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Abstract: Metal oxide and graphene derivative-based nanocomposites (NCs) are attractive to the
fields of environmental remediation, optics, and cancer therapy owing to their remarkable physico-
chemical characteristics. There is limited information on the environmental and biomedical applica-
tions of tin oxide-reduced graphene oxide nanocomposites (SnO2-rGO NCs). The goal of this work
was to explore the photocatalytic activity and anticancer efficacy of SnO2-rGO NCs. Pure SnO2 NPs
and SnO2-rGO NCs were prepared using the one-pot hydrothermal method. X-ray diffraction (XRD),
transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron
spectroscopy (XPS), Fourier transform infrared (FTIR), UV–Vis spectrometry, photoluminescence
(PL), and Raman scattering microscopy were applied to characterize the synthesized samples. The
crystallite size of the SnO2 NPs slightly increased after rGO doping. TEM and SEM images show
that the SnO2 NPs were tightly anchored onto the rGO sheets. The XPS and EDX data confirmed
the chemical state and elemental composition of the SnO2-rGO NCs. Optical data suggest that the
bandgap energy of the SnO2-rGO NCs was slightly lower than for the pure SnO2 NPs. In comparison
to pure SnO2 NPs, the intensity of the PL spectra of the SnO2-rGO NCs was lower, indicating the
decrement of the recombination rate of the surfaces charges (e−/h+) after rGO doping. Hence, the
degradation efficiency of methylene blue (MB) dye by SnO2-rGO NCs (93%) was almost 2-fold higher
than for pure SnO2 NPs (54%). The anticancer efficacy of SnO2-rGO NCs was also almost 1.5-fold
higher against human liver cancer (HepG2) and human lung cancer (A549) cells compared to the
SnO2 NPs. This study suggests a unique method to improve the photocatalytic activity and anticancer
efficacy of SnO2 NPs by fusion with graphene derivatives.

Keywords: SnO2; rGO; nanocomposites; one-pot synthesis; characterization; photocatalytic degradation;
anticancer activity

1. Introduction

Hepatocellular carcinoma is the second leading cause of death after lung cancer, glob-
ally [1]. The World Health Organization (WHO) reported that there were approximately
19 million new cancer cases and approximately 10 million deaths from cancer worldwide
in 2020 [2]. There are several ways, such as surgery, radiation, and chemotherapy, to treat
cancer. However, drug resistance and selectivity are still two major hurdles in cancer ther-
apy. On the other hand, the release of environmental pollutants (e.g., dyes and drugs) from
various factories challenge the intactness of the ecosystem. Hence, it is important to develop
a nanostructure that can be used in biomedical as well as environmental applications [3].

Metal nanoparticles, such as silver nanoparticles (AgNPs), have recently become
attractive to different areas such as catalysis, bio-sensing, antimicrobial activity, and bio-
medicine due to the fact of their potential applications [4,5]. Metal oxide nanoparticles
(NPs) have shown potential for their application in cancer therapy and environmental
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remediation [6,7]. For example, NPs of ZnO, TiO2, WO3, and In2O3 have been commonly
studied for catalytic, anticancer, antibacterial, optoelectronics, and photocatalytic degrada-
tion [8–10] due to the fact of their unique physicochemical properties. Particularly, tin oxide
(SnO2) NPs, an n-type semiconductor with a wide bandgap of ~3.6 eV, was studied for these
purposes because of their several advantages, e.g., low cost, stability, facile synthesis, and
low toxicity [11]. The hydrothermal method has been commonly used to synthesize various
nanoforms of SnO2 such as NPs, nanorods, and nanowires [12,13]. Earlier studies reported
the photocatalytic activity of SnO2 NPs under UV or visible light illumination [14,15].
However, there is a large scope for further improvement of the photocatalytic performance
of such nanostructures.

Graphene is a 2D nanocrystal consisting of single layer of carbon atoms arranged
in a honeycomb lattice. Graphene oxide (GO) and reduced graphene oxide (rGO) are
the two most important derivatives of graphene [16,17]. GO and rGO are promising
materials for various applications due to the fact of their interesting properties such as
high surface area, high mechanical strength, excellent optical property, and presence of
functional groups on their surfaces. Due to the presence of functional groups, GO and
rGO have attracted the attention of material scientists for the synthesis of nanocomposites
with metal oxide NPs [18,19]. Earlier studies focused on improving the physicochemical
properties of metal oxide NPs by integration of GO or rGO [20,21]. Moreover, GO has
different advantages that enhance the properties natural polymer as a nanocomposite. For
example, natural polymer/GO composites (KGM/GO) are strong and biocompatible [22].
Different synthesis procedures, such as laser irradiation, gas–liquid interface interaction,
co-precipitation, and hydrothermal, were employed to prepare metal oxide NPs anchored
on GO/rGO nanosheets [23]. Such nanocomposites have superior characteristics than their
individual one. For instance, ZnO-rGO NCs have better anticancer efficiency than pure
ZnO NPs [20]. Au-rGO NCs were prepared by green synthesis for PTT of MCF7 cancer
cell treatment with promising application in the field of nanobiomedicine [24]. Another
study demonstrated that the photocatalytic activity of Fe3O4 NPs improved after doping
with rGO [25]. Chen et al. [26] reported that the prepared Pd nanocatalyst exhibited an
outstanding catalytic applicability for reducing extremely poisonous Cr(VI) and a broad
variety of azo dyes.

Keeping the above in mind, we aimed to improve the anticancer and photocatalytic
activity of SnO2 NPs by incorporating rGO. Pure SnO2 NPs and SnO2-rGO NCs were
produced using the one-pot hydrothermal method. X-ray diffraction (XRD), field emission
scanning electron microscopy (FE-SEM), field emission transmission electron microscopy
(FE-TEM), X-ray photoelectron microscopy (XPS), Raman scattering microscopy, Fourier
transmission infrared (FTIR) microscopy, UV–Vis spectrometry, and photoluminescence
(PL) spectrometry were applied to characterize the physicochemical properties of the pre-
pared samples. The photocatalytic activity of SnO2 NPs and SnO2-rGO NCs was examined
against methylene blue (MB) dye under UV illumination. The anticancer potential of these
samples were explored in two different cancer cells: human liver cancer (HepG2) and
human lung cancer (A549).

2. Experimental Section
2.1. Materials and Reagents

Tine chloride (SnCl4·4H2O), graphite powder, sodium nitrate (NaNO3), sulphuric acid
(H2SO4), potassium permanganate (KMnO4), hydrogen peroxide (H2O2), hydrazine mono-
hydrate (NH2NH2·H2O), and methyl blue (MB) dye were obtained from Sigma Aldrich
(Millipore-Sigma, St. Louis, MO, USA). Distilled water (DW) was employed as a medium
for preparation. The chemicals were utilized as received without any further purification.

2.2. Synthesis of Graphene Oxide and Reduced Graphene Oxide

Graphene oxide (GO) was synthesized via Hummer’s method [27]. A reduction
method was used to synthesize rGO to form GO. The 200 mg of GO was dispersed in 30 mL
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of DW. Then, 0.5 mL of hydrazine monohydrate (NH2NH2·H2O) was added to the above
solution. The mixture solution was further warmed to 80 ◦C for 3 h to reduce GO into rGO.
Subsequently, the suspension was centrifuged and rinsed several times with ethanol and
distilled water and finally dried at 70 ◦C for 18 h to obtain the rGO sheets.

2.3. Synthesis of SnO2-rGO Nanocomposites

A one-pot hydrothermal approach was applied to prepare the SnO2-rGO NCs. Briefly,
1 g of tine chloride (SnCl4·4H2O) and 0.2 g of GO were dispersed in 30 mL of DW and
sonicated for 30 min. Then, 1.5 mL of hydrazine (NH2NH2·H2O) was added to this solution.
The NaOH solution was further slowly added to the mixture to reach pH 13. Next, the
mixture was stirred for 1 h to obtain a homogenous solution. Fifty milliliters was transferred
to a stainless autoclave and heated at 140 ◦C for 24 h. After, the product was centrifuged,
washed several times with ethanol and DW, and dried at 70 ◦C for 18 h to obtain the SnO2-
rGO NCs. A similar procedure was applied for the synthesis of pure SnO2 NPs without
mixing of GO. The synthesis protocol of the SnO2-rGO NCs is depicted in Scheme 1.
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2.4. Characterization Techniques

X-ray diffraction (PanAnalytic XPert Pro, Malvern Instruments, Malvern, Worcester-
shire, UK), with Cu-Kα radiation (λ = 0.15405 nm, at 45 kV and 40 mA) and an angle
ranging from 30◦ to 80◦, was used to investigate the crystal structure and phase purity
of the prepared samples. The morphology was studied via field emission transmission
electron microscopy (FETEM) (200 kV, 2100F, JEOL, Inc., Tokyo, Japan). Mapping of the
elemental distribution of the SnO2-rGO NCs was carried out by field emission scanning
electron microscopy (FE-SEM) (JSM-7600F, JEOL, Inc.). Moreover, the chemical state and
elemental composition of SnO2-rGO NCs were determined by X-ray photoelectron spec-
troscopy (XPS) (PHI-5300 ESCA PerkinElmer, Boston, MA, USA) and energy-dispersive
X-ray spectroscopy (EDX) [28]. Moreover, the typical working conditions of XPS were
10−9 Torr. This is necessary because the released photoelectrons have a low energy and
are easily absorbed by the surrounding environment. Al Kα with Mgα X-rays were used
to excite the samples. A micro-Raman spectroscopic analysis was also performed using a
Raman microscope (Thermo Scientific, Waltham, MA, USA) with a 532 nm (6 mW) laser
and 32 two-second scans (IY-Horiba-T64000). The absorption spectra of the SnO2 NPs and
SnO2-rGO NCs were recorded using a UV–Visible spectrophotometer (Hitachi U-2600).
The PL peak intensity of SnO2 NPs and SnO2-rGO NCs were assessed by a fluorescent
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spectrometer (Hitachi F-4600, Hitachi, Tokyo, Japan) with an excitation wavelength of
300 nm. The effect of the rGO sheets on the microstructure of the SnO2 NPs was studied by
Fourier transform infrared (FTIR) (PerkinElmer Paragon 500, Waltham, MA, USA).

2.5. Cell Culture

Human liver cancer (HepG2) and human lung cancer (A549) cell lines were used to
assess the anticancer activity of NPs and NCs. Cell lines were purchased from American
Type Culture Collection (ATTC, Manassas, WV, USA). Cells were cultured in DMEM (Invit-
rogen, Carlsbad, CA, USA) with 10% fetal bovine serum (FBS) and antibiotics (100 µg/mL
streptomycin + 100 U/mL penicillin). Cells were maintained in a humidified incubator at
37 ◦C with a 5% CO2 supply.

2.6. Exposure Protocol

An amount of 1000 µg/mL of both of SnO2 NPs and SnO2-rGO NCs were dissolved in
DMEM as stock suspension. The suspension was further diluted to different concentrations
(i.e., 0, 5, 10, 25, 50, 100, and 200 µg/mL). The different dilutions NPs and NCs were
sonicated for 20 min at 80 W at room temperature in an ultrasonic water bath sonicator
before being exposed to cells.

2.7. Cell Viability

To evaluate the effect of the synthesized samples against two types of cancer (i.e., HepG2
and A549), MTT assays were performed. At a density of 1 × 104 cells/well, 100 µL of cells
were placed onto 96-well plates and incubated for 24 h. Then, 100 µL of each concentration
(i.e., 0, 5, 10, 25, 50, 100, and 200 µg/mL) of the SnO2 NPs and the SnO2-rGO NCs were
added into each well and incubated for 24 h. After, 100 µL of MTT solution was added to
each well and incubated for 3 h. Next, 100 µL of CHAPS detergent (3-(3-cholamidopropyl)
(dimethylammonio)-1-propanesulfonate) solution was added into each well to solubilize
the MTT dye. Cell viability was then measured using a microplate reader (BioTek ELx800
Universal) at a wavelength of 570 nm.

2.8. Photocatalytic Evaluation

The photocatalytic experiments were conducted through degradation of MB dye under
UV illumination (λ ≥ 420 nm), which was provided using a 400 W Xe lamp (CEL-HXF300,
Beijing China Education Au-light Co., Ltd., Beijing, China). The 10 ppm of MB dye was
dispersed in 50 mL of DI water under continuous stirring, and 2 mL of MB solution was
taken as dye without catalysts. Then, 20 mg of both of SnO2 NPs and SnO2-rGO NCs was
added to the above solution as a suspension solution. Before exposure to UV irradiation,
an adsorption–desorption equilibrium was achieved after 30 min of stirring the suspension
solution in the dark. At regular intervals, 2 mL of suspension under light was taken and
centrifuged to remove the catalyst powders. The degradation efficiency of MB dye was
estimated by following Equation (1).

Degradation efficiency (%) =

[
C0 −Ct

C0

]
× 100 (1)

where C0 represents the absorbance before irradiation, and Ct indicates the absorbance
throughout the irradiation. To examine cycle stability, the catalysts were separated from
suspension by centrifugation and subsequent washing with ethanol and deionized water.
The catalysts were further dried at 60 ◦C for 12 h and utilized several times.

3. Results and Discussion
3.1. Crystallographic Study

The crystalline structure and phase formation of GO, rGO, SnO2 NPs, and SnO2-
rGO NCs were examined by X-ray diffraction (XRD). The XRD spectra of GO and rGO
nanosheets showed 2θ values of peaks at 10.57◦, 27.94◦, and 24.86◦ corresponding to the
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(001), (100), and (002) planes, respectively. In Figure 1, various 2θ (hkl) values of peaks
are shown in the SnO2-rGO NCs at 26.24◦ (110), 33.92◦ (101), 37.94◦ (200), 51.60◦ (211),
58.30◦ (220), 61.8◦ (002), 78.48◦ (202), and 83.31◦ (321) planes. The results reveal that the peak
of the (002) plane of graphitic carbon in the SnO2-rGO nanocomposites (NCs) overlapped
with the (110) plane of the SnO2 NPs [29]. All of the SnO2 peaks in the XRD spectra
associated to the standard SnO2 (JCPDS card No: 01-0803912). The average crystalline sizes
of the SnO2 NPs and SnO2-rGO NCs were calculated using the Sherrier equation applying
a (110) peak.

D =
kλ

β cos θ
(2)

where k = 0.90 is the shape factor of the crystallite, λ is the wavelength, β is the full width
at half maximum, and θ is the reflection angle.
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According to Scherrer’s equation, the average crystallite size of the SnO2 NPs and
SnO2-rGO NCs were 7.64 and 7.98 nm, respectively (Table 1). The crystallite size of the
SnO2 NPs decreased after loading on rGO as shown in other reports [30,31].

Table 1. Structural and Optical Properties of the SnO2 NPs and SnO2-rGO NCs.

Properties SnO2 NPs SnO2-rGO NCs

XRD size (nm) 7.64 7.98

TEM size (nm) 9.42 9.84

Optical bandgap (eV) 3.79 3.45

3.2. Morphological Study

High-resolution TEM (HRTEM) images were selected to investigate the morphology,
chemical compositions, and particle size of the synthesized samples (Figure 2). TEM
and HRTEM images show that GO exhibited thick, flattened nanosheet-like surfaces.
Navazani et al. [32] reported that the increased thickness of the graphene sheets was at-
tributed to organic functional groups and the electrostatic interaction of oxides on the
surface. TEM images (Figure 2G,H) show that the distribution of the SnO2 NPs was ran-
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domly agglomerated with a uniform particles size owing to smaller particle size and higher
surface energy of SnO2 NPs as reported earlier [33]. TEM images (Figure 2L,M) of the
SnO2-rGO NCs show that the SnO2 NPs were loaded onto the rGO nanosheet. These
results suggest the successful formation of SnO2-rGO NCs. Figure 2I,N show that the lattice
spacing (d) of the SnO2 NPs and SnO2-rGO NCs were found to be 0.220 and 0.330 nm,
respectively, which matched to the (210) and (110) planes of the SnO2 structure [34,35].
These values of interplanar spacing (d) were supported by the XRD data.
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3.3. SEM Study

FE-SEM measurements were used to study the surface morphology of the prepared
samples. Figure 3 displays the FE-SEM images of GO, rGO, SnO2 NPs, and SnO2-rGO NCs.
In Figure 3A,B, the structure of GO and rGO nanosheets can be observed as a carbon layer.
Figure 3C,D shows that the SnO2 NPs were spherical shaped with a uniform distribution
and an anchored rGO sheet, which was also confirmed by TEM analysis. Ahamed et al. [36]
observed that rGO improved the anticancer therapy of metal oxide NPs by tuning its
physicochemical properties. Such a phenomenon is crucial and useful for photocatalytic
degradation and cancer therapy. EDX spectra (Figure 4A) confirmed the presence of Sn, C,
and O elements in the SnO2-rGO NCs. SEM mapping (Figure 4C,E) of SnO2-rGO NCs also
exhibited a homogeneous distribution of Sn, O, and C elements in the SnO2-rGO NCs.
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3.4. XPS Study

The electronic structure and the chemical composition of the SnO2-rGO NCs samples
were also investigated by X-ray photoelectron spectroscopy (XPS), thus providing infor-
mation on the electronic communication between SnO2 and rGO [37]. The binding energy
peaks of Sn, O, and C elements were shown in the XPS wide spectra (Figure 5A) of the
SnO2-rGO NCs. It can be seen that peaks of the Sn element were matched to the spin-orbit
peaks of Sn 3p, Sn 3d, and Sn 4p [38]. The high-resolution spectra of the Sn, O, and C are
presented in Figure 5B–D, respectively. The results suggest that the presence of Sn, O, and
C peaks confirm the fabrication of SnO2 on rGO as supported by the EDX data (Figure 4A).
The binding energy of the Sn3d5/2 and Sn3d3/2 peaks were assigned at 486.55 and 495.3 eV,
respectively, which could be attributed to the SnO2 NPs [39]. According to the curve fit
of the O1s spectra (Figure 5C), the binding energy peaks of O1s at 532 and 533 eV corre-
sponded to Sn-O and Sn-O-C, respectively, which agrees with previous works [40,41]. The
C1s peak (Figure 5D) was subdivided into three individual peaks after the fitting of the
main peak. The peaks at 284, 285, and 288 eV were observed to correspond to C=C, C-OH,
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and O-C=O, respectively, as shown in a previous study [42]. These results reveal that the
rGO had a residual oxygen group [40].
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3.5. Raman Analysis

The electronic and vibration bands of prepared samples were analyzed via Raman
spectroscopy. The Ramen spectra of the SnO2 NPs and SnO2-rGO NCs are shown in
Figure 6A. It can be seen that Eu, As, A1g, and B2g vibration bands of the SnO2 NPs’ peaks
were located at 352.33, 579, 620, and 773.32 cm−1, respectively [43]. The peak positions
at 579 and 620 cm−1 of the SnO2-rGO NCs were similar to the SnO2 NPs as shown in
Figure 6A. These results indicate that the intensity of the Raman peaks of the SnO2-rGO
NCs was lower than the SnO2 NPs due to the interaction between SnO2 NPs and rGO [39].
Figure 6B shows that two new scattering bands (i.e., band D and band G) appeared in
the SnO2-rGO NCs compared to the SnO2 NPs. Moreover, the scattering bands of the
SnO2-rGO NCs were observed at 1349.47 cm−1 (band D) and 1590.50 cm−1 (band G), which
were attributed to instability in the hexagonal graphitic layers and vibration bonds of the
carbon atom, respectively [44]. Our results from the Raman analysis confirm that the SnO2
NPs attached onto the surface of the rGO sheets [45].

3.6. FTIR Study

The functional groups of the GO, rGO, SnO2 NPs, and SnO2-rGO NCs were deter-
mined by FTIR spectrometry. Figure 7 shows the FTIR spectra of the prepared samples
in a range of 450–4000 cm−1. The results reveal the changes in the microstructural char-
acteristics in the first region (500–650 cm−1) of the SnO2 NPs during loading on rGO.
However, three stretching vibrations of C-O, C=C, and C=O assigned at 1048.73, 1620, and
1734.92 cm−1, respectively, can be seen in the GO. The presence of C=O and C-O at the
1713.96 and 1048.37 cm−1 bands indicate the reduction of GO into rGO [46]. Moreover,
O-H stretching vibrations were observed at 3433.69, 1646.43, and 1353 cm−1 for both SnO2
NPs and SnO2-rGO NCs due to the existence water molecules during the hydrothermal
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process [47]. The band observed at 593 cm−1 was assigned to the O-Sn-O stretching mode
in the SnO2 NPs [48], while two strong peaks at 530.20 and 608.6 cm−1 in the SnO2-rGO
NCs were assigned to Sn-O stretching vibration owing to the strong interaction between
SnO2 and rGO [49]. These results indicate the formation of single-structure SnO2-rGO NCs
as supported by the XRD data.
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3.7. Optical Study

The optical properties of the SnO2 NPs and SnO2-rGO NCs were studied by UV–Vis
spectroscopy. The UV–Vis spectra of the SnO2 NPs and SnO2-rGO NCs are presented in
Figure 8A. The absorption edge was shifted toward a higher wavelength for the SnO2-
rGO NCs in comparison to pure SnO2 NPs. The difference in absorption peaks tuned the
bandgap energy of the SnO2-rGO NCs in comparison to the SnO2 NPs. Taucs formula was
used to assess the bandgap energy [50]. The bandgap energy (Eg) (Figure 8B) of the SnO2
NPs and SnO2-rGO NCs were 3.79 and 3.45 eV, respectively. We observed a slight decrease
in the bandgap energy of the SnO2 NPs after rGO integration due to the increase in particle
size as shown Table 1. Reduction of the bandgap energy improves UV light absorption,
which can be applied in the photocatalytic degradation of pollutants [51].

3.8. Photoluminescence (PL)

Photoluminescence (PL) was used to measure the migration rate of electrons and
holes in the SnO2NPs and SnO2-rGO NCs NPs. The PL spectra of the SnO2NPs and SnO2-
rGO NCs NPs are presented in Figure 9. Moreover, the PL spectra of the SnO2 NPs and
SnO2-rGO NCs at room temperature were obtained using an excitation wavelength of
355 nm. After adding rGO, an emission peak at 402 nm was greatly reduced. Our results
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observed that the PL intensity of the SnO2-GO NCs system (black line) was lower than that
of pure SnO2 NPs, which may be attributed to greater charge separation, a longer life of the
electron–hole pair, and a higher efficiency of charge [52]. This process has the potential to
be used in a large variety of applications including cancer treatment and the photocatalytic
degradation of environmental contaminants.
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3.9. Photocatalytic Study

The degradation of MB dye under UV irradiation was used to investigate the photo-
catalytic activity of the SnO2 NPs and SnO2-rGO NCs. Figure 10A,B shows the absorption
spectra of the MB solution of the SnO2 NPs and SnO2-rGO NCs under UV irradiation
within 50 min. The absorption wavelength of the MB solution was at 664 nm as shown in
Figure 10. We observed that the intensity of the absorption at 664 nm in the MB spectra
decreased with increasing exposure time. Additionally, the color of the MB solution faded
gradually, indicating the breaking of the dye’s structure by oxidation [53]. Ali et al. [54]
also observed that MB dye was degraded by nanocomposites (NCs) under UV irradiation
over a short exposure time.

Figure 11A depicts the variations in (Ct/C0) as a function of exposure time for pure
SnO2 NPs and SnO2-rGO NCs at different time intervals (0–50 min) under UV irradiation.
The photocatalytic activity of the nanocomposites was enhanced by rGO integration [55].
The results show that the degradation efficiency of the SnO2-rGO NCs (93%) under UV
light after 50 min was higher than for the SnO2 NPs (54%). The reaction kinetics of the
current catalysis can be described as pseudo-first-order kinetics, i.e., ln(Ct/C0) = −kt
(k = kinetic rate constant, t = reaction time, C0 = initial absorbance, and Ct = absorbance at
time t). The rate constant (K) values of the SnO2 NPs and SnO2-rGO NCs were 0.0231 and
0.0102 min−1, respectively (Figure 11B). Figure 11D displays the recyclability of the SnO2-
rGO NCs after a four-time run with the same experimental conditions. The catalysts were
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washed in ethanol and deionized water and centrifuged to test for cycle stability. Then,
catalysts were dried at 60 ◦C for 12 h and used multiple times. Even after four runs, the
degradation efficiency of the MB dye was still approximately 93%. This indicates that
the photocatalytic performance of the SnO2-rGO NCs can be continuously used without
damage during the oxidation of contaminants. Our results indicate that the SnO2-rGO NCs
had outstanding stability and potential for application in environmental remediation [56].
A comparison of the present samples’ degradation efficiency of MB dye with previous
studies is shown in Table 2.
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Table 2. Comparison of the MB dye degradation efficiency of the present samples with previous studies.

Sample Model Dye Pollutant Reaction Time Degradation Efficiency (%) Concentration of MB Source of Light Reference

SnO2-rGO NCs Methylene blue (MB) 50 min 93% 10 ppm UV irradiation This work

ZnO/GONCs Methylene blue (MB) 40 min 100% 10 ppm Sunlight irradiation [57]

TiO2/rGO/Ag NCs Methylene blue (MB) 120 min 91.2% 10 ppm UV irradiation [58]

rGO/ZnO/Cu Methylene blue (MB) 60 min 95.14% 5 ppm Sunlight irradiation [59]

BiOBr/rGO NCs Methylene blue (MB) 75 min 96% 7 ppm Sunlight irradiation [60]

Au/WO2.72/ rGONCs Methylene blue (MB) 60 min 91.2% 10 ppm Sunlight irradiation [61]

3.10. Mechanism of Photocatalysis

The photocatalytic mechanism for the degradation of MB dye by SnO2-rGO NCs
is shown in Figure 12. The MB dye degradation process occurs via a series of chemical
reactions, which generate superoxide and hydroxyl radicals. Prepared samples (SnO2
NPs and SnO2-rGO NCs) and MB dye were exposed under UV radiation (λ < 400 nm).
Upon irradiating the SnO2, excited electrons in the valance band (VB) transferred to the
conduction band (CB), producing holes in the VB (Equation (3)). The electrons in the CB of
the SnO2 NPs could transfer to the rGO due to the SnO2 NPs attached to the rGO surfaces
(Equation (4)). The generated electrons (e−) and holes (h+) reacted with water (H2O) to
produce new free oxygen radicals (Equation (5)). These radicals can be transferred to
the hydroxyl radicals (Equations (6) and (7)). Hydroxyl radicals were produced by water
molecules and holes (Equation (8)). These free oxygen radicals can decompose MB dye
into smaller molecules (Equation (9)). The rGO reduced the rate of electron–hole pair
recombination in SnO2-rGO NCs, which further increased the degradation efficiency of the
SnO2-rGO NCs.

SnO2 − rGO→ SnO2 − rGO
(
e− + h+) (3)

SnO2
(
e−

)
→ e−trap(rGO

)
(4)

e−trap(rGO) + O2 → O•2 (5)

O•2 + 2HO• + H+ → H2O2 + O2 (6)

H2O2 → 2HO• (7)

h+
VB + OH/H2O→ HO• + H+ (8)

HO• + MB dye→ degraded product (9)
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3.11. Anticancer Study

Several recent studies showed that the anticancer potential of metal oxide NPs can be
enhanced by integration with graphene derivatives [62,63]. For instance, Ahamed et al. [36]
observed that SnO2-ZnO-rGO NCs displayed higher cytotoxicity toward human breast



Polymers 2022, 14, 2036 13 of 16

cancer cells (MCF-7) in comparison to pure ZnO NPs to improve their physiochemical
properties such as the bandgap energy, which was lower compared to SnO2-ZnO NPs
and pure ZnO NPs. In this work, we focused on improving the cytotoxicity of SnO2 NPs
against cancer cells by rGO incorporation. The cytotoxicity at different concentrations
(5-200 µg/mL) of SnO2 NPs and SnO2-rGO NCs was assessed in human liver cancer
(HepG2) and lung cancer (A549) cells (Figure 13A,B). The results indicate that both SnO2
NPs and SnO2-rGO NCs induced dose-dependent cytotoxicity in the two types of cancer
cells. Moreover, the SnO2-rGO NCs exerted a higher cytotoxicity than the pure SnO2
NPs, and the anticancer potential of the SnO2 NPs increased with rGO doping. The IC50
values of the SnO2-rGO NCs were almost 1.5-fold higher in both cancer cells than for pure
SnO2 NPs (Table 3). These results indicate that rGO integration effectively enhanced the
anticancer efficacy of the SnO2 NPs. In addition, these data warrant further research on the
anticancer potential of SnO2-rGO NCs in suitable in vivo models.
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(A) and lung cancer A549 cells (B); one-way ANOVA followed by the post hoc test was applied for
statistical analysis. * p < 0.05, statistically significant difference when compared to the control group.

Table 3. IC50 values of SnO2 NPs and SnO2-rGO NCs for two types of human cancer cells.

Samples Human Liver Cancer (HepG2) Cells Human Lung Cancer (A549) Cells

SnO2 NPs 160.97 µg/mL 153.13 µg/mL

SnO2-rGO NCs 100 µg/mL 95.72 µg/mL

4. Conclusions

In summary, SnO2 NPs and SnO2-rGO NCs were successfully prepared using a novel
one-pot hydrothermal approach. The XRD data showed that the average crystallite size of
the SnO2 NPs decreased after rGO doping. HRTEM and SEM results revealed that SnO2
NPs tightly anchored the rGO sheets, and SnO2 and rGO were uniformly distributed in the
SnO2-rGO NCs with high-quality lattice fringes without distortion. The XPS and EDX data
confirmed the chemical state and elemental composition of the SnO2-rGO NCs. Optical
data suggested that the bandgap energy of the SnO2-rGO NCs was slightly lower than
that of the pure SnO2 NPs. The intensity of the PL spectra was lower in the SnO2-rGO
NCs in comparison to the pure SnO2 NPs. In the photocatalytic test, the MB degradation
efficiency of the SnO2-rGO NCs (93%) was higher than for the SnO2 NPs (54%). This can be
explained by a lower bandgap energy and lower PL intensity, which reduced the separation
of charge carries (i.e., electrons and holes). Moreover, the anticancer efficacy of SnO2-rGO
NCs was almost 1.5-fold higher against human liver cancer HepG2 and lung cancer A549
cells in comparison to pure SnO2 NPs. These data suggest a novel approach to enhance the
photocatalytic activity and anticancer performance of SnO2 NPs via rGO fusion. This study
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warrants further research on SnO2-rGO NCs for the photocatalytic degradation of different
pollutants and anticancer efficacy in various cancer and normal cells.
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