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The COVID-19 pandemic has brought into sharp focus the need to harness and leverage

our digital infrastructure for remote patient monitoring. As current viral tests and vaccines

are slow to emerge, we see a need for more robust disease detection and monitoring

of individual and population health, which could be aided by wearable sensors. While

the utility of this technology has been used to correlate physiological metrics to daily

living and human performance, the translation of such technology toward predicting the

incidence of COVID-19 remains a necessity. When used in conjunction with predictive

platforms, users of wearable devices could be alerted when changes in their metrics

match those associated with COVID-19. Anonymous data localized to regions such

as neighborhoods or zip codes could provide public health officials and researchers a

valuable tool to track and mitigate the spread of the virus, particularly during a second

wave. Identifiable data, for example remotemonitoring of cohorts (family, businesses, and

facilities) associatedwith individuals diagnosedwith COVID-19, can provide valuable data

such as acceleration of transmission and symptom onset. This manuscript describes

clinically relevant physiological metrics which can be measured from commercial devices

today and highlights their role in tracking the health, stability, and recovery of COVID-19+

individuals and front-line workers. Our goal disseminating from this paper is to initiate a

call to action among front-line workers and engineers toward developing digital health

platforms for monitoring and managing this pandemic.

Keywords: wearable sensors, COVID-19, pandemic, predictive analytics, remote patient monitoring

INTRODUCTION

Overview of COVID-19
The Coronavirus Disease 2019 (COVID-19), first recognized in December 2019 in Wuhan,
China, is the latest respiratory disease pandemic currently plaguing global health. It has been
shown to be caused by a novel coronavirus, severe acute respiratory syndrome coronavirus-
2 (SARS-CoV-2), that is structurally related to the virus that causes SARS. Li et al.
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defined a suspected COVID-19 case as pneumonia that matched
the following four criteria: (1) fever, with or without a recorded
temperature; (2) radiographic evidence of pneumonia; (3) low
or normal white-cell count or low lymphocyte count; and
(4) no reduction in symptoms after antimicrobial treatment
for 3 days (1). As its name suggests, the leading cause of
fatality from COVID-19 is hypoxic respiratory failure (2–4).
COVID-19 has posed significant challenges for the medical and
civilian communities analogous to what was experienced in two
preceding instances of the SARS-CoV virus outbreak in 2002
and 2003 and the Middle East Respiratory Syndrome (MERS)
in 2012 (1, 5, 6). Importantly, Li et al. studied 425 patients with
confirmed COVID-19 in Wuhan and estimated that the basic
reproduction number (R0) for SARS-CoV-2, at the time, to be
2.2 (1). This suggests that each infected person, on average, can
spread the infection to an average of 2.2 other people. The virus
will likely continue to spread unless this number falls below 1.0
(5). Moreover, timely and effective containment strategies have
been a cornerstone of managing the COVID-19 outbreak and
reducing viral transmission.

Return to Daily Living Post-COVID-19:
From Testing to Digital Health
Implementation
Most plans for recovery and the return to “normal,” every-
day life are centered on testing—namely determining those
who currently have an infection and those who have developed
antibodies against the virus, indicating a possible recovery. With
any test, theremay be false positive or false negative results (7). Of
note, an antibody test, while useful in quantifying the number of
cases that have occurred in a population, is typically not suitable
for early disease detection and its association with immunity
to the virus has been put into question (8). Additionally, there
is considerable cross-reactivity between SARS-CoV-2 and four
other coronaviruses, including those associated with the common
cold (9). Polymerase chain reaction (PCR)-based tests are highly
sensitive and specific in the laboratory setting; however, high
costs and limited availability make these tests difficult to suit
population health needs. In the face of a pandemic, time is of
the essence and researchers must think of new ways to improve
disease diagnosis and monitoring of disease progression.

With new tests in clinical trials, we believe there is an
opportunity to leverage advances in remote patient monitoring
technology to assist in early disease detection and monitoring
by analyzing systemic infection precursors (Figure 1). Wearable
sensor data may enable providers and patients to be alerted of a
potential SARS-CoV-2 infection before symptoms become severe
(Figure 1A). Importantly, a recent study showed that individuals
with pre-existing hypertension, heart disease, or diabetes, which
makes up nearly half of the United States population, had
higher rates of intensive care hospitalization and death when
diagnosed with COVID-19 (12). Additionally, data suggests that
this vulnerable patient population also typically underreport their
symptoms (13–15), making remote detection of disease through
objective measures a possible way to improve timely escalation

of care. On a larger scale, hospitals could use localized, de-
identified data to track the spread and severity of the outbreak
without violation of users’ privacy to provide population-level
care (Figures 1B,C). This becomes more relevant when one
considers that the asymptomatic carrier rate is estimated to be
between 25 and 50% of the entire United States population (16,
17). With such a large population potentially carrying the virus,
digital health technologies that measure physiologic parameters
can be leveraged to help identify population clusters to identify
an emerging COVID-19 outbreak. Harnessing this information is
feasible as ∼16% of the United States population (∼52.8 million
people) currently have a smartwatch (18). Such technology
may enable a more precise approach for subsequent more
advanced testing (e.g., physiological testing), contact tracing,
and quarantining. To further incentivize the adoption of such
technologies, we envision companies that produce wearables will
continue to work with insurance providers and other governing
bodies to make these devices more accessible to the public (13).
Most recently, in Germany, the Robert Koch Institute (equivalent
of the United States Center for Disease Control and Prevention,
CDC) supported the adoption of a smartphone app (Corona-
Datenspende) which tracked temperature, pulse, and sleep from
a minimum of 10,000 volunteers wearing smartwatches or
fitness trackers with the aim of understanding how much of
the population is clinically symptomatic from an influenza-like
illness (ILI) (14). To date, more than 160,000 people have already
enrolled (15). Results from the app will be displayed on an
interactive online map, enabling both health authorities and the
general public to better assess the prevalence and community
distributions of infections (14). In the United States, a study
published in early 2020 from the Scripps Research Institute
demonstrated the ability to predict “hot spots” for influenza
utilizing resting heart rate and sleep data from a smartwatch
or fitness band (16). The team analyzed data from more than
47,000 consistent Fitbit users in five states (California, Texas,
New York, Illinois, and Pennsylvania) over a 2-years period and
found that when a cluster of individuals in one-region presented
with increased heart rate, a subsequent rise in ILIs was detected.
These models to map the prevalence of ILIs have correlated
well with CDC data in the range of 0.84–0.9 (16). These studies
highlight the clinical applications of wearable sensor technology
and in the case of a pandemic, where “flattening the curve” is
critical to limiting disease morbidity and mortality, such tools
have the potential to improve health at the population level.

MEASUREMENT OF PHYSIOLOGICAL
METRICS FROM WEARABLE SENSORS
FOR COVID-19 MONITORING

COVID-19, along with other viral illnesses, is associated with
several physiological changes that can be monitored using
wearable sensors (Table 1). Many metrics derived from heart
rhythm such as heart rate (HR), heart rate variability (HRV),
resting heart rate (RHR), and respiration rate (RR) could serve
as potential markers of COVID-19 infection and are already
measured by wearable devices such as the AppleWatch,WHOOP

Frontiers in Digital Health | www.frontiersin.org 2 June 2020 | Volume 2 | Article 8

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Seshadri et al. Wearable Sensors for COVID-19

FIGURE 1 | Correlating clinical symptoms to the immune response of COVID-19 and when the implementation of wearable technology fits into the virus timeline.

(A) Correlating symptoms to the immunological pathway of COVID-19 described in this figure. Wearable sensors can be used to detect changes in physiological

metrics before a formal diagnosis. (B) Image from the WHOOP application correlating a decrease in recovery with a diagnosis by an individual diagnosed with

COVID-19 on Wednesday the 18th (red bar). (C) Schematic detailing an example of an iPhone application collecting physiological data from a wearable sensor and

translating those metrics to alert an individual on his/her overall health status. Figure reproduced and modified from Azuravesta Design (10), (A) and Team (11), (B).

Strap, Fitbit, Zephyr BioHarness, or VivaLNK Vital Scout
(Table 2). Additionally, changes in electrocardiogram (ECG)
waveforms could contain information indicative of an infection.
Many wearables report more complex metrics such as stress,
recovery, activity, and sleep, which are typically calculated using
a combination of cardiac and accelerometer-derived metrics.
Due to the integration of multiple measurements, these metrics
should exhibit an aggregate higher signal to noise ratio (SNR)
than individual raw signals alone and, therefore, have higher
predictive value. Core body temperature and arterial oxygen
saturation (SpO2) are also of clinical value due to the high
prevalence of fever and respiratory symptoms in COVID-19;
however, such measurements are not routinely measured by the
commercial wearables today. Furthermore, as patient-centered
quality metrics are considered, we hypothesize that wearable
devices, once validated via rigorous longitudinal randomized
controlled trials, can decrease invasive metrics derived from
arterial blood gas procedures (intended to detect how well lungs
move oxygen into the blood) or from obtaining cardiac troponins
(indicative of myocardial injury) (17).

The upcoming sub-sections in this paper will focus on
the current role wearable sensors in providing remote patient
monitoring for COVID-19. Our goal in each of these sub-
sections is to (1) summarize the clinical relevance of each
physiological metric as it relates to COVID-19, (2) provide a
brief technical overview of each parameter detection modality,
and (3) provide a brief overview of patient implications as it

relates to quality of care. Discussion of current clinical trials
utilizing commercially available, off-the-shelf (COTS) wearable
devices pertinent sensors to COVID-19 is included to highlight
the current work in this domain (Table 3).

Cardiovascular Monitoring
There are several metrics related to cardiac function such as
HR, HRV, and heart rhythm wherein changes in these metrics
may be indicative of COVID-19 infection. Viral illness increases
physiological stress on the body which typically manifests as
an overall increase in HR. In many cases of viral infection, an
elevated HR can be detected hours or days before the onset of
symptoms (20). Elevation in HR is also a typical physiological
response during fever as the body begins to mount a defense
to infection (21). An increase in RHR can be indicative of
systemic illness, and thus RHR data, on a population scale,
has been proven to accurately model the outbreak of influenza
(as previously described) (16). HRV, measured as the average
time difference between heart beats, provides insight into overall
health, performance, and stress of an individual. High HRV is
associated with fitness and health (22). A significant decrease in
HRV indicates inadequate recovery and is indicative of increased
physiological stress (23). While there is a lack of clinical evidence
on the predictive value of HRV for viral illness detection, there
is a large amount of self-reported and anecdotal evidence which
leads us to postulate that HRV trends can be used to predict the
onset of illness (23). Researchers at Scripps recently launched
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TABLE 1 | Sensor modalities for monitoring physiological metrics relevant to COVID-19.

HR Heart rhythm HRV RHR RR SpO2 Skin temp Core temp* Sleep

ECG x x x x x x

PPG x x x x x x x

Accelerometer x x

Temperature x x

HR, Heart Rate; HRV, Heart rate variability; RHR, resting heart rate; RR, respiration rate, SpO2, Blood Oxygen Saturation; ECG, Electrocardiogram; PPG, photoplethysmography;

Temp, Temperature.

*Core Temperature is measured based on HR and skin temperature and cannot be measured as a stand-alone metric.

TABLE 2 | Sampling of commercial wearable sensors used to monitor physiological parameters necessary for COVID-19 detection.

Company and device Form factor CT ST SpO2 RR HR HRV EDA Other Price ($) FDA

AIO Sleeve 2.0 Arm sleeve y y y Act, ECG $169 n

Apple Watch Series 4/5 Wrist monitor y y y Act, ECG $399 y

Beddit Contactless In-bed

sensor

y y Slp $150 n

Beurer SE80 Contactless In-bed

sensor

y y Slp $500 n

Biobeat Wrist monitor, Chest

Patch

y y y y y BP, ECG NA y

BioIntellisense Epidermal patch y y y Coughing, sneezing, freq NA y

Biostrap Wrist monitor y y y y Slp $175-320 n

Biovotion Everion Armband y y y y y Slp NA n

Cosinuss Two In-ear y y y y Act $330 n

Empatica Embrace Wrist monitor y y y Act, EDA NA y

Equivital LifeMonitor Chest belt y y y y y y GSR NA y

Fitbit Charge 4 Wrist monitor y y Act, Slp $150 n

Fitbit Ionic Wrist monitor y y Act, Slp $250 n

Fitbit Versa 2 Wrist monitor y y Act, Slp $200 n

Garmin Fenix 5 Wrist monitor y y Act, Slp $500 n

Garmin Forerunner 945 Wrist monitor y y y Act, Slp $550 n

Garmin Venu Wrist monitor y y y Act, Slp $300 n

Garmin Vivoactive 4 Wrist monitor y y y Act, Slp $270 n

Hexoskin Compression shirt y y y y Act, Slp $579 n

Kinsa Smart thermometer y $50 n

Oura Ring y y y y Act, Slp $299 n

Spire Health Tag Tag attached to

clothing

y y Act, Slp $399 n

VivaLNK Fever Scout Epidermal patch y $60 y

VivaLNK Vital Scout Epidermal patch y y y Act $150 y

WHOOP Wrist monitor y y y y Recovery, Slp $30 n

Act, activity; BP, blood pressure; CT, core temperature; EDA, Early Detection Algorithm for viral illness or wellness prediction; ECG, electrocardiogram; EDA, electrodermal activity; Freq,

Frequency; GSR, galvanic skin response; HR, heart rate; HRV, heart rate variability; NA, price not available online; RR, respiratory rate; Slp, sleep measures; SpO2, oxygen saturation;

ST, skin temperature. Table, Data used for table gathered from news reports, social media sites, and from Google Docs (19).

the Digital Engagement and Tracking for Early Control and
Treatment (DETECT) study which seeks to correlate changes
in HR to the incidence of acquiring a viral infection such as
COVID-19 (24, 25). While other viral illnesses are being studied
as well, the primary objective of this study is to assess HR,
activity, and sleep data in 100,000 individuals to identify ILIs via
the CareEvolution’s myDataHelps application (24). The study,
which commenced this past March, will utilize the Apple Watch,

Garmin watch, and Fitbit, which are connected to Apple Health,
Amazefit, or Google Fit platforms, respectively. Another study
by the team at Scripps Research Institute, in collaboration with
Stanford University and Fitbit, is assessing whether changes in
HR, skin temperature, and SpO2 can be used to predict the onset
of COVID-19 before symptoms even start (26). These studies
build upon the work published earlier this year by Scripps in
correlating changes in HR to influenza (16).
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TABLE 3 | Current clinical trials utilizing commercial wearable sensor devices to diagnose and monitor COVID-19.

Study name Institution(s)/companies Data source(s) Focus of study Clinical trials

registry/ref

N/A Central Queensland Univ;

Cleveland Clinic

WHOOP Strap 3.0 Correlating changes in respiration rate to predicting

COVID-19

N/A

COVIDENTIFY Duke AWs, Fitbits, Garmin Predicting and assessing severity of contracting

Covid-19 or influenza from wearable sensors and

wellness surveys

N/A

DETECT study Scripps Research Institute

Stanford Univ

Fitbit, Apple Watch,

Garmin, Amazefit, OURA,

Beddit, etc

Determining whether changes in heart rate, activity,

sleep, or other metrics might be an early indicator for

COVID-19 or other viral infections

NCT04336020

COVID-19 detection

study

Stanford Univ Fitbit, Garmin, Apple

Watch, and Oura

Enrolling subjects who are at higher risk of exposure. N/A

TeamPredict University California San

Francisco

Oura Ring Correlating changes in skin temperature and heart

rate to COVID-19

N/A

Kinsa N/A Smart Thermometer Correlating changes in skin temperature and social

distancing guidelines to COVID-19

N/A

Table is put together based on press releases found on social media platforms and in the news. Aws, Apple Watch; Univ, University; Ref, References; N/A, Not applicable.

Electrocardiogram (ECG) and photoplethysmography (PPG)
are widely used in wearable technology to monitor cardiac
function (27–30). ECG is a measurement of the electrical
activity in the heart, and PPG uses light (at specific nanometer
wavelengths) to measure changes in blood volume (27, 31).
While ECG sensors are typically implemented in the form
of an epidermal patch that adheres to the stratum corneum
(e.g., Zio Patch) and/or via leads to a benchtop instrument,
the commoditization of wrist-worn monitors with predictive
algorithms has enabled the measurement of heart rhythms
from wearable devices such as the Apple Watch 4 and 5,
although this measurement is not continuous (32, 33). On
the other hand, PPG can be measured continuously in many
locations on the body including the wrist, fingertips, earlobes,
torso, and more (31). In this sense, PPG is more versatile
and can be implemented in more form factors including
watches and earbuds (27). While both are viable to monitor the
metrics discussed above, ECG is a more direct measurement
of heart activity which could potentially provide more insight
toward the onset of COVID-19. There is growing evidence
suggesting that COVID-19 is burdened by a higher risk of
arrhythmic events (34). A study by Driggin et al. found
that in 138 hospitalized COVID-19 patients, arrhythmias such
as ventricular tachycardia/fibrillation represented the leading
complication (19.6%) after acute respiratory distress syndrome,
particularly in those admitted to intensive care unit where the
prevalence rose to 44.4% (35). Future work toward moving
this field forward, leveraging data analytics and wearable
sensors, could involve detecting such arrhythmias in patients
with COVID-19 in a real-time manner toward improving
patient outcomes.

Cardiovascular Strain, Sleep, and Activity
Levels
Many currently available wearable devices provide users with
calculations of advanced metrics such as stress or strain,
sleep, activity, and recovery. These metrics typically rely on

a combination of measurements and are calculated daily. The
combined measurements and long measurement time for these
metrics should yield a higher SNR and thus will likely be
better predictors of COVID-19 infection than any single raw
metric. Cardiovascular stress or strain (the terms are used
interchangeably between analytical platforms) is expressed as a
dimensionless unit derived from a combination of HR and HRV
data measured over a given day. For the purposes of this paper,
we will use the word strain. Devices such as WHOOP measure
cardiovascular strain based on time spent in HR zones. In the
context of athletic performance, a field where cardiovascular
strain has been extensively studied to modulate the internal
workloads of athletes (27–30, 36), an individual undergoing a
strength-based workout with minimal reps and periods of rest
will have a lower strain if their HR is not elevated for extended
periods of time (27, 36, 37). Increasing weight and adding
new strength exercises will cause muscle soreness and muscle
fatigue. This microtrauma from the eccentric lengthening of the
muscle fibers will cause a decrease in HRV especially in the
morning. Fatigued muscles will result in higher strain as the
day progresses because the body is working harder to recover
due to the disturbances in the individuals’ homeostatic state.
Along the same lines, cardiovascular strain is also expected to
increase when fighting a viral infection. A viral infection such as
influenza or COVID-19 does this by increasing the stress on the
cardiovascular system, indicated by increases in RHR, HR, blood

pressure, and an intrinsic stress hormone called catecholamines
(38). Sleep is usually detected using a combination of HR patterns

and accelerometer data. Sleep quality is assessed primarily
through the analysis of HR, RHR, and HRV, but accelerometry

may be used to determine disturbances. Elevated sleep duration
has been shown to be predictive of ILI. An increase in sleep
duration paired with a decrease in sleep quality would be
expected to occur in COVID-19 cases. Activity metrics are
intended to report the amount of physical exertion for a day or
a given timeframe. Activity scores are typically based on periods
of elevated HR and accelerometry. While changes in activity
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data may not be particularly useful for individual treatment or
diagnosis, general trends in activity data for a large population
could likely be used for pandemic modeling or to study the health
effects of social distancing and isolation. Martin et al. studied
the relationship between exercise and respiratory track viral
infections in small animal models and concluded that moderate
intensity exercise reduced inflammation and improved the
immune response to respiratory viral infections (39). The use of
wearable sensors toward monitoring activity levels could provide
an objectivemeans of staying physically active and healthy during
the COVID-19 pandemic. Recovery assessments are based on
sleep, sleep quality, and HRV. There is a growing amount of
evidence showing a clear downward trend in recovery scores in
the days leading up to the onset of COVID-19 symptoms. These
complex metrics may prove to be reliable indicators of COVID-
19, but it is important to consider that each wearable device
uses different algorithms and measurements for the calculation
of these scores, which severely limits the population on which
analysis of these metrics can be performed.

Respiration Monitoring
Respiration rate (RR) is of critical interest in COVID-19 cases due
to the severe effects the virus can have on the lungs. COVID-19
presents as a lower-respiratory tract infection inmost cases which
can cause inflammation of lung tissue, coughing, and shortness
of breath (40). The respiratory damage caused by COVID-19
reduces the overall efficiency of the lungs which results in an
increased RR to compensate (40). Significantly increased RR is
not as common in cases of other viral illnesses such as influenza
or the common cold because these viruses typically affect the
upper-respiratory tract (40). It may be concerning, however, that
by time the patient is tachypneic, the disease may already be in an
advanced stage. In a person who has a high likelihood of COVID-
19 exposure, a device that is able to detect subtle changes in
respiratory function prior to the onset of clinical symptoms, such
as shallow respirations, wheezing, and shortness of breath, has
the potential to be an effective tool. Of note, findings by Luo et al.
indicated that as many as 70% of frontline health care workers
are testing positive for COVID-19 (41). Frontline staff who care
for patients with COVID-19 could benefit from the remote use of
a wearable-sensor remote monitoring mechanism to objectively
monitor for pre-clinical signs of infection, as a measure to
prevent spread to other colleagues or patients. Additionally,
current COVID-19 guidelines suggest that measuring resting RR
can be used utilized as a criterion for intensive care unit (ICU)
admission (42).

A recent review by Massaroni et al. assessed the suitability
of different contact-based techniques for monitoring RR in
clinical settings, occupational settings, and sports performance
(43). Specifically, in the context of clinical settings, the authors
noted that contact-based techniques such as strain, impedance,
biopotential, and light intensity measurements offer a platform
to detect RR in a non-invasive and unobtrusive manner. Toward
the use of biopotential measurements for RR monitoring, RR
can be derived from wearable devices that measure heart
activity due to a phenomenon known as Respiratory Sinus
Arrhythmia (RSA) (44). RSA results in increased HR during

inspiration and decreased HR during expiration. Using this
information, any wearable that can accurately measure heart
rhythm can be used to derive respiration rate if an appropriate
algorithm is implemented. Baseline resting of respiration rate
can be determined when a subject is asleep and shows
very little variation from night to night (40). Therefore, a
significant increase in resting respiration rate indicates a high
likelihood of decreased respiratory efficiency. WHOOP has
focused on correlating changes in RR and recovery levels to
predicting COVID-19 in their users (45). WHOOP, which
recently partnered with Central Queensland University (CQU)
and the Cleveland Clinic on such a study, will utilize the
data collected from WHOOP’s hardware from volunteers who
have self-identified as having contracted COVID-19 to study
changes in their respiration rate over time (45). The data,
which is currently being collected for this study utilized the
WHOOP 3.0 strap, was validated externally to determine the
accuracy of respiration rate during sleep when compared against
polysomnography (46). Based on the study, the team from
WHOOP hypothesizes that measuring respiration rate during
sleep could be valuable in detecting abnormal respiratory
behavior in COVID-19 patients before symptoms are present
(45). Recently, researchers from Duke University launched the
“CovIdentify” study which utilizes devices such as the Fitbit
and data from the Apple Health app to monitor an individual’s
sleep schedules, oxygen levels, activity levels, and HR over a
12 months period to determine if they are risk for COVID-
19 (47, 48). Once the data is collected, the team will utilize
their predictive algorithms to detect respiratory infections from
the COVID-19 virus. Respiration rates are typically obtained
in research and clinical-related settings which may not be
indicative of individual’s respirations at home; however, given
that COVID-19 can complicate existing chronic respiratory
disease, monitoring individuals in home settings can receive a
more patient-centered approach to prescribing treatment (49).
There remains an unmet medical need to ensure that algorithms
that correlate changes in RR to COVID-19 are sensitive enough
to filter out other lower respiratory infections such as pneumonia
or influenza. Toward achieving this goal, the design of clinical
trials to mitigate false positive diagnosis is critical toward
the application of wearable sensor technology for COVID-
19 monitoring.

SpO2
The assessment of a patient with a respiratory illness typically
includes measurement of the blood oxygen saturation (SpO2),
as hypoxia in certain clinical scenarios is indicative of a
pneumonia. This is of particular importance in monitoring
progression and severity of disease in COVID-19, where resting
SpO2 was found to be significantly lower in patients with a
severe stage of the disease as determined by clinical symptoms
and CT scan. SpO2 measurements < 90% during hospital
admission is seen in COVID-19 patients with higher systemic
inflammatory markers and increased disease mortality (50,
51). While validated oximeters are abundant in the inpatient
setting, few patients have this technology available in their
homes. Smartphone-based pulse oximetry in the form of a
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camera-based app and a probe-based app, the latter using
an external plug-in probe, have been developed by several
companies and evaluated in two published studies (52, 53).
The plug-in probes showed modest accuracy in identifying
hypoxia as measured by standard pulse-oximetry; however,
the camera-based technology had limited ability to accurately
detect hypoxia and is not considered standard of care for this
purpose in the literature. PPG technology has been utilized in
wearable pulse oximetry and a large number of fingertip-type
oximeters are commercially available, but few meet acceptable
accuracy standards (54). Examples include the MightySatTM Rx
(Masimo) and Pulsox-310 (Konica Minolta). These available
technologies were designed for oxygen management in chronic
diseases such as chronic obstructive pulmonary disease (COPD)
and sleep apnea; moreover, little research has looked at
their utility in early detection and management of disease
progression in acute respiratory illnesses. At present, this
technology may be particularly useful, as more patients with
mild symptoms of COVID-19 are being asked to stay at
home and report changes in their respiratory symptoms via
telemedicine modalities in an attempt to reduce the spread
of the disease. In elderly patients or those with medical co-
morbidities that are known to be at higher risk of disease
progression, current wearable PPG technology may have a role
in identifying those patients who are self-isolating at home that
need a higher level of care due to hypoxemia which may or
may not be accompanied by other clinical symptoms of early
respiratory distress.

Temperature
Temperature measurement is extremely important to COVID-
19 detection and has already been widely used by numerous
countries as an immediate test to determine if travelers or
citizens may be infected with COVID-19. While quarantining
individuals with fever may prevent transmission to some degree,
this approach to temperature monitoring is not sufficient
because COVID-19 can be transmitted before a fever develops.
Continuous monitoring of skin temperature is currently being
implemented using wearable devices such as the TempTraq,
Oura ring, VivaLNK Fever Scout, and QardioCORE. The
TempTraq skin temperature sensor adheres to the body for
72 h and is currently being used to measure the temperature
of frontline workers here at University Hospitals Cleveland
Medical Center (55). A study performed by Stanford University
using the MOVES, Scanadu Scout, Basis B1, Basis Peak,
iHealth-finger, Masimo, RadTarge, andWithings found a notable
increase in skin temperature as well as HR and RHR in
the period preceding and during a viral infection (20). This
change in skin temperature, particularly if paired with RHR
and HRV information, could be used to predict COVID-
19 infection before symptoms arise. Any such temperature
sensing wearable device could also be used for fever tracking
during illness and alert users and medical staff to a dangerous
fever or sharp change in temperature. While skin temperature
measurement is easy to implement, it has been shown to deviate
up to 12◦F from core body temperature (20). Additionally,
temporal, oral, aural, and axillary temperature measurements

have all been shown to be invalid estimations of core body
temperature (compared against rectal thermometry) and are
more prone to change due to environmental or behavioral
factors (56). Core body temperature measurement provides a
much more stable baseline for assessment and could prove to
be more reliably indicative of illness than skin temperature
and provide more insight into fevers for remote patient
monitoring. Researchers at UT Southwestern Medical Center
found that fluctuations in core body temperature regulate the
body’s circadian rhythm (57). In the study, the researchers
focused on cultured mouse cells and tissues and found
that genes related to circadian functions were influenced by
changes in core temperature. Clinically, analytical platforms
combining core body temperature measurements with those of
respiration rate, HR, or HRV, could provide a more robust
platform for predicting the incidence of COVID-19 in ways not
done today.

Continuous skin temperature measurement is simple to
implement in both hardware and software and can easily be
implemented into a wearable device. Analog solutions such
as thermocouples and thermistors could be used reliably,
but digital temperature sensors are likely better for wearable
applications due to their small size (∼1 × 1mm), low power
requirements, and improved control. Such a sensor could be
integrated into many existing wearable form factors though
adhesive patches will likely prove more reliable due to constant
contact with the skin. The gold standard for core body
temperature is rectal thermometry. This measurement modality
is not feasible for continuous measurement where non-invasive
and unobtrusive monitoring is required. A large body of
research has shown that core body temperature can be reliably
predicted from skin temperature and HR through the use
of Kalman filters or other machine learning (ML) algorithms
(58, 59). While this technology needs further research and
development before clinical or diagnostic use, the application
of such algorithms could provide a non-invasive method to
study the response of core body temperature to illness and
provide advanced remote patient monitoring capabilities for
fever treatment.

While there have not been any clinical trials correlating
core body temperature to incidences of COVID-19, the smart
thermometer maker, Kinsa, has shown from skin temperature
data where people with the flu (and more recently COVID-19
infections) are located (60). The team studied a population in
Miami-Dade County, Florida and found that a spike in fevers
coincided with the well-known reports of Miami residents and
tourists loosely following social distancing recommendations. As
beaches closed and other isolation strategies were implemented
in the county, the team found a significant drop in fevers.
The team also noted that the trends observed in Miami hold
true for other areas of the country that they studied: as
individuals adhered to social distancing guidelines, within 5
days, a downward dip in fevers was observed (60). Another
start-up, Oura, has partnered with the University of California,
San Francisco on a new study to see if its device, Oura Ring,
can detect physiological signs that may indicate the onset of
COVID-19 (61). The study includes two parts wherein part one
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FIGURE 2 | Clinical pathway summarizing the role of wearable sensor technology and predictive analytics for monitoring COVID-19. (A) Physiological metrics

currently capable of being measured from commercial wearable sensors. (B) Changes in physiological metrics can be inputted into an early detection algorithm for

COVID-19 monitoring. The goal of such algorithms is to ensure the true positive rate is robust to support the use of the analytics for real-time clinical decision making.

(C) Integrated analytics to monitor COVID-19 can be used to monitor individual or population health. HRV, heart rate variability; Resp Rate, respiration rate; SpO2,

blood oxygen saturation; Temp, temperature; TP, True Positive; FP, False Positive; TN, True Negative; FN, False Negative.

involves having 2,000 frontline healthcare professionals wear
the Oura Ring to track skin temperature, sleep pattern, HR,
and activity levels. Part two of the study will involve Oura’s
general user population wherein its 150,000 global users can
opt in to participate and add to the overall pool of information
with their ring’s readings and daily symptom surveys (61).
Recently an Oura user in Finland claimed that the ring alerted
him that he was displaying symptoms of COVID-19 based on
decreased recovery levels (from 80 to 90% to 54 coupled) and an
increase in skin temperature of ∼1◦C. These changes prompted
the individual to get tested (61). The test results confirmed,
that while asymptomatic, the individual had COVID-19 (61).
The compilation of de-identified data sets from studies such
as the two mentioned for temperature monitoring and those
mentioned earlier on could lead to the development of an early
detection algorithm.

EARLY DETECTION ALGORITHM
TECHNOLOGY IS NEEDED FOR COVID-19
MONITORING

Many of the physiological changes measured by wearable devices
discussed in the above sections can potentially be detected
before a user experiences any significant clinical symptoms of

illness (Figure 2A).We postulate that wearable devices can detect
and alert users of possible infection with SARS-CoV-2 before
they develop clinical symptoms through the development of an
early detection algorithm (EDA) (Figures 2A,B). By notifying
wearable device users of possible early infection, EDA could allow
them the ability to self-isolate, seek care or diagnostic testing,
and take other steps to mitigate transmission of the infection

during a critical period of the disease process. Additionally,
wearables could be used for remote patient monitoring in
mild cases by allowing patients to report their vitals from

home, saving critical hospital resources and reducing the risk
of transmission to health care providers by avoiding in-person

assessments (Figure 2C). A combination of the metrics listed

above could result in a sufficiently high SNR to be used as a
predictor of viral illness or COVID-19 risk. Developing an EDA

with a high true positive and true negative rate is imperative

for the translation of this technological platform for remote
patient monitoring. Clinical staff such as intensive care nurses

use early-warning system indicators to detect if individuals are

at risk for further complications related to their care (62).
Remote patient monitoring using wearable sensor technology
provides an opportunity for developing more effective patient
interventions, balancing nurse-patient care ratios, and decreasing
costs associated with readmission rates and futile medical care.
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FUTURE OUTLOOK AND
RECOMMENDATIONS: ADOPTING
WEARABLE SENSOR TECHNOLOGY

The development of integrated sensor technology has made
it possible to remotely measure many physiologic parameters
accurately, many of which are clinically useful in monitoring
disease progression in a viral illness. The scope of influence of
this technology is broad; it may be used to help to identify an
individual under home-quarantine that needs a higher level-
of-care or a community where an emerging outbreak may
be imminent and requires an early intervention. We suspect
that one of the largest impediments for the mass adoption
of wearable sensors (and digital health technologies overall)
in the United States toward remote patient monitoring is
the issue of data privacy, data sharing, and underreporting.
Wearable technology companies must ensure that only users
who choose to participate will share their data (as done by
WHOOP), and that the data will be anonymized and used for
COVID-19 research only. Germany have provided us with a
good example of how population health data can be handled,
acknowledging their strong privacy concerns and stances on the
limited collection of digital data (63). Underreporting of data by
some populations may require their consent for safe data sharing
and privacy agreements so that it can be used to inform better

care, thus decreasing health disparities. The implementation of
current trials demonstrates the convergence of wearable data,
self-reported symptoms, molecular testing, and geospatial data
toward developing platforms for managing COVID-19 and other
outbreaks which may arise in the future. Building upon such
trials, we see an opportunity to design a device that can accurately
monitor many or all metrics of interest and through machine
learning is able to develop an algorithm to reliably detect
changes in population health status. A collaboration leveraging
the expertise of clinicians, data scientists, engineers, and nurses is
imperative to facilitate this advancement and may even be more
acutely desired should there be a second wave of this pandemic.
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