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Abstract

Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is
perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics
and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging
agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream
Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular,
UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated
with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage
response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a
DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved
in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by
activating multiple Cullin ligases throughout the cell cycle.
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Introduction

Protein neddylation (Nedd8 conjugation) is involved in a wide

variety of cellular processes. E1 Nedd8 activating enzyme is a

heterodimer of UBA3 and NAE1, which function with the two

known E2 conjugating enzymes UBE2M and UBE2F [1]. The E2

enzymes promote neddylation of several known targets, including

the Cullin components of the CRL (Cullin Ring Ligase)

complexes, p53, and histone H4 [1–4]. Conjugation of Nedd8

onto the Cullin subunits leads to activation of the ubiquitin ligase

activity [4,5]. UBE2M interacts with the RBX1 component of

CRL complexes, thereby promoting neddylation of Cullin (CUL)

1, 2, 3, and 4, whereas UBE2F interacts with RBX2, which

promotes neddylation of CUL5 [1]. Individual CRL E3 complexes

can associate numerous adaptor subunits that provide substrate

specificity; CUL1 associates with F-Box proteins, CUL2 ligase

associates with VHL box proteins, CUL3 associates with BTB3-

containing proteins, and CUL4 associates with DCAFs (DDB1-

CUL4 Associated factor) [6–10]. In addition to RBX1 and RBX2,

RNF111 serves as an E3 component in the neddylation system

that promotes histone neddylation in conjunction with UBE2M

[2]. DNA damage response (DDR) and cell cycle checkpoint

controls are among the diverse pathways that are regulated by

Cullins [11–13]. To name a few mechanisms, CUL1 forms a

complex with a F-box protein b-TRCP to regulate degradation of

several cell cycle checkpoint and DDR proteins, including

CDC25A, WEE1, CLASPIN, FANCM, and MDM2 [14–20].

CUL4-DDB2 complex induces degradation of nucleotide excision

repair factor XPC [21] and also ubiquitinate Histones to facilitate

DDR [22], and CUL4-CDT2 complex controls replication by

degrading CDT1, p21, and SET8 [23–30].

Development of an investigational pharmacological inhibitor

(MLN4924) of the NAE1 E1 component provided a proof of

principle that inactivating the neddylating enzyme can be an

effective approach for targeting cancer cells [31]. Treatment of

MLN4924 in cultured cells leads to DNA damage, checkpoint

activation, cellular senescence and apoptosis, and suppression of

tumor growth in a mice model [31,32]. Induction of DNA re-

replication and p21-mediated cell cycle arrest has been primarily

attributed to growth suppression [33,34]. Suppressing the overall

neddylation affects cellular response to conventional DNA

damaging agents, shown by increased sensitivity of cancer cells

to DNA damaging agents [33,35–38]. Disrupting the normal

DNA damage response has been proposed as a module for

increasing drug sensitivity in cancer cells. For instance, targeting

the proteasome or CDK1 has been shown to compromise normal

DNA repair activity and cellular response to DNA damaging

agents [39–41].

Here we investigated the effects of inhibiting the E2 neddylating

enzyme UBE2M on the overall DNA damage response. Given the

primary role of UBE2M in neddylating Cullins, we comprehen-

sively analyzed the effects of ablating individual Cullins in genome

integrity. We show that multiple Cullin ligases impact different

aspects of DNA damage response and genome integrity. These

data provide mechanistic information for the effects of inhibiting

protein neddylation on genomic integrity, and support the notion

that inhibiting the E1/E2 neddylating enzymes or individual
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Cullins can be exploited for disrupting normal cellular response to

DNA damaging agents.

Experimental Procedures

Cell lines, plasmids, and chemicals
HeLa, 293T, and U2OS cells were grown in Dulbecco’s

Modified Eagle’s Medium (DMEM) supplemented with 10%

Bovine serum and L-glutamine. HEY ovarian cancer cells (gift

from Dr. Meera Nanjundan [42]; STR profiled) and HCT116

cells (WT and p21-/-; gift from Dr. Bert Vogelstein) were grown in

RPMI, or McCoy’s Medium supplemented with 10% Bovine

serum and L-glutamine. These cells were all mycoplasma tested.

All cells were grown in 37uC in 5% CO2. UBE2M cDNA was

cloned to pOZ-N retroviral vector for expression studies. Site-

directed mutagenesis for UBE2M C111S and CUL2 K689R were

conducted following the QuikChange Site-Directed Mutagenesis

protocol by Stratagene. pOZ-FLAG-HA-UBE2M and pcDNA-

Myc3-CUL2 plasmids were used as templates, respectively.

MLN4924 was purchased from ActiveBiochem. PARP inhibitor

(ABT-888) and Camptothecin were purchased from Selleck

chemicals.

RNAi
Cells were cultured in medium without antibiotics and

transfected once with 20 nM siRNA using RNAiMAX (Invitro-

gen) reagent following the manufacturer’s protocol.

The following siRNA sequences were used: CUL1: 59-

AUUCCAGGCCAACAAACUGAGCUCC-39

CUL2 #1: 59-GCCCUUACGUCAGUUGUAAAUUACA-39,

CUL2 #2: 59-UUAGCAAGCAGUUCAGGUGCUUUGC-39

CUL2 #3: 59- AACCUAAUAAUUGUAUCUACA-39

UBE2F #1: 59-CGGAGGGUUUCUGUGAGAGACAAAU-

39,

UBE2F #2: 59- UGAUGUAGUCAUCCACUUUAUUCCG-

39,

CDT1 #1: 59-CCGCGCUUCAACGUGGAUGAA-39

CDT1 #2: 59-CACCUGGUGGAUUCACAUUAA-39

p21: 59-AAGACCAUGUGGACCUGUCAC-39, CLASPIN:

59-GACGCGAAGCAUCUUCCAAAUA-39

IKB-a: 59-AAGGGUGUACUUAUAUCCACA-39, IKB-b: 59-

CACGUGGCCGUUAUCCACAAA-39

WEE1: 59-CACUGGUAAAGCAUUCAGUAU-39, NFR2: 59-

AAGGATTATGACTGTTAA-39, BRCA1: 59- CAGCAGTT-

TATTACTCACTAA-39

CUL4A: 59-AAAUGAAUCUUUAUACACCUGCAGG-39,

UBE2M #1: 59-GGGCUUCUACAAGAGUGGGAAGUUU-

39,

UBE2M #2: 59-ACUCCAUAAUUUAUGGCCUGCAGUA-

39,

CDT2 #1: 59-CCGAGUCUACUGGGUAUAACA-39

CDT2 #2: 59-CUGGGAUACCAGGUGCAACAA-39

pLKO-vector based lenti-viral shRNA vectors were purchased

from Sigma Aldrich. The lentiviral vectors were transfected into

293T packaging cells with helper plasmids. 48 hrs after transfec-

tion, virus-containing supernatant was harvested, filtered, then

used for infecting recipient cells (e.g. HEY, HeLa). The sequences

of shRNA are following:

CUL4A: CCGGACTGTTTAGAACCCATATTATCTCGA-

GATAATATGGGTTCTAAACAGTTTTTTG

UBE2M: CCGGCGATGGGAAATGAATTGGCTTCTC-

GAGAAGCCAATTCATTTCCCATCGTTTTT

Western blots
Cell extracts were run on an SDS-PAGE gel and then

transferred to a PVDF membrane (Bio-Rad, Hercules, CA).

Membranes were probed with primary antibodies overnight at

4uC. The membranes were then washed and incubated with either

mouse or rabbit secondary antibody linked with horseradish

peroxidase (Cell Signaling Technologies) and washed. The bound

antibodies were viewed via Pierce ECL Western Blotting Substrate

(Thermo Scientific). The following primary antibodies were used:

a-CUL1, a-CUL3 a-CUL4A, a-CHK1, a-CLASPIN, a-p21, and

a-CDT1 rabbit polyclonal antibodies (Cell Signaling Technolo-

gies), a-CUL2 rabbit polyclonal (Novus Biologicals), a-cH2AX

mouse monoclonal (Upstate), a-UBE2M and a-Tubulin mouse

monoclonal antibodies (Abcam), a-WEE1 and a-RAD51 rabbit

polyclonal, and a-BRCA1 mouse monoclonal antibodies (Santa-

Cruz Biotechnology).

Immunofluorescent microscopy
48,55 hours after siRNA transfection (or shRNA transduc-

tion), cells were washed and pre-extracted with 0.25% Triton X-

100 for 3 minutes and then fixed with 4% paraformaldehyde for

10 min. For the rescue of UBE2M experiments in Figure 1A,

HEY cells were infected with UBE2M shRNA targeting 39UTR

and 48 hrs post-infection cells were transfected with pOZ-FLAG-

HA-UBE2M constructs. ,48 hrs after the cells were washed,

fixed, then pre-extracted with triton buffer. The fixed cells

incubated with primary antibodies against cH2AX (Upstate) and

RAD51 (Santa Cruz Biotechnology) at 1:500, followed by

incubation with Alexa Fluor 488-anti-mouse (for cH2AX) or

anti-rabbit (for RAD51) (Invitrogen). Vectashield mounting

medium for fluorescence with DAPI (Vector Laboratories Inc,

CA) was used to stain cellular nuclei. Images were collected by a

Zeiss Axiovert 200 microscope equipped with a Perkin Elmer ERS

spinning disk confocal imager and a 63x/1.45NA oil objective

using Volocity software (Perkin Elmer). We counted 70–120 cells

from each sample for generating statistical figures for cH2AX and

RAD51 foci.

GFP-based DNA repair assays
The U2OS cell line expressing an integrated homologous

recombination reporter DR-GFP has been described [43], and the

U2OS cell line expressing the NHEJ reporter was obtained from

Dr. Jeremy Stark [44]. For NHEJ, the reporter contains a

promoter that is separated from a GFP coding cassette by a

puromycin resistance gene that is flanked by two I-SceI sites. Once

the puro gene is excised by NHEJ repair of the two I-SceI-induced

DSBs, the promoter is joined to the rest of the expression cassette,

leading to restoration of the GFP marker. 48 hrs post-I-Sce1

transfection, cells were harvested and analyzed via flow cytometry

for recombination efficiency using a BD Accuri C6 flowcytometer

Figure 1. Disruption of genomic integrity upon UBE2M silencing. A. c-H2AX foci was measured upon expression of shRNA targeting UBE2M
39UTR, then rescued by expressing siRNA-resistant UBE2M WT or C111S mutant. The western blot analysis shows the knockdown efficiency and the
expression of FLAG-HA tagged UBE2M WT and C11S mutant. (,3 kDa shift is predicted). B. Neutral comet assay. HEY cells were transfected with
control or two independent UBE2M siRNAs for ,72 hours before harvest for the analysis. The tail moment is the length of the tail times the density of
the tail. % tail DNA is the density of the tail divided by the density of the tail plus the density of the head.
doi:10.1371/journal.pone.0101844.g001

UBE2M Is Required for Genome Integrity

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e101844



Figure 2. DNA damage response is perturbed by UBE2M silencing. A. Growth suppression by UBE2M silencing is enhanced by DNA
damaging agents. Growth sensitivity of HEY cells in the presence of CPT and PARP inhibitor ABT888 (Figure S2 in File S1) was monitored using
clonogenic assay. B. Treatment of HeLa cells with MLN4924 (0.3uM) leads to elevated BRCA1 and RAD51 foci formation. *indicates neddylated form.
C. Time course study of RAD51 foci recruitment and resolution upon MLN4924 treatment. D. Time course study of RAD51 foci in UBE2M knockdown
cells. E. Cells depleted of UBE2M were analyzed for HR (E) and NHEJ repair (F) assays.
doi:10.1371/journal.pone.0101844.g002
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(BD Biosciences, Franklin Lakes, New Jersey). C-Flow software

was used to analyze percent GFP-positive cells relative to the total

number of the transfected cells. Approximately 30,000 cells were

counted from each sample.

Cell cycle analysis
HEY cells were synchronized at the G1-S interface by a double-

thymidine block. On the first day, the cells were plated and

incubated 24 hrs at 37uC in antibiotic-free RPMI. Cells were then

treated with 2 mM thymidine for 18 hrs, followed by washing and

release into fresh media for 8 hours. Cells were then treated with

2 mM thymidine for 18 hrs and then released with two washouts

of RPMI media. Cells were harvested at various times post-release

(3,9 hrs). To analyze the effects of siRNAs for synchronous cell

cycle, the cells were transfected with siRNAs on the first day when

the cells were plated. For studying the effects of MLN4924 on cell

cycle using double thymidine block, the cells were treated with

0.3 mM MLN4924 for 6 hrs prior to the final release from

thymidine. For studying the effects of expressing CUL2 mutant on

cell cycle using double thymidine block, all the procedures were

the same except that the plasmids were transfected during the first

release period. Cells were trypsinized and resuspended in 0.5 mL

PBS and washed in 0.5 mL of PBS twice and then fixed in 0.5 mL

70% ethanol and incubated at 4uC for 24 hrs. Cells were then

washed twice with PBS and resupended in 0.44 mL of 50 mg/mL

of propidium iodide in 1% Triton X-100 and 0.06 mL of 200 mg/

mL RNAse was added and incubated at 22uC for 1 hr.

Approximately 45000 cells were counted from each sample.

Neutral Comet assays
Comet assays were conducted under neutral conditions to assess

DNA double strand breakages following the Trevigen Neutral

Comet Assay protocol. Briefly, Hey cells were transfected with

siRNA (CUL1–4A, UBE2M, UBE2F) or control siRNA (All-Star

Negative) for 72 hrs. After which, cells were harvested and coated

onto slides. Cells were lysed in (Trevigen Lysis Solution) for 1 hr at

4uC. Cells were then subjected to electrophoresis at 13 V for

35 min (1 V/cm). Cells were stained for 30 minutes with

1:10000X SYBR Gold (Life Technologies, Carlsbad, CA).

50,100 cells were counted for generating statistical figures. The

comet tail moment, % Tail DNA, and tail length were analyzed by

Image J.

Cellular growth analysis
Cells were transfected with siRNA (CDT2, UBE2M, CUL4A),

control siRNA (All-Star Negative; Qiagene), or cells were infected

with virus containing the UBE2M shRNA (pLKO). Varying

concentrations of camptothecin or a PARP inhibitor ABT888

(Selleck chemicals). After 5,7 days, the cells were stained with

crystal violet, and dried colonies were dissolved and resuspended

with Sorensen buffer, then the colorimetric intensity of each

solution was quantified using Gen5 software on a Synergy 2

(BioTek, Winooksi, VT) plate reader.

Results

Disruption of genome integrity upon UBE2M silencing
In order to test whether UBE2M is required for genome

integrity, we silenced UBE2M using shRNA and measured the

accumulation of c-H2AX, a marker for DNA double strand breaks

(DSBs). Silencing of UBE2M significantly increased the cells with

c-H2AX foci (Figure 1). The phenotype is rescued by expressing

the RNAi-resistant wild type UBE2M but not with the UBE2M

mutant in which the catalytic cysteine is mutated (C111S [45];

Figure 1), consistent with the notion that UBE2M forms a nedd8-

thioester formation which is required for the neddylation cascade.

Consistent with the c-H2AX foci formation, silencing of UBE2M

significantly accumulated double strand breaks (DSBs) in the

genome in the neutral comet assay compared to control,

suggesting that the damaged DNA is left unrepaired in the

UBE2M-depleted cells (Figure 1B). Knockdown of UBE2F,

another E2 nedd8 conjugating enzyme, did not cause elevated

DSB (Figure S1 in File S1), suggesting that UBE2M is indeed the

main E2 neddylating enzyme responsible for maintaining genome

integrity.

UBE2M silencing disrupts DNA damage response
We previously reported that treatment of cells with the

neddylation inhibitor MLN4924 minimizes early DNA damage

response in cultured cells [35], and a delay of early DNA damage

response upon MLN4924 treatment was reported [33]. Therefore,

we hypothesized that DNA damage response is perturbed upon

inhibiting the protein neddylation, and this partially accounts for

the disruption of genome integrity. RNAi-mediated silencing of

UBE2M, the primary E2 Nedd8 conjugating enzyme, caused

significant reduction in the proliferation of ovarian cancer HEY

cell line (Figure 2A), consistent with the effects of MLN4924 on

cell growth [31]. Treating the HEY cells with a Topoisomerase I

inhibitor Camptothecin (CPT), further suppressed the cell survival

of the UBE2M knockdown cells (Figure 2A), compared to control

cells. Cells that are defective in DSB repair, particularly HR

(homologous recombination) repair, are often hypersensitive to

PARP inhibitors. Silencing of UBE2M caused the HEY cells to be

more sensitive to a PARP inhibitor than control cells (Figure S2 in

File S1). This suggests that UBEM knockdown may cause

impairment of HR activity. These results suggest that UBE2M is

required for cell survival, and that DNA damage response may be

disrupted by UBE2M depletion.

HR repair-deficient cells often display defective RAD51 foci

formation. Treatment of a pharmacological Neddylation inhibitor

MLN4924 spontaneously increased RAD51 or BRCA1 foci

formation (Figure 2B), consistent with a previous report that

MLN4924 induces spontaneous DNA damage [31]. However, a

delay in the rate of initial RAD51 foci formation was observed in

the kinetic studies using MLN4924 (Figure 2C) and UBE2M

knockdown cells (Figure 2D). Albeit the initial delay in the foci

formation, the foci persisted without being resolved at later time

points, compared to control cells. The aberrant RAD51 foci

kinetics may potentially contribute to the PARPi sensitivity, and is

further reflected by impaired HR reporter activity upon UBE2M

knockdown (Figure 2E; two siRNAs shown in Figure S3 in File S1,

and GFP expression control is shown in Figure S4 in File S1). The

NHEJ reporter activity (Figure 2F) remained unaffected. Alto-

gether, these results suggest that UBE2M and protein neddylation

is required for maintaining genome integrity, and normal DNA

damage response is impaired.

Inhibition of the proteasome function abrogates HR repair

[39,40], and impaired NFkB activation was suggested to be partly

responsible for decreased expression of DNA repair genes such as

RAD51 [46,47]. Since a Cullin ligase mediates degradation of IkB

and leads to NFkB activation [48], we tested whether the defects in

HR repair is due to deficiency in the NFkB activation. Treatment

of MLN4924 or knockdown of IkB did not significantly cause

change in the expression level of RAD51 or FANCD2 (Figure S5

in File S1), suggesting that impaired NFkB function may not play a

major role in the effect of UBE2M in DNA repair.

UBE2M Is Required for Genome Integrity
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Cullins mediate the effect of UBE2M on genome integrity
UBE2M induces neddylation of multiple cullin E3 ligases,

including Cullin (CUL) 1, 2, 3, and 4, thereby regulating their

activities [1,4]. Consistently, knockdown of UBE2M inhibited

neddylation of CUL 1,4 (Figure S6 in File S1). Therefore, we

attempted to investigate to which extent inactivating each Cullin

ligase impacts genome integrity. Knockdown of CUL1, CUL2,

and CUL4 significantly induced H2AX foci, suggesting that these

Cullin ligases are required for the genome integrity (Figure 3A).

Consistently, the comet assay indicates that double strand DNA

breaks are increased upon CUL1, CUL2, and CUL4, and to lesser

extent upon CUL3 knockdown (Figure 3B). These results suggest

that UBE2M inactivation may disrupt multiple aspects of DNA

damage response through different Cullins.

G1-S transition is impaired by silencing CUL2
Among many other possible mechanisms for the delayed

induction of RAD51 foci observed in Figure 2, we reasoned that

perturbed cell cycle progression, specifically in the transition to S

phase, can cause a disruption in the DNA damage dependent foci.

Indeed, treatment of cells with MLN4924, or UBE2M silencing,

significantly delayed or arrested the transition into S phase in the

Figure 3. Effects of individual Cullin silencing in genome integrity. A. c-H2AX foci induction was measured in HEY cells treated siRNAs
against indicated cullins. Knockdown efficiency is shown in right. B. Formation of double strand breaks were measured using neutral comet assay, in
HEY cells treated with siRNAs against indicated cullins.
doi:10.1371/journal.pone.0101844.g003
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Figure 4. Inhibiting CUL2 neddylation leads to impaired G1-S transition. A. Double thymidine block experiments were performed in HEY
cells treated with DMSO control or MLN4924 and UBE2M siRNA. See Experimental procedure for detailed protocol. The red line was established by
selecting the peak value of the cells in G1 (2N) for the control siRNA sample at the zero hour time point. The red line was then kept constant between

UBE2M Is Required for Genome Integrity
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double thymidine block experiments (Figure 4A), suggesting that

overall protein neddylation is required for the S phase entry. To

systematically investigate to which extent inactivating each Cullin

ligase impacts the G1 to S transition, we silenced individual

Cullins and analyzed the G1-S transition. CUL1 is known to

promote the G1-S transition in part via degradation of p27 [49],

yet a significant delay of G1-S transition upon CUL1 knockdown

was not observed in our assay condition (Figure 4B; the

knockdown efficiency shown by western blots in figure 3).

Silencing of CUL2 significantly impaired the S phase entry (two

independent siRNAs are shown Figure S7 in File S1), while

CUL4A knockdown had a milder delay. (CUL4B knockdown had

a negligible effect; not shown). The G1-S arrest phenotype of

CUL2 silencing was partially rescued by expression of wild type

CUL2 but not by the CUL2 mutant that cannot be neddylated

(K689R; [50]), underscoring the significance of neddylation in

influencing the activity of CUL2 E3 ligase in promoting the cell

cycle transition (Figure 4C). CUL2 is known to regulate the p21

stability to regulate the actin based cell motility, however this

mechanism is not linked to cell cycle progression [51]. Consistent

with this report, the ability of CUL2 to promote S phase entry is

largely independent of p21 degradation, as silencing CUL2 led to

the G1-S arrest in both wild type and p21-/- HCT116 cells

(Figure 4D). To test whether the delayed G1-S transition due to

the CUL2 inactivation is responsible for the delayed RAD51 foci

formation, we analyzed the foci induction kinetics of RAD51.

While CUL2 knockdown led to spontaneous induction of RAD51

foci to a milder degree, the rate of early induction of RAD51 foci is

lower than that in control cells (Figure 4E). This result suggests

that the delayed induction of RAD51 foci observed upon UBE2M

silencing is, at least in part, due to the delay of the G1-S transition

via CUL2 inactivation.

Silencing CUL4-CDT2 leads to G2-M arrest and
heightened RAD51 foci retention that is associated with
DNA repair defects

Heightened G2-M checkpoint is associated with CUL4

knockdown cells [30], similar to the cells treated with

MLN4924. We reasoned that the elevated G2-M checkpoint

upon CUL4 knockdown is responsible for the persistent RAD51

foci observed in the UBE2M knockdown cells in Figure 2C. To

test this, we analyzed the RAD51 foci resolution kinetics upon

CPT treatment, in cells individually knockdown with each Cullin

(Figure 5A). Cells were treated with low doses of CPT, followed by

removal of the CPT media for indicated time points. In a

condition where RAD51 foci is resolved by ,9 hours, CUL4

knockdown cells maintained high level of RAD51 foci, while

CUL2 or CUL3 knockdown cells lead to little or negligible degree

of RAD51 foci retention, respectively, suggesting that CUL4

inactivation is mainly responsible for the elevated RAD51 foci

formation observed upon UBE2M. Knockdown of CUL1

combined with CPT treatment led to significant cell death, thus

was eliminated from our analysis. CUL4/CDT2-mediated degra-

dation of CDT1, a replication origin licensing factor, was linked to

the G2-M checkpoint control [28]. Consistently, silencing of

CDT2 led to persistent RAD51 foci in the kinetic analysis, similar

to that of UBE2M depleted cells (Figure 5B). The CUL4-CDT2

E3 ligase complex is known to regulate DNA re-replication and

G2-M checkpoint through degradation of CDT1 and p21 [30,52]

Interestingly, depletion of CDT1 or p21 partially rescued the

persistent RAD51 foci upon CUL4 knockdown (Figure 5C),

suggesting that increase in DNA re-replication may be at least

partially responsible for the persistent RAD51 foci. These results

reaffirm that inactivation of the CUL4-CDT2 E3 ligase leads to

heightened G2-M checkpoint that leads to persistent RAD51 foci

formation. It is not clear whether the persistent RAD51 foci upon

CUL4 or CDT2 silencing is indicative of the active HR repair, or

is a reflection of HR repair being defective. For instance, a defect

in downstream HR mechanism can result in persistent RAD51

foci. Silencing of CUL4 or CDT2 led to suppression of cell

growth, which are further aggravated by CPT treatment

(Figure 5D), suggesting that DNA repair mechanism may be

disrupted. Consistently, HR repair activity is reduced upon CUL4

or CDT2 silencing (Figure 5E), coupled with the increased DSB

formation observed in the comet assay (Figure 3A). Altogether,

CUL4-CDT2 is required for promoting G2-M transition and

genome integrity, and inactivation of these factors mainly accounts

for the persistent RAD51 foci observed upon UBE2M silencing.

DNA damage induced by UBE2M inactivation is partially
dependent on CDT1 and p21

To further investigate the relevant mechanisms of the Cullins

that may attribute to the heightened DNA damage response

phenotype observed in UBE2M-depleted cells, we interrogated

several siRNAs against known substrates of Cullin ligases. We used

MLN4924 treatment for convenience of experimental setup.

siRNA treatment of CHK1 and BRCA1, known to be required for

RAD51 foci induction, led to significant reduction of RAD51 foci

induced upon MLN4924 treatment (Figure 6A), validating our

approach that DNA checkpoint components are required for the

RAD51 foci formation. Among a few known substrates of Cullin

ligases that are implicated in cell cycle and genome integrity,

silencing of CDT1 and p21 led to significant reduction of RAD51

foci induced by MLN4924 (Figure 6B; siRNA efficiency shown in

Figure S8 in File S1). Knockdown of Claspin, a protein implicated

in DNA checkpoint activation [53], also led to significant

reduction of the RAD51 foci, further suggesting the requirement

of checkpoint proteins in inducing a persistent DNA damage

response. These results further underscore that deregulation of

replication licensing may be a critical determinant in triggering a

hyper DNA damage response and perhaps disruption in genome

integrity, when protein neddylation is disrupted.

Discussion

Our results suggest that inactivating the UBE2M E2 neddylat-

ing enzyme strongly disrupts genome integrity, through multiple

aspects of the DNA damage response. Growth suppressive effects

of cells by silencing UBE2M is further aggravated by DNA

damaging agents, implying that disruption in the DNA damage

response contributes to the cellular sensitization. A previous report

showed that UBE2M and RNF111 RING E3 ligase induce

samples to provide a means of comparison. B. Double thymidine block experiments were performed in HEY cells individually knockdown with
indicated cullins. C. Expression of siRNA-resistant CUL2 wild type (WT), but not the empty vector (EV) nor the CUL2 mutant (C689R; DNedd8 in the
figure), partially rescues the G1-S arrest phenotype. CUL2 siRNA #3 targets the 39UTR of the CUL2 mRNA. Western blot confirms the knockdown
efficiency and ectopic expression of CUL2 proteins. D. Double thymidine block experiments were performed using the HCT116 wild type or p21-/-
cells that are treated with either control or CUL2 siRNAs. E. Induction rate of RAD51 foci was measured in HEY cells treated with control or CUL2
siRNAs. The counting was normalized to the 0 time point to indicate the fold increase.
doi:10.1371/journal.pone.0101844.g004
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Figure 5. Silencing of CUL4 leads to G2-M checkpoint activation that is associated with DNA repair defects. A. Resolution of RAD51 foci
was measured upon knockdown of individual Cullins. Schematic of the experiment shown in left. B. RAD51 foci kinetics was performed in cells in
which CDT2 was stably knockdown. C. Prior depletion of CDT1 or p21 by siRNAs partially rescues the hype-RAD51 foci formation in MLN4924 treated
cells. D. Clonogenic assays were performed for the HEY cells knockdown with CUL4A or CDT2. E. HR repair assays F. NHEJ assay.
doi:10.1371/journal.pone.0101844.g005
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neddylation of histone H4, which leads to activation of

downstream DNA damage responses through 53BP1 and BRCA1

[2]. This mechanism could at least partly explain the delayed

induction of RAD51 foci and reduced HR repair upon UBE2M

silencing (Figure 2). In addition to the function through RNF111,

our analysis of individual Cullin ligases further revealed that the

impaired G1 to S transition, primarily incurred via defective

neddylation of CUL2, contributes to the impaired entry to S phase

and thus delayed induction of RAD51 foci. Albeit to the delayed

induction of DNA damage response, the RAD51 foci remain

persistently high without being resolved upon UBE2M depletion,

coupled with accumulation of double strand breaks and impaired

HR activity (Figure 2). These observations may suggest that the

DNA damage incurred upon UBE2M depletion is not properly

repaired, and further suggests that DNA repair activity is

compromised in the UBE2M depleted cells. Among the

UBE2M-interacting Cullins, CUL4A depletion noticeably in-

creased the persistent RAD51 foci that were not resolved with

treatment of DNA damaging agents (Figure 5A) that were coupled

with accumulated DNA damage. The CUL4-CDT2 ligase has

been linked to regulation of the dNTP pool, via degradation of an

inhibitor of ribonucleotide reductase in S. pombe [54]. Thus, CDT2

knockout cells cannot repair double strand breaks properly, as the

HR repair requires DNA synthesis and dNTPs. Our observation

that CDT2 knockdown in HeLa cells sensitizes to CPT (Figure 5D)

is consistent with this observation, however, whether a similar

mechanism exists in mammalian cells in unknown. We also

speculate that the small degree of DNA re-replication induced

upon CUL4-CDT2 inactivation may deplete the dNTP pool,

which may downregulate HR capacity. The CUL4-CDT2 may be

more directly linked to HR repair, as CDT2-mediated degrada-

tion of anti-recombinogenic factor FBH1 can enhance HR repair

activity [55]. Therefore, it is likely that multiple mechanisms can

contribute to the persistent RAD51 foci observed in the CUL4 and

UBE2M depleted cells.

Our data supports the idea that UBE2M could potentially be an

alternative therapeutic target for increasing genome instability in

cancer cells. Elevated expression of CUL1 and CUL4A is observed

in cancers [56–59], and UBE2M expression is elevated upon

irradiation in cancer cells [60], suggesting the UBE2M-Cullin

components are required for survival of the cancer cells. RBX1, a

RING E3 component of the Cullin complexes, is also required for

maintaining genome integrity, by modulating the DNA replication

licensing proteins (23). Our results that depleting CDT1 or p21

partially rescue the heightened DNA damage response of

UBE2M-knockdown cells is consistent in that uncontrolled DNA

re-replication may be a primary cause of such a phenotype

(Figure 7). In addition to the well-known roles of CUL1 and

CUL4-mediated regulation in DNA checkpoint and cell cycle

progression, we further demonstrate that CUL2 knockdown

impairs cell cycle progression and DNA damage response, leading

to disruption in genome integrity. While we observed an elevated

p21 level upon CUL2 knockdown as reported [51], the G1-S

arrest phenotype of CUL2 depleted cells appear to be independent

of p21 (Figure 4). The precise mechanism for the role of CUL2

ligase in promoting the G1-S transition remains to be determined.

In conclusion, the data demonstrate that the UBE2M E2

enzyme plays critical roles in maintaining genome integrity at least

in part through neddylation of Cullins, and supports the notion

that impairment of normal DNA damage response caused by

inhibiting the overall protein neddylation can be exploited for

designing combinatorial therapy for increasing chemosensitivity in

cancer treatment.

Figure 6. Depletion of CDT1, p21, and CLASPN partially rescues the hyper DNA damage response in MLN4924 treated cells.
Knockdown efficiency is shown in Figure S8 in File S1. Knockdown of WEE1 was notably toxic, and only viable cells were counted.
doi:10.1371/journal.pone.0101844.g006

Figure 7. Model. UBE2M inhibition impacts DNA damage response and genome integrity involving multiple Cullin ligases.
doi:10.1371/journal.pone.0101844.g007
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Supporting Information

File S1 Containing the following supporting information files:

Figure S1. Comet assay. The tail moment is the length of the tail

times the density of the tail. % tail DNA is the density of the tail

divided by the density of the tail plus the density of the head.

Figure S2. Growth suppression by UBE2M silencing is enhanced

by PARP inhibitor ABT-888 in HEY cells. Figure S3. HR repair

was was performed upon knockdown of UBE2M (two siRNAs)

and CHK1. Figure S4. Expression level of GFP is unaffected by

UBE2M knockdown. HeLa cells that stably express pLKO vector

or pLKO-UBE2M shRNA were transiently transfected with

pEGFP-N1 vector. 48 hours after, cells were harvested for flow

cytometer analysis. Figure S5. MLN4924 or knockdown of IkB

does not significantly affect the level of RAD51 or FANCD2

proteins. HeLa cells were simultaneously treated with siRNAs

against IkB-a and IkB-b, then treated with MLN4924, for western

blot analysis. Figure S6. Knockdown of UBE2M inhibits

neddylation of Cullins. Figure S7. Knockdown of CUL2 arrests

the cell cycle at the G1-S boundary. Left: confirmation of two

independent siRNAs. Right: Double thymidine experiments were

performed using the two siRNAs against CUL2 in HEY cells.

Figure S8. Confirmation of knockdown for indicated siRNAs.
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