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MicroRNAs are highly investigated for their role in the pathogenesis of cardiovascular

diseases. Nevertheless, evidence for clinical implementation is still lacking. In our

systematic review, we evaluated the potential of microRNAs as pathophysiological

and diagnostic biomarkers of heart failure. We identified 72 differentially expressed

microRNA molecules among groups of heart failure patients and control groups

by searching the PubMed database. We did not identify a substantial overlap of

differentially expressed microRNAs among different studies; only five microRNAs

(miR-1228, miR-122, miR-423-5p, miR-142-3p, and exosomal miR-92b-5p) were

differentially expressed in more than one included study. Gene set enrichment analysis,

based on the gene targets of microRNAs presented in the included studies, showed

that gene targets of differentially expressed microRNAs were enriched in the MAPK,

TGFβ, PI3K-Akt, and IL-2 signaling pathways, as well as apoptosis pathway, p53 activity

regulation, and angiogenesis pathway. Results of our systematic review show that there

is currently insufficient support for the use of any of the presented microRNAs as

pathophysiological or prognostic biomarkers in the clinical setting.

Keywords: heart failure, biomarker (BM), epigenetics (DNA methylation, histone modifications), microRNA (miR),

systematic (literature) review

INTRODUCTION

Heart failure is a major cause of morbidity and mortality worldwide. The prevalence of heart
failure is on the rise, and it has been estimated that it will grow further and reach 10% of the
general population in 2030 (1). It is defined as the inability of the heart to supply the peripheral
tissues with a sufficient amount of blood and oxygen to meet their metabolic needs and is
mainly a result of age-related cardiovascular conditions and associated changes in cardiovascular
structure and function (1). Heart failure is predominantly caused by an underlying myocardial
disease (especially myocardial ischemia); however, other cardiac diseases, including valve diseases,
endocardial, or pericardial abnormalities and disorders in the heart rhythm, may also result in
diminished cardiac function (2). Clinical and research criteria for heart failure are heterogeneous
and prone to misclassification. Heart failure is usually diagnosed by physical examination,
laboratory workup, cardiovascular imaging, and hemodynamic catheterization (3). One of the
main challenges in diagnosing heart failure is the identification of reliable biomarkers. Natriuretic
peptides are the most extensively studied and used biomarkers in heart failure (4). The serum
brain natriuretic peptide is currently the only routinely used biomarker for heart failure with
class 1A recommendation from both American and European guidelines (1, 5). Fibrosis markers
galectin-3 and soluble suppression of tumorigenicity-2 have been included in the ACC/AHA
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guidelines (strength of recommendation 2b), but their clinical
value is still uncertain (1, 5). In addition to proteins, circulating
microRNAs gained significant interest as potential novel heart
failure biomarkers.

MicroRNAs (miRNAs) are small (∼22 nucleotides long)
endogenous non-coding RNAs that play an important role
by regulating post-transcriptional gene expression. They act
to either inhibit the translation of messenger RNA or to
induce the degradation of specific mRNA (6–8). MiRNAs
circulating in the blood were found to be protected from
degradation caused by endogenous RNases. Evidence suggests
that resistance to degradation is achieved by binding of miRNA
to carrier molecules, such as Argonaute 2, nucleophosmin,
and lipoproteins (HDL), and by the packaging of miRNA in
microparticles such as exosomes, microvesicles, or apoptotic
bodies (9–11). Stability in blood, differential expression in healthy
tissue vs. pathologically changed tissue, and robust laboratory
methods that detect the expression of miRNAs with a high degree
of sensitivity and specificity all make miRNAs good candidates as
biomarkers of the disease (12).

Differentially expressed miRNA patterns were found to be
associated with various pathophysiological mechanisms of heart
failure, such as cardiac remodeling, hypertrophy, apoptosis,
and hypoxia (13–32). The involvement of miRNAs in various
pathophysiological mechanisms of heart failure, diverse subtypes
of heart failure investigated in studies, different design and
methods of the studies, and the difference in inclusion/exclusion
criteria for patient selection, however, mean that their role
in heart failure and their potential as biomarkers remains
elusive (33).

In this review, we aim to provide an overview of current
scientific support for the use of miRNAs as pathophysiological
and diagnostic biomarkers for heart failure.

METHODS

Search Strategy
The literature search was conducted in the PubMed database
until August 2019, using the following terms: (“MiRNAs”
OR “microRNAs”) AND (“heart failure” OR “HF”) in the
title/abstract. We limited our search to articles written in
English. The “AND” operator was used to create all possible
combinations of selected terms. The literature search was

Abbreviations: miRNA/miR, microRNA; HF, heart failure; CHF, chronic heart

failure; AHF, acute heart failure; HFrEF, heart failure with reduced ejection

fraction; ACC/AHA/HFSA, American College of Cardiology/American Heart

Association/Heart Failure Society of America; DC, diastolic dysfunction; DCM-

AHF, dilated cardiomyopathy–acute heart failure; NIDCM, non-ischemic dilated

cardiomyopathy; ICM, ischemic cardiomyopathy; DCM, dilated cardiomyopathy;

LVEF, left ventricular ejection fraction; NYHA, New York Heart Association

classification of heart failure; HDL, high-density lipoprotein; PCR, polymerase

chain reaction; snRNA, small nuclear RNA; KEGG, Kyoto Encyclopedia of Genes

and Genomes; NT-proBNP, N-terminal pro b-type natriuretic peptide; EGAPP

Work Group, The Evaluation of Genomic Applications in Practice and Prevention

Work Group; MAPK, mitogen-activated protein kinase; TGFβ, transforming

growth factor beta; NO, nitric oxide; IL-2, interleukin 2; TA, targeted analysis; HyF,

hypothesis-free; PBMC, peripheral blood mononuclear cells.

conducted independently by two authors (AP and KP) who
reached consensus on all of the research papers.

Study Selection and Data Collection
Research papers were initially retrieved as title and abstract and
screened for eligibility. All selected research papers were then
retrieved as complete manuscripts and checked for compliance
with inclusion and exclusion criteria.We included human studies
meeting the following criteria: (1) heart failure diagnosis based
on clinical features and confirmed with echocardiography; (2)
the patients had measured specific miRNA expression level at
the time of heart failure exacerbation/follow up examination; (3)
case–control study design; (4) qPCR, real-time PCR, microarray,
and RNAseq are acceptable methods to evaluate the expressions
of miRNAs. The exclusion criteria applied to the studies
were as follows: (1) patients had received medications before
blood/serum samples were collected; (2) heart failure as an
immediate consequence of acute myocardial infarction; (3) heart
failure studied only on subpopulations of patients, i.e., diabetics;
(4) research papers that were not focused on heart failure but
were focused only on the specific pathophysiological mechanism
leading to heart failure (i.e., hypertension, atherosclerosis,
arrhythmias); and (5) the same cohort was already studied in
other research papers. Newcastle-Ottawa quality assessment scale
(34) was used to assess the quality of included research papers.
For each research paper included in the systematic review, the
following data were extracted: authors, year of publication, study
population geographical origin, number of heart failure patients
and controls, selected miRNAs, sample source, and employed
diagnostic criteria for heart failure. Additionally, we checked for
the information on performed normalization of the differential
microRNA expression.

Bioinformatic Analysis/Gene Set
Enrichment Analysis
UsingmiRTarBase (release 8.0 beta), we identified all known gene
targets for selected miRNAs that were differentially expressed
in the research papers included in the systematic review (35).
We then developed the list of all target genes related to 72
miRNAs identified inTable 1 and performed gene set enrichment
analysis using Enrichr (36, 37). Results from KEGG, BioPlanet,
and Panther databases were analyzed.

RESULTS

Through the initial keyword search, we retrieved 1,165 research
papers. The further selection process is presented in Figure 1.
After applying inclusion and exclusion criteria, we identified
20 research papers to include in our systematic review. The
characteristics of the included studies are presented in Table 1.
Selected studies described 72 differentially expressed miRNAs
in patients with heart failure compared to controls without
heart failure.

The Newcastle-Ottawa questionnaire was applied to assess
the quality of the included studies (Table 2). The most common
overall quality score was 7/9. Important shortcomings of studies
included in the systematic review were suboptimal comparability

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 October 2020 | Volume 7 | Article 161

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Peterlin et al. microRNA in Heart Failure

TABLE 1 | Characteristics of research papers included in the systematic review.

References Country Enrolled patients Enrolled controls Study

design

Selected

miRNAs

Sample

source

Diagnostic criteria

Sample source: serum, plasma

Wang et al.

(15)

China 10 HF patients 10 healthy age- and

sex-matched controls

HyF miR-26b-5p

miR-8485

miR-940

Serum 2017 ACC/AHA/HFSA focused

update guideline for the management

of HF

Wu et al. (23) China 28 HFrEF patients 30 healthy age- and

sex-matched controls

TA exo-miR-92b-

5p

Serum AHA and ESC guidelines

Guo et al. (16) China 94 CHF patients: NYHA II (32),

NYHA III (32), NYHA IV (30)

31 healthy age- and

sex-matched controls

TA miR-133a Plasma 2009 Focused update: ACCF/AHA

guidelines for the diagnosis and

management of HF in adults

Li et al. (17) China 96 AHF patients, NT-proBNP

levels ≥1,000 ng/L

20 healthy controls and 96

patients with cardiovascular

disease but without HF and

NT-proBNP level below the

age-related cutoff point

TA miR-302b-3p Serum National heart failure diagnosis and

treatment guidelines established by

our national society of cardiology

Wu et al. (14) China 43 DCM-AHF patients 34 age and sex-matched healthy

controls

TA exo-miR-92b-

5p

Serum AHA guidelines

Chen et al.

(18)

China 46 HF patients, LVEF ≥50%: 13

patients for initial genome-wide

microarray, 33 patients for the

RT-qPCR validation step

23 healthy controls: 3 controls

for initial genome-wide

microarray, 20 controls for the

RT-qPCR validation step

HyF miR-3135b

miR-3908

miR-5571-5p

Serum Echocardiography

He et al. (19) China 124 HF patients (8 IHF and 8

NIHF patients for initial RNA

sequencing, 60 IHF and 48 NIHF

for RT-qPCR validation)

43 healthy controls

(8 controls for initial RNA

sequencing, 35 controls for

RT-qPCR validation)

HyF miR-195-3p Plasma ACC/AHA guidelines

Scrutinio et al.

(20)

Italy 64 patients: 10 patients for

genome-wide serum miRNA

expression analysis (5 moderate

HF, 5 advanced HF) AND 54

patients for RT-qPCR validation

(25 moderate HF patients, 29

advanced HF patients)

20 healthy controls: 5 controls

for genome-wide serum miRNA

expression analysis AND 15

controls for RT-qPCR validation

HyF miR-26a-5p

miR-150-5p

Serum ESC guidelines

Li et al. (22) China 14 heart transplant tissue for

miRNA microarray analysis, 45

patients for RT-qPCR validation

10 heart transplant tissue for

miRNA microarray analysis, 45

patients for RT-qPCR validation

HyF miR-660-3p

miR-665

miR-1285-3p

miR-4491

Heart

tissue,

serum

ACC/AHA guidelines

Wei et al. (13) China 32 HF patients: 18 NYHA III, 14

NYHA IV

32 individuals with healthy sinus

rhythm

TA miR-126 Plasma NYHA classification, ECG

Cakmak et al.

(24)

Turkey 42 systolic grade C HF patients:

20 NYHA II, 22 NYHA III or IV

15 age- and sex-matched

healthy controls

HyF miR-21

miR-650

miR-744

miR-516-5p

miR-1292

miR-182

miR-1228

miR-595

miR-663b

miR-1296

miR-1825

miR-299-3p

miR-662

miR-122

miR-3148

miR-129-3p

miR-3155

miR-3175

miR-583

miR-568

miR-30d

miR-200a

miR-1979

miR-371-3p

miR-155

miR-502-5p

Serum 2009 Focused update: ACCF/AHA

guidelines for the diagnosis and

management of heart failure in adults.

(Continued)
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TABLE 1 | Continued

References Country Enrolled patients Enrolled controls Study

design

Selected

miRNAs

Sample

source

Diagnostic criteria

Akat et al.

(25)

USA 24 advanced HF patients, 14

stable HF patients

13 healthy controls TA miR-208b

miR-499

miR-1-1

miR133-b

Plasma Echocardiography, NYHA

classification

Fan et al.

(27)

China 45 HF patients with DCM 39 healthy age and sex-matched

controls

TA miR-423-5p Plasma NYHA classification and

echocardiography and LVEF <45%

Fukushima

et al. (30)

Japan 33 ischemic HF patients 17 healthy controls TA miR-126 Serum NYHA classification

Tijsen et al.

(32)

Netherlands 42 HF patients: 12 AHF patients

for miRNA microarray analysis,

30 HF patients for RT-qPCR

validation

39 healthy controls HyF miR-18b

miR-423-5p

miR-675

Plasma The Framingham criteria and

NT-proBNP >1,000 ng/L

Sample source: whole blood, PBMC

Yu et al. (21) China 50 DCM patients 41 healthy age- and

sex-matched controls

TA miR-185 Whole

blood

1995 WHO/ISFC criteria

Vogel et al.

(26)

Germany 53 HFrEF patients, validation

cohort: 14 HFrEF patients (whole

blood), 10 HFrEF patients

(serum)

39 healthy controls, validation

cohort: 8 healthy controls (whole

blood), 10 healthy controls

(serum)

HyF miR-122

miR-1228

miR-1231

miR-200b

miR-519e

miR-520d-5p

miR-558

miR-622

Whole

blood,

serum

ESC guidelines, echocardiography

LVEF < 50% and NYHA classification

Endo et al.

(28)

Japan 8 patients NYHA II and 5 patients

NYHA III/IV

6 healthy controls TA miR-210 PBMC NYHA classification

Nair et al.

(29)

USA 8 patients DC, 10 patients stable

DCM, 13 patients AHF

8 healthy controls HyF miR-454

miR-500a

miR-500b

miR-142-3p

miR-1246

miR-124-5p

PBMC Echocardiography

Voellenkle

et al. (31)

Italy 7 patients NIDCM, 8 patients

ICM, validation cohort: 17

patients NIDCM, 15 patients ICM

9 controls, validation cohort: 19

controls

TA miR-107

miR-139

miR-142-5p

miR-142-3p

miR-29b

miR-125b-5p

miR-497

PBMC NYHA classification and LVEF ≤36%

HFrEF, heart failure with reduced ejection fraction; HF, heart failure; TA, targeted analysis; HyF, hypothesis-free; ACC/AHA/HFSA, American College of Cardiology/American Heart

Association/Heart Failure Society of America; DC, diastolic dysfunction; DCM-AHF, dilated cardiomyopathy–acute heart failure; CHF, chronic heart failure; AHF, acute heart failure;

AF, atrial fibrillation; DCM, dilated cardiomyopathy; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association classification of heart failure; PBMC, peripheral blood

mononuclear cells; NIDCM, nonischemic dilated cardiomyopathy; ICM, ischemic cardiomyopathy.

of cases and controls as well as different definitions for cases and
controls in the included studies.

The majority of included studies (17/18 RT-qPCR studies)
provides information on performed normalization. However,
there was a discrepancy in the normalization methods
(exogenous or endogenous controls) and selected control
microRNAs. The most commonly used control microRNAs were
U6 snRNA, i.e., in seven studies (13–15, 19, 22, 23, 29, 32) and
miR-39 in three studies (16, 20, 27).

By searching miRTarBase (35), we identified 2,052 potential

gene targets for selected differentially expressed miRNAs and

performed gene set enrichment analysis using Enrichr (36,
37). To reveal a pathophysiologically important set of genes,

we investigated KEGG, BioPlanet, and Panther databases. The
results are presented in Table 3.

DISCUSSION

We identified 72 differentially expressed miRNAs among groups
of heart failure patients and control groups with a systematic
review. Among 72 differentially expressed miRNAs, only 5
miRNAs, namely, miR-1228, miR-122, miR-423-5p, miR-142-3p,
and exosomal miR-92b-5p were differentially expressed in more
than one included study.

Two studies found increased levels of miR-1228 and miR-122
in patients with heart failure (24, 26). Vogel et al. found high
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FIGURE 1 | Flow diagram of the study selection process.

expression of miR-1228 in CD15+ granulocytes and speculated
that differences in leukocyte subpopulations might influence the
inflammatory processes known to play an important role in the
development and progression of heart failure (26, 26, 38–41).
They found miR-122 to be among the most significantly up-
regulated miRNAs with good discriminative power as a single
marker for systolic heart failure (26). MiR-122 was previously
investigated in the porcine cardiogenic shockmodel, where it was
significantly up-regulated in blood samples (42).

Studies by Tijsen et al. and Fan et al. found miR423-5p
to be significantly increased in heart failure patients compared
to healthy controls and speculated that miR423-5p could be a
significant predictor of heart failure diagnosis (27, 32). They
also found that miR423-5p correlated with NT-proBNP (27, 32).
While Tijsen et al. found a correlation between miR423-5p
and NYHA classification, Fan et al. did not find plasma levels
of miR423-5p to correlate with NYHA functional class or left
ventricular ejection fraction values (27). Tijsen et al. did not
specify the subpopulation of heart failure patients, while Fan
et al. studied the subpopulation of heart failure patients with
dilated cardiomyopathy. Goren et al. reported higher plasma
levels of miR423-5p in patients suffering from heart failure due

to dilated cardiomyopathy (43). MiR423-5p was up-regulated in
array studies of failing human myocardium (44).

The results regarding the differential expression of miR142-
3p were conflicting (29, 31). Vollenkle et al. found miR142-
3p to be significantly increased in patients with non-ischemic
dilated cardiomyopathy, while Nair et al. found miR142-3p to
be downregulated in patients with heart failure due to dilated
cardiomyopathy. Sample sources in both studies were peripheral
blood mononuclear cells (29, 31).

Wu et al. investigated the role of serum exosomal miR-
92b-5p in two different subpopulations of heart failure patients
(patients with heart failure with reduced ejection fraction and
patients with dilated cardiomyopathy caused by acute heart
failure). They found increased expression levels of exo-miR-92b
in both patient subgroups compared to control groups. Both
studies also found miR-92b to be positively related to the left
atrium diameter, left ventricular end-diastolic dimension, and
left ventricular end-systolic dimension and negatively related to
left ventricular ejection fraction and left ventricular fractional
shortening (14, 23). Due to sequence similarity with miR-92a,
which was studied in the mouse model, they predicted]that miR-
92b could be involved in angiogenesis and functional recovery

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 October 2020 | Volume 7 | Article 161

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


P
e
te
rlin

e
t
a
l.

m
ic
ro
R
N
A
in

H
e
a
rt
F
a
ilu
re

TABLE 2 | Quality assessment of included research papers using the Newcastle-Ottawa scale.

Reference Selection Comparability Exposure Overall quality

score

An adequate

definition of

cases

Representativeness

of cases

Selection of

controls

Definition of

controls

Comparability of cases

and controls based on

design or analysis

Ascertainment

of exposure

Same method for

ascertainment for cases

and controls

Non-response

rate

Wang et al. (15) * * * * ** * * – ********

Wu et al. (2018) * * * * ** * * – ********

Guo et al. (16) * * * * ** * * – ********

Li et al. (17) * * * * * * * – *******

Wu et al. (2018) * * * * * * * – ********

Chen et al. (18) * * * * * * * – *******

He et al. (19) * * * * * * * – *******

Scr]tinio et al. (20) * * * * * * * – *******

Yu et al. (21) * * * * ** * * – ********

Li et al. (22) * * * * * * * – *******

Wei et al. (13) * * * * * * * – *******

Cakmak et al. (24) * * * * ** * * – ********

Akat et al. (25) * * * * * * * – *******

Vogel et al. (26) * * * * * * * – *******

Fan et al. (27) * * * * ** * * – ********

Endo et al. (28) * * * * * * * – *******

Nair et al. (29) * * * * * * * – *******

Fukushima et al.

(30)

* * * * * * * – *******

Voellenkle et al.

(31)

* * – – * * * – *****

Tijsen et al. (32) * * * * * * * – *******

According to the Newcastle–Ottawa scale, a study can be awarded a maximum of one star for each numbered item within the Selection and Exposure categories. A maximum of two stars can be given for Comparability.
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TABLE 3 | Top enriched pathways defined by gene targets of differentially

expressed miRNA in studies investigating serum and plasma samples.

KEGG 2019 BioPlanet 2019 Panther 2016

Pathways in cancer Pathways in cancer p53 pathway feedback

loops 2

Hepatitis B Integrated breast cancer

pathway

Apoptosis signaling

pathway

AGE-RAGE signaling

pathway in diabetic

complications

Interleukin-2 signaling

pathway

Angiogenesis

Colorectal cancer Colorectal cancer p53 pathway

MAPK signaling

pathway

TGF- β signaling pathway CCKR signaling map

ST

TNF signaling pathway ATM-dependent DNA

damage response

Insulin/IGF

pathway-protein kinase

B signaling cascade

Measles Prostate cancer EGF receptor signaling

pathway

Kaposi

sarcoma-associated

herpesvirus infection

p53 activity regulation TGF-β signaling

pathway

Prostate cancer Androgen receptor

signaling, proteolysis, and

transcription regulation

Ras pathway

Human papillomavirus

infection

Chronic myeloid leukemia PI3 kinase pathway

of ischemic tissues (45); however, they acknowledged the need
of further basic research to prove the pathophysiological role of
miR-92b in heart failure.

Through a thorough assessment of previously published
studies, we established that the evidence of the magnitude of
effect and certainty of the evidence, contextual factors including
improvement of the predictive diagnostic value of investigated
miRNAs, and pathophysiological action of miRNA in heart
failure are still poorly investigated at present. Similarly, analytical
and clinical validity, as well as clinical utility, have not been
assessed yet (46, 47). Therefore, further studies are needed, which
would follow the scientific statement on the criteria for the
evaluation of novel markers of cardiovascular risk (48), which
emphasize the importance of research design, representative
at-risk population, adequate outcome events, and inclusion of
measures of both discrimination and accuracy among others.

Based on the results of this systematic review, it is evident
that none of the miRNAs could be considered to be used as
a biomarker in the clinical setting. Therefore, we performed
gene set enrichment analysis on 2,558 genes that were defined
as targets of 72 differentially expressed miRNAs to investigate
if there are any common enriched pathways related to
pathophysiological processes of heart failure. We found support
for an association of pathway enrichment results with heart
failure for MAPK signaling pathway, TGFβ signaling pathway,
PI3K-Akt signaling pathway, IL-2 signaling pathway, apoptosis
pathway, p53 activity regulation, and angiogenesis pathway.

Cardiac angiogenesis, especially of microvasculature, in the
setting of pathological cardiac hypertrophy, is insufficient to
maintain adequate perfusion. Impaired production of NO from
dysfunctional endothelial cells is one of the most researched
pathophysiological mechanisms that impair angiogenesis (49).
Inhibition of NO production in cardiomyocytes was shown
to rapidly increase the production of reactive oxygen species,
to activate p38 MAP kinase and enhance TGFβ and TNFα
expression (50).

Mitogen-activated protein kinase (MAPK) signaling cascades
are considered to be important regulators of cardiac hypertrophic
response (51–53). Numerous reports have demonstrated that p38
MAPK inhibition can reduce cardiomyocyte growth in response
to hypertrophic stimuli in vitro (54–57). Furthermore, chronic
activation of the p38MAPK pathway has been associated with the
induction of hypertrophic response in cultured cardiomyocytes
(55–57). Myocardial ischemia was also found to induce p38
MAPK activation, while p38 MAPK inhibition has been
demonstrated to attenuate apoptosis in ischemia/reperfusion-
injured hearts (58).

Several studies have already linked different miRNAs with
the PI3K-Akt pathway (59–61). Two miRNAs, identified in
our systematic review, were implied to have a role in the
regulation of the PI3K-Akt pathway, namely, miR-200a-3p
and miR302s. MiR-200a-3p accelerated cardiac hypertrophy
by directly modulating WDR1 and simultaneously regulating
PTEN/PI3K/AKT/CREB/WDR1 pathway (60), while the
miR302-367 cluster was found to impair autophagy to worsen
cardiac hypertrophy through silencing PTEN and consequently
activating PI3K/AKT/mTORpathway (59). Selective activation of
distinct PI3K signaling pathways was also shown in a longitudinal
canine model of heart failure and cardiac regeneration (62).

The results of previously published studies on the effects of
IL-2 on heart-related pathologies are inconsistent. On the one
hand, plasma levels of IL-2 were shown to be elevated in patients
with acute myocardial infarction, angina pectoris, and dilated
cardiomyopathy, while on the other hand, there are reports that
suggest a potential therapeutic effect of IL-2 in the setting of acute
myocardial infarction (63, 64).

TGFβ was found to be involved in cardiac remodeling
(65). Specifically, numerous studies indicated that increased
TGFβ1 expression plays an important role in heart hypertrophy,
cardiac fibrosis, and cardiomyocyte apoptosis (66–70). Apoptosis
importantly contributes to cardiomyocyte death in acute
myocardial infarction (71, 72). A high grade of apoptosis is
also present in the setting of unstable angina pectoris (73)
and correlates with parameters of progressive left ventricular
remodeling (74, 75). Increased p53 expression levels and
other components of apoptosis pathways were reported in the
myocardial tissue of patients with heart pathologies and were
found to progressively increase in the process of heart failure
(76–78). For example, it was shown that elevated levels of
p53 in the myocardium, as a consequence of hypoxic stress
due to acute myocardial infarction, led to the apoptosis of
cardiomyocytes (79). P53 was also shown to be up-regulated due
to the cardiotoxic effects on myocytes caused by doxorubicin
treatment (80).
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We discovered that many of the most enriched pathways
were associated with different types of cancer, especially prostate
cancer, colorectal cancer, and chronic myeloid leukemia. This
discovery is not all that surprising since more than 50% of the
miRNA genes are located in regions associated with cancer (81).

The systematic evaluation of diagnostic and prognostic
values of miRNA presented in this study has some limitations
due to different subpopulations of patients with various heart
failure phenotypes across different studies, a small number of
patients per study, and different technical approaches for miRNA
identification and analysis (targeted sequencing or hypothesis-
free approach and different methods of normalization).
Furthermore, inferrals about a pathophysiological mechanism
based on pathway analysis of circulating microRNA should
be made with caution since heart tissue was not analyzed
directly. Reporting bias may exist to some extent because we
only included research papers written in English or because only
positive results were published.

CONCLUSIONS

The results of our systematic review on the role of miRNAs as
pathophysiological and diagnostic biomarkers of heart failure

show that there is currently insufficient support for the use of
any of the presented miRNAs in the clinical setting. Gene set
enrichment analysis showed that gene targets of differentially
expressed miRNAs were enriched in pathways playing an
important role in the MAPK, TGFβ, PI3K-Akt, PDGF, and
IL-2 signaling pathways, as well as, apoptosis pathway, p53
activity regulation, and angiogenesis pathway. To establish the
definite value of miRNAs as pathophysiological and diagnostic
markers, future experimental studies employing the same
methodological design and performed on large sample sizes
are needed.
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