG signals, because it facilitates the detection of the dominant peaks associated with 
heart beats. The envelope of the signal s(t) can be obtained by applying the Hilbert trans-
form defined in the following equation:

Hilbert transform yields a 90◦ phase shift of s(t) and thus we can calculate the magnitude 
of its envelope as in the following equation:

(1)tRR,i = tn − tn−1,

(2)ŝ(t) =
1

π

∫ +∞

−∞

s(τ )

t − τ
dτ .
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where sa(t) is an analytic signal.
In the last step, we find local maxima of the magnitude of Hilbert envelope separated by 

at least 400 ms. These maxima determine the positions of AO waves. The interbeat inter-
vals in SCG are calculated as differences between timing points of successive AO waves as 
in the following equation:

where tAO,i is the ith cardiac interval in SCG and tn denotes the occurrence of nth 
AO wave.

HRV analysis

We calculated the mean interbeat interval (mean NN), the standard deviation of all inter-
beat intervals (SDNN), the ratio of number of interbeat interval differences greater than 
50 ms (NN50), the proportion calculated by dividing NN50 (pNN50) by the total number of 
interbeat intervals, the root mean square of differences (RMSSD) of successive RR intervals 
in accordance with current recommendations [2]. For frequency domain analysis, we used 
sampling frequency equal to 3 Hz and Hann window defined in the following equation:

where N = L− 1 , L is the window length, and 0 ≤ n ≤ N  [38].
The power of the low-frequency band ( PSDLF ) was computed in the band 0.04–0.15 Hz, 

the power of very low-frequency band ( PSDVLF ) was calculated for frequencies under 
0.04 Hz, and the power of the high frequency band ( PSDHF ) was computed in the band 
0.15–0.4 Hz. The LF/HF ratio was computed as the PSDLF/PSDHF ratio.

Results
Due to the lack of annotations of recordings from CEBS database [39], the heart beats in 
SCG signal were annotated using the algorithm described in “Reference beat detection 
algorithm”. Heart beats determined by this algorithm are treated as reference beats for SCG 
signal. Tested heart beat detector based on algorithm proposed in paper [24] was evaluated 
as the number of true positives (TP), false positives (FP), false negatives (FN), the number 
of beats, sensitivity, and positive predictive value (precision).

When the difference between position of reference AO wave and detected AO wave is 
within 180 ms margin, then this AO wave position is considered a true positive. False nega-
tive occurs when tested beat detector omits a true AO wave in reference annotation. False 
positive is determined for false detected AO wave.

Sensitivity (Se) is defined in the following equation:

and positive predictive value (PPV) is defined in the following equation:

(3)A(t) = |sa(t)| =
√

s2(t)+ ŝ2(t),

(4)tAO−AO,i = tn − tn−1,

(5)w(n) =
1

2

(

1− cos

(

2π
n

N

))

,

(6)Se =
TP

TP+FN
,

(7)PPV =
TP

TP+FP
.
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The number of beats is the sum of TP and FN. Table 1 presents beat detector perfor-
mance measures on signals b001–b020. Table  2 presents beat detector performance 
measures on signals m001–m020 and Table 3 shows performance measures on signals 
p001–p020.

The best heart beat detection performance of tested algorithm within the analyzed 
series was achieved on signals m001–m020 (overall sensitivity of 0.939 and positive 
predictive value of 0.945) due to the lower number of false positive and false nega-
tive results. The worst overall performance was achieved on signals p001–p020 (over-
all sensitivity of 0.877, precision of 0.857) and the performance of heart beat detection 
expressed as the overall sensitivity was 0.893 and for overall precision value of 0.896.

Among the individual signals, the best results were achieved for recordings b002, b018, 
b019, p002, p016, p018, and p019 ( Se = 1.000 , PPV = 1.000 ). The worst results were 
obtained for signal p006 ( Se = 0.176 , PPV = 0.381 ), p003 ( Se = 0.273 , PPV = 0.272 ), 
b003 ( Se = 0.351 , PPV = 0.395 ), and b005 ( Se = 0.385 , PPV = 0.383 ) because of high 
levels of FP and FN which were caused by motion artifacts and the fact that the AO wave 
was not always the most prominent peak of the signal.

Mean and standard deviations of HRV indices obtained from interbeat intervals from 
ECG and SCG are presented in Table 4 for signals b001–b020, for signals m001–m020 
in Table 5, in Table 6 for signals p001–p020, and in Table 7 for all analyzed signals.

Mean and standard deviation values of calculated indices are similar in each group of 
signals except SDNN, RMSSD, NN50, pNN50, and PSDVLF , where values achieved for 
tested algorithm are significantly greater. HRV indices mean and standard deviation are 
similar for 5-min signals (b001–b020 and p001–p020).

Table 1  Performance measures of tested heart beat detector on SCG signals b001–b020

Signal TP FP FN Beats Se PPV

b001 279 22 19 298 0.936 0.927

b002 308 0 0 308 1.000 1.000

b003 121 187 226 347 0.351 0.395

b004 323 2 1 325 0.997 0.994

b005 139 226 224 364 0.385 0.383

b006 309 2 0 309 1.000 0.994

b007 272 1 0 272 1.000 0.996

b008 480 0 1 480 0.998 1.000

b009 310 6 3 313 0.990 0.981

b010 234 75 74 309 0.761 0.758

b011 251 86 86 338 0.746 0.741

b012 317 81 86 403 0.787 0.797

b013 358 0 1 359 0.997 1.000

b014 345 1 0 345 1.000 0.997

b015 329 3 1 330 0.997 0.991

b016 352 0 0 352 1.000 1.000

b017 363 2 2 365 0.995 0.995

b018 400 0 0 400 1.000 1.000

b019 316 0 0 338 1.000 1.000

b020 338 15 12 338 0.965 0.956

Total 6137 711 736 6873 0.893 0.896
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Table 2  Performance measures of tested heart beat detector on SCG signals m001–m020

Signal TP FP FN Beats Se PPV

m001 3794 129 113 3907 0.971 0.967

m002 3205 20 20 3225 0.994 0.994

m003 2283 339 836 3119 0.732 0.871

m004 3404 22 3 3407 0.999 0.994

m005 1949 1656 1650 3599 0.542 0.541

m006 3086 32 30 3116 0.990 0.990

m007 2596 23 18 2614 0.993 0.991

m008 5008 3 11 5019 0.998 0.999

m009 2949 234 211 3160 0.933 0.926

m010 2148 842 840 2988 0.719 0.718

m011 3450 148 146 3596 0.959 0.959

m012 3744 233 246 3990 0.938 0.941

m013 3707 5 4 3711 0.999 0.999

m014 3378 39 39 3417 0.989 0.989

m015 3204 2 1 3205 1.000 0.999

m016 3860 2 1 3861 1.000 0.999

m017 3574 11 12 3586 0.997 0.997

m018 4011 69 93 4104 0.977 0.983

m019 3178 14 17 3195 0.995 0.996

m020 3386 15 12 3398 0.996 0.996

Total 65,914 3838 4303 70,217 0.939 0.945

Table 3  Performance measures of tested heart beat detector on SCG signals p001–p020

Signal TP FP FN Beats Se PPV

p001 317 11 8 325 0.975 0.966

p002 308 0 0 308 1.000 1.000

p003 95 254 253 348 0.273 0.272

p004 324 2 1 325 0.997 0.994

p005 181 240 184 365 0.496 0.430

p006 139 226 224 272 0.176 0.381

p007 273 1 0 273 1.000 0.996

p008 479 0 1 480 0.998 1.000

p009 313 6 3 316 0.991 0.981

p010 234 75 74 308 0.760 0.757

p011 251 88 86 337 0.745 0.740

p012 317 81 87 404 0.785 0.796

p013 358 0 1 359 0.997 1.000

p014 344 1 0 344 1.000 0.997

p015 328 3 1 329 0.997 0.991

p016 352 0 0 352 1.000 1.000

p017 363 2 2 365 0.995 0.995

p018 400 0 0 400 1.000 1.000

p019 316 0 0 316 1.000 1.000

p020 326 15 12 338 0.964 0.956

Total 6018 1005 937 6864 0.877 0.857
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Tadi et al. [25] observed that HRV indices obtained from ECG and SCG have strong 
linear relationship. To examine the strength of linear correlation between HRV indi-
ces obtained from ECG and SCG, we used MATLAB Curve Fitting Tool to calculate 

Table 4  HRV indices derived from  ECG lead I and  SCG signal presented as  mean 
and standard deviation (SD) on recordings b001–b020

HRV index ECG SCG (reference algorithm) SCG (tested algorithm)

Mean SD Mean SD Mean SD

Mean NN [ms] 880.6236 102.1249 880.6352 102.1375 877.9416 100.0651

SDNN [ms] 55.3286 18.0816 58.8625 16.7121 92.5927 55.8870

RMSSD [ms] 18.4905 21.1768 59.2054 20.4972 116.8905 100.4839

NN50 74.8000 46.9093 107.8000 42.1059 138.2500 84.8211

pNN50 0.2240 0.1408 0.3233 0.1319 0.4099 0.2501

PSDLF [ ms
2] 616,229.8079 155,950.1659 612,073.3519 155,948.3816 612,073.3519 154,059.9771

PSDVLF [ms2] 2962.8256 2308.0362 3301.8585 2148.7678 10,018.8269 15,211.3318

PSDHF [ ms
2] 616,714.3314 155,958.1736 616,713.8099 155,953.0616 612,867.8984 153,989.0784

LF/HF 0.9992 0.0006 0.9992 0.0006 0.9986 0.0022

Table 5  HRV indices derived from  ECG lead I and  SCG signal presented as  mean 
and standard deviation (SD) on recordings m001–m020

HRV index ECG SCG (reference algorithm) SCG (tested algorithm)

Mean SD Mean SD Mean SD

Mean NN [ms] 868.4482 107.7381 868.4494 107.7377 874.4701 108.1814

SDNN [ms] 66.7848 27.6628 69.4776 27.2620 146.1656 259.5451

RMSSD [ms] 54.2829 33.0621 63.9567 31.9611 177.9677 335.4112

NN50 699.5000 375.9997 1051.6500 480.1267 1223.8000 689.7342

pNN50 0.2068 0.1085 0.3098 0.1433 0.3621 0.2137

PSDLF [ ms
2] 564,775.7879 150,123.2398 564,774.1763 150,124.8666 560,361.6889 153,743.7541

PSDVLF [ ms
2] 2730.3091 1914.1473 3076.3276 150,124.8666 7566.0048 8040.7530

PSDHF [ ms
2] 565,323.1825 150,225.7814 565,321.7553 150,228.3664 561,047.5560 153,853.2790

LF/HF 0.9990 0.0005 0.9990 0.0005 0.9987 0.0008

Table 6  HRV indices derived from  ECG lead I and  SCG signal presented as  mean 
and standard deviation (SD) on recordings p001–p020

HRV index ECG SCG (reference algorithm) SCG (tested algorithm)

Mean SD Mean SD Mean SD

Mean NN [ms] 881.2197 102.3434 881.2311 102.3560 879.9381 100.3830

SDNN [ms] 55.6498 17.7449 58.9799 16.5574 84.3181 34.9819

RMSSD [ms] 48.4851 21.1828 58.4208 21.0497 103.2012 69.7998

NN50 168.1500 23.8311 167.8500 22.4365 132.8000 81.0884

pNN50 0.4899 0.0414 0.4892 0.0347 0.3911 0.2336

PSDLF [ ms
2] 616,967.1499 156,145.0747 616,968.3450 156,144.2675 616,229.7384 153,878.4562

PSDVLF [ ms
2] 2974.3376 2298.2310 3300.7693 2145.1549 7458.9407 7783.3257

PSDHF [ ms
2] 617,450.7037 156,152.3237 617,453.1540 156,148.1566 616,747.0991 153,885.5876

LF/HF 0.9992 0.0006 0.9992 0.0006 0.9991 0.0006



Page 8 of 15Siecinski et al. BioMed Eng OnLine           (2019) 18:69 

the goodness of fit to the 1st degree polynomial (linear) model. The goodness of fit is 
expressed as the coefficient of determination R2.

Table 8 presents, Tables 9, 10, and 11 present correlation of determination ( R2 ) cal-
culated for linear model describing the relationship of HRV indices calculated from 
ECG and SCG on recordings b001–b020, m001–m020, p001–p020, and all recordings. 

Table 7  HRV indices derived from  ECG lead I and  SCG signal presented as  mean 
and standard deviation (SD) on all analyzed recordings

HRV index ECG SCG (reference algorithm) SCG (tested algorithm)

Mean SD Mean SD Mean SD

Mean NN [ms] 876.7638 102.4935 876.7719 102.5018 874.4701 108.1814

SDNN [ms] 59.2544 21.9539 62.4400 21.0417 146.1656 259.5451

RMSSD [ms] 50.4195 25.4661 62.4400 24.7629 177.9677 335.4112

NN50 688.3000 754.5296 686.0833 750.9212 1223.800 689.7342

pNN50 0.4919 0.0366 0.4924 0.0353 0.3621 0.2137

PSDLF [ ms
2] 599,324.2486 153,454.5209 607,119.5110 161,038.1290 560,361.6889 153,743.7541

PSDVLF [ ms
2] 2889.1574 2146.9039 3226.3185 2003.5468 7566.0048 8040.7530

PSDHF [ ms
2] 599,829.4059 153,486.9967 607,626.5532 161,052.9574 561,047.5560 153,853.2790

LF/HF 0.9991 0.0006 0.9991 0.0006 0.9987 0.0008

Table 8  Correlation between  HRV indices obtained from  ECG and  SCG on  recordings 
b001–b020

HRV index R
2 (reference algorithm) R

2 (tested 
algorithm)

Mean NN 1.0000 0.9925

SDNN 0.9263 0.0533

RMSSD 0.5983 0.0546

NN50 0.3566 0.0133

pNN50 0.3854 0.0168

PSDLF 1.0000 0.9844

PSDVLF 0.9379 0.0416

PSDHF 1.0000 0.9862

LF/HF 0.9977 0.0360

Table 9  Correlation between  HRV indices obtained from  ECG and  SCG on  recordings 
m001–m020

HRV index R
2 (reference algorithm) R

2 (tested 
algorithm)

Mean NN 1.0000 0.9249

SDNN 0.9263 0.5507

RMSSD 0.5983 0.4898

NN50 0.1791 0.1166

pNN50 0.2137 0.1580

PSDLF 1.0000 0.9846

PSDVLF 0.8967 0.0009

PSDHF 1.0000 0.9846

LF/HF 0.9996 0.4296
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Figures 1 and 2 present linear model describing the relationship between mean NN cal-
culated from ECG and SCG, and Figs. 3 and 4 present linear model of pNN50 derived 
from ECG and SCG.

Table 10  Correlation between  HRV indices obtained from  ECG and  SCG on  recordings 
p001–p020

HRV index R
2 (reference algorithm) R

2 (tested 
algorithm)

Mean NN 1.0000 0.9984

SDNN 0.9232 0.0043

RMSSD 0.9536 0.0176

NN50 0.8957 0.0504

pNN50 0.6782 0.0684

PSDLF 1.0000 0.9980

PSDVLF 1.0000 0.0094

PSDHF 1.0000 0.9980

LF/HF 0.9976 0.9629

Table 11  Correlation between HRV indices obtained from ECG and SCG on all recordings

HRV index R
2 (reference algorithm) R

2 (tested 
algorithm)

Mean NN 1.0000 0.9681

SDNN 0.9232 0.2738

RMSSD 0.6092 0.2047

NN50 0.3949 0.5800

pNN50 0.4410 0.0617

PSDLF 1.0000 0.9889

PSDVLF 0.9390 0.0132

PSDHF 1.0000 0.9895

LF/HF 0.9976 0.1326

Fig. 1  Linear model describing the correlation between mean NN derived from SCG and mean NN 
calculated from SCG using reference algorithm



Page 10 of 15Siecinski et al. BioMed Eng OnLine           (2019) 18:69 

R
2 values calculated for linear fit between HRV indices derived from ECG and refer-

ence SCG beats indicate strong linear relationship except for NN50 and pNN50 in all 
signal groups except signals p001–p020 for NN50. When using tested heart beat detec-
tor, obtained R2 values are lower for all recording groups. Mean NN, PSDLF and PSDHF 
have the maximum value of R2 for each group of recordings. The weakest correlation was 
observed for SDNN, RMSSD, PNN50, and LF/HF for all groups of recordings, except 
LF/HF for recordings p001–p020.

Fig. 2  Linear model describing the correlation between mean NN derived from SCG and mean NN 
calculated from SCG using tested algorithm

Fig. 3  Linear model describing the correlation between pNN50 derived from SCG and pNN50 calculated 
from SCG using reference algorithm
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Despite the similarities of mean and standard deviation of analyzed HRV indices 
among the analyzed signals (heart beats obtained from ECG lead I, reference SCG 
beats and SCG with heart beats obtained using tested algorithm), there are significant 
differences in correlation between HRV indices between ECG and SCG signals. These 
discrepancies show that the correlation between HRV indices obtained from ECG 
and SCG depends on the quality of heart beat detection on SCG signals. To reduce 
the influence of the outliers in the model which are shown in Figs. 2 and 4, we applied 
robust model fitting using least absolute residual (LAR) method described further in 
[40] and least squares method (LSq). Then, the maximum value of R2 coefficient was 
chosen as a result of robust model fitting. R2 coefficients for recordings b001–b020 
are shown in Table 12, for recordings m001–m020 are presented in Table 13 and R2 
values for recordings p001–p020 are shown in Table 14. Table 15 presents the R2 val-
ues for all analyzed recordings.

Fig. 4  Linear model describing the correlation between pNN50 derived from SCG and pNN50 calculated 
from SCG using tested algorithm

Table 12  Correlation between  HRV indices obtained from  ECG and  SCG on  recordings 
b001–b020 using robust linear model

HRV index R
2 value Robust 

model fit 
method

Mean NN 0.9987 LAR

SDNN 0.8422 LAR

RMSSD 0.8424 LSq

NN50 0.8356 LAR

pNN50 0.8271 LAR

PSDLF 0.9977 LSq

PSDVLF 0.8403 LAR

PSDHF 0.9977 LSq

LF/HF 0.8393 LAR
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Using robust model fitting improves the correlation between HRV indices obtained 
from ECG and SCG except for p series and all analyzed signals due to the large number 
of outliers found in linear model.

Table 13  Correlation between  HRV indices obtained from  ECG and  SCG on  recordings 
m001–m020 using robust linear model

HRV index R
2 value Robust 

model fit 
method

Mean NN 0.9875 LAR

SDNN 0.9251 LAR

RMSSD 0.8424 LSq

NN50 0.2114 LSq

pNN50 0.3109 LSq

PSDLF 0.9974 LSq

PSDVLF 0.8355 LAR

PSDHF 0.9974 LSq

LF/HF 0.8997 LAR

Table 14  Correlation between  HRV indices obtained from  ECG and  SCG on  recordings 
p001–p020 using robust linear model

HRV index R
2 value Robust 

model fit 
method

Mean NN 0.9984 LSq

SDNN 0.8354 LAR

RMSSD 0.1436 LSq

NN50 0.8417 LAR

pNN50 − 0.0893 LAR

PSDLF 0.9997 LSq

PSDVLF 0.8349 LAR

PSDHF 0.9997 LSq

LF/HF 0.9938 LAR

Table 15  Correlation between HRV indices obtained from ECG and SCG on all recordings 
using robust linear model

HRV index R
2 value Robust 

model fit 
method

Mean NN 0.9970 LAR

SDNN 0.9398 LAR

RMSSD 0.9377 LSq

NN50 0.9374 LAR

pNN50 − 0.0199 LAR

PSDLF 0.9951 LAR

PSDVLF 0.9390 LAR

PSDHF 0.9950 LAR

LF/HF 0.9432 LAR
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Conclusion
In this study, we presented the feasibility of HRV analysis using SCG signal and com-
pared results obtained from ECG and SCG heart beats. Mean interbeat interval (Mean 
NN), PSDLF and PSDHF are most robust to SCG signal noise and have the strongest 
linear correlation. HRV indices obtained from heart beat intervals using two different 
beat detectors on SCG signals are similar except SDNN, RMSSD, NN50, pNN50, and 
PSDVLF , which are induced by noise in SCG signals and the limitations of tested beat 
detector. Using robust fitting to the linear model improves the correlation between HRV 
indices obtained from ECG and SCG signals [28] (except the R2 values of pNN50 values 
in p series and for all analyzed signals) and indicates the need to design a reliable heart 
beat detector which works on SCG signals.

Beat detection performance of tested algorithm on all SCG signals is quite good on 
85,954 beats ( Se = 0.930 , PPV = 0.934 ) despite lower performance on noisy signals. 
Sensitivity and PPV on signals b001–b020 ( Se = 0.893 , PPV = 0.896 ) is lower than 
reported in paper [28] ( Se = 0.995 , PPV = 0.991 ) and Rivero et al. paper [41] ( Se = 0.99 , 
PPV = 0.97 ). Tested algorithm has lower performance on SCG signals m001–m020 than 
reported in Li et al. [39] paper ( Se = 0.9933 , PPV = 0.9941 ) due to the fact that tested 
algorithm based on the beat detector proposed by Tadi et  al. [24] was susceptible to 
noise which strongly worsens the performance of heart beat detection. Other causes of 
worse performance include the occurrence of AO waves which are not the most promi-
nent peaks and the fact that the heart beats on SCG signals detected as the nearest local 
maximum after the occurrence of the R wave in ECG signal may not occur within 90 ms.

Strong linear relationship between most HRV indices obtained from ECG and SCG 
signals, especially between indices derived from ECG and reference beat detector on 
SCG signals, indicates the reliability of using SCG-derived interbeat intervals for HRV 
analysis [18, 25, 28]. Lower coefficients of determination between HRV indices obtained 
from ECG signal and beats detected on SCG signal using tested algorithm are caused by 
the noise found in analyzed signals. The possibility of recording and processing cardiac 
vibrations using one device broadens the scope of applicability of SCG [18, 25]. HRV 
analysis on SCG signal performed on smartphones may be used in mental stress assess-
ment [27] or atrial fibrillation detection [42]. In future works, we will investigate the 
influence of other SCG beat detection algorithms on HRV indices.
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