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Knowledge about a medicine evolves during its 
lifecycle, as evidence about the product is gener-
ated during the pre-clinical, clinical, and post-
marketing phases. Pharmacovigilance systems are 
designed to identify emerging ‘signals’ using mul-
tiple data sources, particularly as use of the prod-
ucts expands post-approval in healthcare systems 
and as treatment pathways evolve. Signals may 
arise from one or multiple sources and may sug-
gest a potentially new causal association or new 
aspect of a known risk of a medicine.1 Although 
companies and regulators use multiple data 
sources to detect emerging signals, spontaneous 
reports continue to be the cornerstone of signal 
detection for most marketed drugs and vaccines, 
as they have been since the 1960s.2,3 For exam-
ple, a total of 19 out of 21 drugs withdrawn in 
France between 1998 and 2004 were reported to 
be based on spontaneous individual case safety 
reports (ICSRs). Among these product withdraw-
als, 12 were solely based on spontaneous reports, 
6 were in combination with results from observa-
tional studies, and the remaining two were based 
on randomized controlled trial (RCT) evidence 
and animal studies, respectively.4 Another study 
showed that 8 out of 11 product withdrawals 
between 1999 and 2001 in the UK and US were 
based on early information from spontaneous 
reports, for another product solely RCTs were 
identified as the recorded evidence and for the 
other two products evidence used to support 
their withdrawal could not be found in any of the 
identified documents.5 Spontaneous reports are 
particularly useful for identifying rare and idio-
syncratic safety concerns and acute events.6,7 
Some literature suggests spontaneous reports are 
most useful for newly marketed products, specifi-
cally within 3 years after launch,8–10 whereas other 
studies indicated they are also useful for older prod-
ucts.8,9 A large body of literature has documented 

the well-known limitations of spontaneous report-
ing systems (SRS), including underreporting, 
stimulated reporting, and other reporting biases, 
the lack of a population denominator to calculate 
rates, and frequently poor information in terms of 
both quality and quantity.3,6

As paper-based reporting systems transitioned to 
electronic systems and regulatory requirements 
for reporting have increased, the number of 
reports received over time by pharmaceutical 
companies and regulators have risen significantly 
and further compounded these limitations. 
Quantitative methods, or measures of dispropor-
tionality, were introduced around the turn of the 
millennium11 with the goal of making the large 
numbers of reports more manageable and inform-
ative3,12 by taking advantage of the data volume to 
assist in identifying new safety signals.13 These 
methods provide a systematic approach to filter 
through drug–event pairs and focus the clinical 
review of drug–event pairs most likely to repre-
sent emerging ‘signals of suspected causality’ as 
CIOMS VIII terms it.3,14 However, as the scenar-
ios where reports are required by regulators for 
collection have also expanded (e.g. reports from 
patient support marketing programs, reports of 
events occurring during time of drug exposure 
without suspected causality), there has not been a 
corresponding improvement in the time between 
approval and detection of new signals and the 
duration remained relatively long.15 Fukazawa 
et al.15 showed that, using the FDA AERS data-
base, the median duration between approval and 
detection of signals was 9 years, between approval 
and label change 10 years. The same study also 
showed that FDA AERS was less effective for 
older drugs, that is, more than 5 years in the mar-
ket. This is not surprising as there are proportion-
ally fewer reports of older drugs and the 
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established weaknesses of spontaneous reporting 
make such reports less likely to impact the well-
established benefit–risk profiles of such medi-
cines. This research as well as our experience at 
pharmaceutical companies where hundreds of 
thousands to millions of reports are processed 
annually, suggests that the increased volume of 
reports has had a limited impact on the approved 
product label or assessments of the overall bene-
fit–risk of a medicine.

Until recently, there were no widespread alterna-
tive data sources for large scale routine monitor-
ing of the safety profile of products post-launch in 
the real world setting. There is growing recogni-
tion that electronic healthcare databases (for 
example, insurance claims, electronic medical 
records, and registry databases), together referred 
to as real-world data (RWD),16 may offer an alter-
native to SRS. These longitudinal healthcare 
databases are a rich source of information about 
the benefits and risks of medical products, as they 
are longitudinal with anonymized and routinely 
collected information on millions of patients over 
years. Given the characteristics of these data 
sources compared with spontaneous reports data-
bases, for example, duration and completeness of 
follow up, ease of estimating the population at 
risk, better ascertainment of exposure and out-
comes, and more relevant comparison groups, 
over time they have the potential to enhance or 
even replace current signal detection activities 
within pharmacovigilance systems.

We focus herein on challenges and opportunities 
to what we term hypothesis-free signal detection 
in RWD: searching for potential signals across 
multiple drug/vaccine–adverse event pairs simul-
taneously and irrespective of whether there is an 
index of suspicion.17 Many of the issues we raise 
will also apply to the more focused activity of sur-
veillance on predefined outcomes in RWD, an 
area where there is more scientific activity.18,19 
We do not discuss spontaneous reporting signal 
detection methods at any more length given how 
accepted it is, other than to point out how these 
inform our perspectives on healthcare databases 
signal detection. Similarly, we consider other 
existing data streams such as query log (search 
engine) data20 and social media21,22 out of scope, 
although we recognize these are sometimes cate-
gorized as RWD.

RWD in pharmacovigilance: not only signal 
evaluation
Healthcare databases have been used for epide-
miological studies for decades in the evaluation of 
a priori defined hypotheses (signal evaluation) and 
to further investigate potential safety signals iden-
tified from other sources (signal refinement).23,24

However, despite the ubiquity of real-world data-
bases for years, their use for hypothesis-free signal 
detection has been limited. Why is this, given the 
well-known limitations of SRS and the potential 
benefits of using real-world databases for signal 
detection? One of the reasons is that until recently 
access to such data was costly and limited given 
the proprietary nature of many databases; thus, 
access was primarily driven by the need to answer 
specific research questions or assess specific safety 
concerns, that is, an a priori hypothesis. Timeliness 
of the data has also been an issue with substantial 
delays from the date of an encounter to when it is 
available in an analytic database. These delays 
have limited the usefulness of these data for signal 
detection that relies on timely data and rapid 
analyses. In addition, data quality and the non-
random variability on which data are captured or 
missing across databases makes rapid assessment 
of multiple outcome pairs across databases 
extremely difficult, at least currently. All of the 
above, until recently, made signal detection in 
RWD far from straightforward operationally and 
fraught with methodologic pitfalls.

However, with increased access to data through 
more affordable subscription models, faster com-
puting and data refresh times, common data 
models (CDMs),25 and similar enabled software 
solutions for rapid analytics, the conditions for 
testing signal detection in RWD has never been 
better. Compared with spontaneous reports, real-
world databases (both electronic medical record 
databases and insurance claims databases) have 
several characteristics, some of which are poten-
tially favorable, to enhance signal detection 
efforts,1 including the following.

1. The ability to provide accurate and inform-
ative risk estimates, for example, incidence 
rates, relative risks or incidence rate ratios, 
as a result of being able to quantify the pop-
ulation at risk and outcomes at baseline and 
follow-up intervals.
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2. Data capture on patients before and after 
exposure, often for many years. This is in 
contrast to the cross-sectional nature of 
most spontaneous reports.

3. Information on comparators, which per-
mits matching (design) or statistical adjust-
ment using epidemiologic study approaches.

4. Reliable data capture for those variables 
systematically collected for billing or clini-
cal management purposes, even though 
systems were not developed for research 
purposes. This is in contrast to the volun-
tary nature of spontaneous reports.

5. There is no suspicion of causality in coded 
(structured) data. This provides the ability 
to detect signals statistically that may never 
have resulted in a voluntary report, but also 
presents a potential weakness when com-
pared to spontaneous reports, particularly 
those with compelling causal rationales 
(e.g. dechallenge/rechallenge).

6. RWD sources are heterogeneous in their 
data collection standards and methods, for 
example, the type of healthcare data cap-
tured, stored, and accessible.

7. RWD sources increasingly exist interna-
tionally but they are not as pervasive in cov-
erage as spontaneous report systems and 
until recently mostly covered populations 
in North America and Europe.

Despite these potential advantages, to date, and 
to the best of the authors’ knowledge, there is lim-
ited routine use of RWD to systematically detect 
signals potentially associated with medical 
products. A few public–private initiatives have 
evaluated the value, feasibility, and utility of 
observational databases to identify safety issues 
using various methods, including projects such as 
the Observational Medical Outcomes Partnership 
(OMOP),26 the Innovative Medicines Initiative’s 
(IMI) PROTECT,27 Exploring and Understanding 
Adverse Drug Reactions (EU-ADR),28 and the 
Asian Pharmacoepidemiology Network (AsPEN).29 
Each of these projects has contributed to our 
understanding of the potential of using RWD for 
signal detection. With the shift in pharmacovigi-
lance toward a more RWD centric approach, we 
note that companies and regulators are actively 
testing signal detection methods in RWD. Further 
work is needed, however, before implementing 
these activities routinely. The relative perfor-
mance of methods applied to RWD must be 

clarified and, importantly, so must the relative 
value of signals from RWD versus spontaneous 
reports in terms of signal type, timeliness, and 
likelihood to yield information that informs 
patients and physicians through the approved 
product label or overall benefit–risk assessment.

Comparing methods for signal detection  
in RWD
With the emergence of ‘Big Data’ and other data 
science concepts there is widespread attention on 
further enabling appropriate harvesting of data 
for secondary use in general.30,31

The optimal study design and analyses should 
always be selected based on the appropriateness 
of the research question (e.g. fit for purpose). 
Nevertheless, with signal detection, one cannot 
design bespoke analyses for individual drug–event 
pairs, given the general objective at hand. That 
said, is it possible to employ a similar analytic 
approach for groups of drug–event pairs with spe-
cific characteristics? The need for generic 
approaches, coupled with the complexity and het-
erogeneity of RWD sources, makes the effective 
application of signal detection to such data chal-
lenging. The solution to the appropriate analyti-
cal method for signal detection in RWD may not 
be a ‘one size fits all’; rather, multiple methods 
may need to be used in parallel for different drug–
adverse event combination groupings.

There have been several methods proposed and 
tested for signal detection, including the cohort 
study with propensity score matching, high-
dimensional propensity score matching (HDPS), 
self-controlled case series study (SCCS), tree-
based scan statistic, self-controlled cohort analy-
sis with the use of temporal pattern discovery, 
and Bayesian approaches.32–42 Existing methods 
have been applied ‘as is’ or modified slightly for 
use in RWD signal detection; for example, tradi-
tional epidemiologic focused surveillance adapted 
for hypothesis-free use41 and prescription symme-
try analysis43; methods historically more associ-
ated with disease epidemiology have been 
implemented,35 informatics approaches,44,45 SRS-
based methods,46 and approaches novel for this 
application42; as have a combination of the above 
approaches, as well as ‘advanced analytics’ such 
as Q-methodology47 and other machine learning 
and artificial intelligence approaches.44,48,49 Use 
of these methods will improve over time as 
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experience with each approach accrues. For 
example, propensity score matching for signal 
detection might theoretically be improved by the 
use of calendar-specific propensity scores, use of 
multiple comparison groups, and data visualiza-
tion to better understand characteristics of the 
study populations, although method testing 
would be essential to determine whether such 
changes would translate into meaningful routine 
performance improvement.

There have been only a limited number of stud-
ies26,48,50–52 examining the performance (such as 
sensitivity and specificity) of methods, and only 
some studies conducted comparative evaluation 
of more than one method.35,38 No method has 
emerged as superior across the range of different 
exposure and outcomes (with varying covariates 
of focus) from which emerging signals need to be 
detected. Research from OMOP, although not 
explicitly focused on signal detection, identified 
the self-controlled approach as demonstrating the 
highest performance characteristics as compared 
with other study designs, when looking indiscrim-
inately at a large number of different exposure 
and outcomes with no attempt a priori to optimize 
the method for a specific drug–outcome pair.26 
The self-controlled study design has several 
strengths, including the elimination of confound-
ing factors and selection bias, because a person 
serves as their own control, as well as no need to 
select a comparator product. This design is best 
used to study acute or transient outcomes that 
occur shortly after exposure and not appropriate 
for fatal outcomes. It seems clear that for some 

types of exposure and outcomes other approaches 
for example cohort based, will be needed. There 
is only one, recent review49 evaluating methods 
for signal detection in RWD. However the con-
clusions on relative method performance are nec-
essarily limited as the authors themselves 
emphasize, owing to the dearth of articles specifi-
cally comparing methodologies.

Challenges to implementing signal  
detection in RWD
We have identified three broad challenges that 
must be addressed prior to widespread imple-
menting of RWD signal detection into the signal 
management system: establish RWD is a credible 
source of signals; demonstrate that tools for RWD 
signal detection are scalable and rapid; and char-
acterize the best conditions and means to integrate 
these signals into the overall pharmacovigilance 
system efficiently and in a way demonstrated to 
enhance value. In Figure 1, the key questions and 
actions proposed are described, ordered in a man-
ner that is most likely to lead to the adoption of 
RWD for signal detection.

There are additional considerations, not identi-
fied in Figure 1, which are also important for 
operationalizing signal detection in RWD as part 
of a signal management system. These include 
the following.

Signal evaluation in the same database(s) as signal 
detection? Some contend53 that it is critically 
important that signal detection, or hypothesis 

Figure 1. Implementing signal detection in RWD: the necessary steps.
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generation, should always be conducted indepen-
dently using different data sources from those 
used for signal evaluation, or hypothesis testing 
epidemiology studies. With a finite number of 
databases at the field’s disposal (albeit increasing) 
this may be impractical – particularly given over-
lapping studies from different groups and the 
necessity of also conducting feasibility work 
before initiating studies. Walker proposed54 that if 
different methods are applied then the same data 
can in practice be used for two separate analyses 
(i.e. near-independence between the two) and 
that this type of data reuse may contribute to bet-
ter understanding a hypothesis and is distinct 
from re-using data with the same methods.55 An 
alternative, given the significant power one often 
has access to for a given drug-AE pair, might be 
that, for a given analysis, a database would be 
partitioned, one part to be used for signal detec-
tion and the other for hypothesis testing studies.56 
More work is needed to assess how either 
approach could be used in practice.

Concordance across multiple data streams
Criteria for weighting of outputs from analyses 
across different RWD data types, as well as other 
data sources in the pharmacovigilance system, is 
critical. Complex decision making heuristics for 
taking into account contradictory evidence across 
data sets will need to be addressed. In practice, 
results may vary across different data sources; in 
other words, Signals of Disproportionate 
Recording (SDRs) in some data sources may not 
be SDRs in other data sources or the magnitude 
of the associations may be different and 
approaches to integrate results from different data 
sources, for example with weighting, need be 
evaluated. The complexity will come in part from 
the necessity to weigh outputs from the different 
databases differently, as exposure and outcome 
varies.

Repeated analyses
One needs to consider the repeated iterative 
nature of interrogations of different data sources 
for different drugs and at different points in time. 
As the amount of data in a database increases 
over time, signal detections for a single drug in a 
single database will need to be repeated over time 
as new signals may be detected and the magni-
tude of the old signals may change overtime 

(stronger associations). For this reason, various 
issues with repeated testing will need to be 
addressed. For example, if a signal is defined 
based on p-value, should it be adjusted? One 
school of thought suggests that no adjustment is 
needed as this is not a clinical trial. Others advo-
cate some kind of statistical adjustments. Another 
issue with repeated analysis is how to combine 
data (for the same signal) across databases and at 
different points in time. One solution is to apply 
meta-analyses approaches to creating a single 
composite measure based on different point esti-
mates and variances.

Complementary nature of RWD
It is important to note that no system is perfect 
and, even if adequate approaches to the above 
issues are found, RWD may not be ready to 
replace SRS, at least not at this point in time, and 
both sources are complementary to each other. 
Despite limitations mentioned above, SRS may 
for example well continue to be very useful, or 
even better than RWD despite it becoming ever 
more ubiquitous, for detection of rare events in 
the early years after launch. RWD may be supe-
rior to SRS for events that require a longer induc-
tion period or those that are acute, especially 
when the self-control case series is used. Some 
evaluations suggest such differential performance 
of the data streams28,57 but more evaluations are 
needed to see how the two sources complement 
each other, when and in what situations RWD is 
superior to SRS and should be used instead of 
SRS, and vice versa. There may even be situations 
in the future where neither RWD nor SRS is most 
suitable. For example, given the large amount of 
data and the high speed of the accumulation of 
data in social media, this data source may at some 
point in the future be found to be even faster to 
detect certain specific events for newly launched 
drugs than both RWD and SRS.

The development and implementation of signal 
detection capabilities within a signal management 
system needs to take a practical approach that 
evolves through knowledge and experience before 
adoption as a best practice to the field of drug 
safety. The initial approach should be pragmatic, 
have realistic expectations that should not cause 
an over-reaction to the process or to the results 
generated from signal detection efforts. The evo-
lution of a robust process will take time to develop, 
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learn, and demonstrate its value to the overall sig-
nal management system. It is important to have 
individuals with experience, in pharmacovigi-
lance, drug safety surveillance, but also epidemi-
ology and healthcare databases, involved in the 
process to apply clinical judgement in the inter-
pretation of potential signals identified via signal 
detection capabilities. There should also be areas 
of opportunities to collaborate and share learn-
ings from these efforts with key stakeholders. The 
ultimate goal should be the creation of a rapid, 
scalable, and value-added approach to effectively 
supplement and enhance current signal detection 
capabilities.

Conclusion
The use of real-world healthcare databases for 
signal detection offers an opportunity to enhance 
current signal detection activities. It could first be 
augmented to the current system and eventually 
replace outmoded approaches that fail to add 
value in a modern pharmacovigilance system. 
Experience to date suggests a distinct role for 
SRS remains when compared with RWD for sig-
nal detection.51 We expect this will evolve in the 
ensuing years. Signal detection in RWD is likely 
to make some spontaneous reporting processes 
redundant and to elucidate those data sources, 
such as patient support programs,21 where active 
monitoring overall adds little to the approved 
product label, benefit–risk knowledge or patient 
safety. The circumstances when signal detection 
in RWD will complement or replace current 
activities require further investigation.

A large-scale approach, that is, most drugs for 
multiple events, where the best method for each 
outcome pair is applied is unlikely. For example, 
self-controlled designs may be expected to be 
beneficial for signal detection in acute outcomes 
where exposure is short term and accurately 
measured, so accurate time between exposure 
and outcomes can be identified and the within 
patient control brings benefit in terms of con-
founding control.33 When considering cancer 
outcomes, one would need to consider cohort or 
case control studies as explored in recent 
research.58 Rather selecting the best approach 
across a broad range of outcomes for a drug class 
or outcomes across drug classes is likely to be a 
necessity. As a result, outputs with such a large-
scale approach will contain more false-positives 
than formal hypothesis testing studies. This 

means signals emerging from RWD must be tri-
aged into routine signal management processes 
and undergo the essential clinical review phase 
and comparison to other surveillance outputs.51

To reach the goal of a pharmacovigilance system 
enhanced by signal detection in RWD, explicit 
guidance on how signal detection is best per-
formed in RWD and indeed other emerging data 
streams,27 must be a priority for collaborative 
work across stakeholders. We envision a forum 
with participation from across industry, regula-
tory, and other government agencies and patient/
healthcare provider advocacy groups to collabo-
rate on answering questions about methodolo-
gies and the best ways to operationalize signal 
detection in RWD in a manner that is efficient 
and avoids redundancy. The FDA have recently 
held a public meeting focused on signal detection 
methods in the Sentinel Network.59 This is an 
important start but will require transparent, 
extensive foundational research and collabora-
tion with stakeholders about practical approaches 
to be successful. Developing a harmonized 
approach and pooling resources is also critical 
and likely the best means to resolve the current 
uncertainty about the contribution signal detec-
tion in RWD will make to safety surveillance 
strategies. Eventually guidance documents, simi-
lar to those completed for SRS in an FDA-
industry collaborative white paper2 and in the 
CIOMS VIII,1 reflecting an harmonized regula-
tory view globally will be needed. Signal detec-
tion in RWD holds promise for enhancing overall 
signal detection capability of pharmacovigilance 
systems. To harness this promise, in the coming 
years, it will be critical that we all work together 
to identify the best way to advance signal detec-
tion in RWD to ensure patient safety and protect 
public health.
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