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Characterization and identification 
of lysine crotonylation sites based 
on machine learning method 
on both plant and mammalian
Rulan Wang1,6, Zhuo Wang2,3,6, Hongfei Wang4, Yuxuan Pang1 & Tzong‑Yi Lee5*

Lysine crotonylation (Kcr) is a type of protein post‑translational modification (PTM), which plays 
important roles in a variety of cellular regulation and processes. Several methods have been proposed 
for the identification of crotonylation. However, most of these methods can predict efficiently only 
on histone or non‑histone protein. Therefore, this work aims to give a more balanced performance 
in different species, here plant (non‑histone) and mammalian (histone) are involved. SVM (support 
vector machine) and RF (random forest) were employed in this study. According to the results of cross‑
validations, the RF classifier based on EGAAC attribute achieved the best predictive performance 
which performs competitively good as existed methods, meanwhile more robust when dealing 
with imbalanced datasets. Moreover, an independent test was carried out, which compared the 
performance of this study and existed methods based on the same features or the same classifier. The 
classifiers of SVM and RF could achieve best performances with 92% sensitivity, 88% specificity, 90% 
accuracy, and an MCC of 0.80 in the mammalian dataset, and 77% sensitivity, 83% specificity, 70% 
accuracy and 0.54 MCC in a relatively small dataset of mammalian and a large‑scaled plant dataset 
respectively. Moreover, a cross‑species independent testing was also carried out in this study, which 
has proved the species diversity in plant and mammalian.

Post-translational modifications(PTMs) modulate the activity of most eukaryote  proteins1, which play pivotal 
roles in numerous biological processes by modulating regulation of protein function and cellular  processes2 such 
as histone acetylation, which plays a significant role in mammalian DNA  repair3. Sumoylation was found on 
transcription factors with greatly increased frequencies, which shows it has a large impact on the transcription of 
 protein4. Signaling  pathways5, protein-protein  interactions6,7,  apoptosis8, cell  death9, and metabolic  pathways10,11 
are all affected by various kinds of PTMs. Owing to the importance of PTMs, several datasets of annotated 
PTMs of various types have been released in decades, such as emerging S-nitrosylation, S-glutathionylation 
and  succinylation12, which provided enough resources for investigation. Beside those earlier-discovered PTMs, 
crotonylation is a recently discovered one, which was originally found in somatic and mouse male germ cell and 
enriched on sex  chromosomes13, and of significant importance in regulating various of biological processes. The 
abundance of MS-verified crotonylated peptides enabled the investigation of substrate site specificity of croto-
nylation sites through sequence-based  attributes14. In 2017, Ju and He have proposed an SVM-based method 
by using attribute CKSAAP for this prediction, and a tool named CKSAAP_CrotSite was developed that  time15; 
also in 2017, Wang has proposed another method based on ensemble RF, which employed the attribute of 
pseudo-AAC 16. In 2018, 5995 sites on 2120 proteins have first been extracted and released by Liu et al.17 and 
provided more experimental-verified crotonylated samples in plant Carica papaya L., which filled in the gaps 
of lacking samples in computational analysis of crotonylation. Based on these Carica papaya L. data, Zhao et al. 
has carried a prediction on the large dataset, in which deep learning method has been  involved18. However, these 
prediction processes are of certain limitations. First, some predictions are based on small dataset with protein 
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number no more than 400 proteins, which can not be convincing. Meanwhile, the prediction based on Carica 
papaya L. is of enough quantity, but owing to the imbalance of dataset in positive and negative sample number, 
the result is biased, which can not be efficient in most of the real case. Hence, an overall investigation on different 
species with enough quantity of data in a proper classification method needs to be addressed. In this study, we 
have gathered both plant and mammalian samples, and employed classical machine learning methods for the 
prediction of crotonylation in both plant and mammalian datasets, which is the first evaluation on imbalanced 
cases of different species.

Result
Substrate site signatures of lysine crotonylation. The amino acid composition (AAC) was a widely 
used sequence-based feature for exploring the motif of residue components around the crotonylation  sites19,20. 
Since comparing the AAC between positive and negative datasets, the residues containing significant differences 
could be regarded as useful attributes for crotonylation sites identification. The position-specific AAC neigh-
bouring the crotonylation sites has been displayed by frequency plots of  WebLogo21 in Fig. 1a–c. As illustrated 
in Fig. 1a, Lysine (K) and aspartic acid (E) are of significantly high abundance near the crotonylation sites in 
the plant sequences, while in the mammalian dataset, only K tends to occur more often near crotonylation sites 
as shown in Fig. 1c. Additionally, the differences among each AAC seem to be much larger in the mammalian 
dataset, which means that in the plant dataset, the differences among positive and negative samples with respect 
to AAC feature are not that obvious, that is the main reason that the performance in the mammalian dataset is 
much more outstanding than the plant dataset. The TwoSampleLogo graph was further illustrated to compare 
the differences of position-specific AAC between crotonylated sequences in the two  datasets22. As shown in 
Fig. 1b, in the plant dataset, the most conserved motifs appeared to be associated with both positively charged 
residues, in particular K, and negatively charged composition, such as E. Additionally, the sequences of highly 
positively charged are involved in the residues of mammalian, typically K, which also occurred frequently in 
plant residues. Fig. 1d,e have indicated the occurrence of each amino acid composition in crotonylated and non-
crotonylated sequences in the two datasets, and for crotonylation sites, the positively charged lysine (K) residue 
appeared to have the highest frequency around the substrate sites. Besides Fig. 1, the detailed figures of WebLogo 
and TwoSampleLogo of the plant dataset and the mammalian dataset are shown in Supplementary Figs. S1 and 
S2 in the supplementary materials.

Performance on individual and incorporated features:. Based on the investigated features, SVM 
and RF classifiers were trained to determine the effectiveness of those features in identifying crotonylation sites. 
As shown in Table 1, the libsvm classifier trained with AAC reached an accuracy of 65% and an MCC value of 
0.31, which is the lowest one. The AAPC feature performed slightly better than the AAC case, which achieved an 
accuracy of 66% and an MCC value of 0.33. For CKSAAP, the libsvm classifier yielded at a similar performance 
with AAPC but slightly higher in Sn. Among these features, the classifiers trained by EAAC and EGAAC fea-
tures performed best for discriminating between crotonylated and non-crotonylated lysine residues, with EAAC 
classifier yielded a sensitivity, specificity, accuracy, and MCC value of 68%, 72%, 71% and 0.41, respectively and 
EGAAC yielded 74%, 66%, 70%, and 0.40 for the same criteria, respectively. Additionally, the ROC curve was 
generated to compare the predictive performance and stability of different classifiers in Supplementary Figs. S2 
and S3 in supplementary materials.

From the comparison among single features, the RF classifier trained from the EAAC feature gave the best 
performance, which gives the accuracy of 77%, MCC of 0.54 and AUC of 0.84 respectively. Feature EGAAC 
also achieved an accuracy of 74%, MCC 0.4 and AUC 0.78 in libsvm classifier, which is the best one among all 
features in libsvm method. Besides individual feature, incorporation of each feature was also carried out and 
achieved a good performance, with 71% accuracy, 0.40 MCC and 0.77 AUC of libsvm , and 77% accuracy and 
0.55 MCC and 0.84 AUC of RF.

Moreover, the same procedure was also adopted for the mammalian dataset, and performance was shown in 
Table 2. Overall, the performance on the mammalian dataset was much more superior to on the plant dataset 
since the differences of amino acid between positive and negative are more obvious in the mammalian dataset, 
with the lowest accuracy on an individual feature at around 90%. Similar to the plant dataset, EAAC and EGAAC 
achieved the best performances among all features by giving the accuracy of 89% and around 90%, respectively. 
Due to its relatively small scale, the improvement of RF classifier over libsvm is not as outstanding as it has been 
when in plant dataset, but the overall performance of RF has yielded a high level, which not only gives an aver-
age ACC of each feature at around 90% but also AUC higher than 0.90. A comparison of this study and other 
existed tools were listed in Tables 3 and 4.

Performance on selected features. Feature selection based on Chi-square, LGBM and MRMD methods 
are involved in this study. For Chi-square method, We have selected the dimension of value whose p-value, 
which was transformed from Chi-square value, was less than 0.05 be kept for further training. A selection on 
the incorporated feature, which is originally of 3935 dimension, was also carried out, and those p-values less 
than 0.05 were kept, totally 100 dimension of features remained and the performance of selected incorporated 
features are listed in Table 5. Similar to the Chi-square method, the top-100 dimensions of feature in LGBM and 
MRMD methods were also selected. It can be seen that the selection over incorporated features has significant 
improvement in SVM method with accuracy rising from 71 to 74% and AUC from 0.77 to 0.81. For RF, there 
exists some improvement but not as large as shown in SVM, with accuracy improved from 74 to 77%, and AUC 
improved from 0.82 to 0.84. Moreover, in supplementary the performance on selected features of different clas-
sifiers has indicated in Supplementary Tables S4 and S5 for libsvm and RF classifiers respectively.
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Figure 1.  Position-specific amino acid composition analysis of crotonylated sequences and non-crotonylated 
sequences in plant dataset. (a) Indicates the Position-specific amino acid composition of crotonylated sequences 
in plant dataset based on the frequency plot of WebLogo. (b) Shows the Comparison of position-specific amino 
acid composition between crotonylated sequences in plant dataset (upper part) and crotonylated sequences 
in mammalian dataset (lower part) based on TwoSampleLogo. (c) Indicates the Position-specific amino acid 
composition of crotonylated sequences in mammalian dataset based on the frequency plot of WebLogo. (d) and 
(e) Shows the statistics of each amino acid composition (AAC) in plant and mammalian dataset respectively. 
From (d) it can be seen that large differences exist in the composition of K, E and S in plant dataset, and from (e) 
great differences exist among the composition of K, L, A, D, E and N in the dataset of mammalian.
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Besides that, we have also carried a cross-species evaluation, which is to apply the trained classifier that 
obtained from the plant dataset onto the mammalian dataset, which can reflect that whether anything in com-
mon between these two species in crotonylation. The reason for using plant dataset as training set is due to its 
larger quantity of plant dataset. The steps in this cross-species evaluation are the same as previous training and 
testing procedures, but employed the whole mammalian dataset as the testing set this time. As shown in Table 6, 
the performance is not very promising, with most of the accuracy below the average rate of 50%. That is under-
standable as there are obviously differences that exist in the amino acid composition between species plant and 
mammalian(like what has been proposed in Fig. 2), which shows the species diversity.

Methods
A flowchart of this study was presented in Fig. 2, which contains four main steps: data collection and preprocess-
ing, feature investigation, model training and evaluation and final independent test. The two datasets collected for 
the later process are listed in Supplementary Table S2 in supplementary materials, where the number of protein 
and sites in each dataset are shown. After obtaining these datasets, different types of sequence-based feature 
were extracted to encoding the sequences to multidimensional vectors for later training. Then, ten-fold cross-
validation was utilized for evaluating the performances of predictors obtained from different machine learning 

Table 1.  Performance on plant dataset. aStands for the combination of each single feature, which means AAC 
+ AAPC + BE + CKSAAP + EAAC + EGAAC + PSSM.

Features Dimension Dataset Classifier Sn Sp Acc MCC

AAC 20 Plant libsvm 0.69 0.61 0.65 0.31

AAPC 400 Plant libsvm 0.64 0.68 0.66 0.33

BE 620 Plant libsvm 0.69 0.63 0.66 0.33

CKSAAP 1600 Plant libsvm 0.65 0.67 0.66 0.32

EAAC 540 Plant libsvm 0.68 0.72 0.71 0.40

EGAAC 135 Plant libsvm 0.74 0.66 0.70 0.40

PSSM 620 Plant libsvm 0.71 0.48 0.60 0.20

Incorporateda 3935 Plant libsvm 0.74 0.72 0.73 0.41

AAC 20 Plant RF 0.68 0.60 0.64 0.28

AAPC 400 Plant RF 0.58 0.69 0.64 0.28

BE 620 Plant RF 0.73 0.63 0.68 0.36

CKSAAP 1600 Plant RF 0.60 0.68 0.64 0.28

EAAC 540 Plant RF 0.83 0.70 0.77 0.54

EGAAC 135 Plant RF 0.82 0.69 0.75 0.51

PSSM 620 Plant RF 0.70 0.60 0.65 0.31

Incorporateda 3935 Plant RF 0.85 0.73 0.79 0.57

Table 2.  Performance on mammalian dataset. aStands for the combination of each single feature, which 
means AAC + AAPC + BE + CKSAAP + EAAC + EGAAC + PSSM.

Features Dimension Dataset Classifier Sn Sp Acc MCC

AAC 20 Mammalian libsvm 0.90 0.87 0.88 0.76

AAPC 400 Mammalian libsvm 0.98 0.76 0.87 0.75

BE 620 Mammalian libsvm 0.83 0.93 0.88 0.76

CKSAAP 1600 Mammalian libsvm 0.92 0.81 0.86 0.73

EAAC 540 Mammalian libsvm 0.90 0.89 0.89 0.78

EGAAC 135 Mammalian libsvm 0.90 0.93 0.91 0.83

PSSM 620 Mammalian libsvm 0.98 0.91 0.94 0.85

Incorporateda 3935 Mammalian libsvm 1.0 0.85 0.92 0.86

AAC 20 Mammalian RF 0.93 0.87 0.89 0.79

AAPC 400 Mammalian RF 0.89 0.76 0.82 0.65

BE 620 Mammalian RF 0.93 0.87 0.89 0.79

CKSAAP 1600 Mammalian RF 0.93 0.81 0.86 0.73

EAAC 540 Mammalian RF 0.93 0.87 0.89 0.79

EGAAC 135 Mammalian RF 0.92 0.88 0.90 0.80

PSSM 620 Mammalian RF 0.94 0.91 0.92 0.83

Incorporateda 3935 Mammalian RF 0.90 0.82 0.86 0.79
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methods. Finally, the classifier with the best predictive performance was further evaluated by an independent 
testing dataset. Details are described in the following sections.

Data collection. In this study, one species of dataset used for the investigation of mammalian is from Uni-
versal Resource of Protein (UniProt) is for the investigation of the species mammalian, which contains 65 his-
tone protein with 378 crotonylation  sites23. Another dataset of the plant (Carica papaya L.) contains 5995 cro-
tonylation sites located at 2120 non-histone protein sequences, which is available at http://www.bioin fogo.org/
pkcr/downl oad.php17,18.

To construct positive dataset for modeling, CD-HIT of threshold 30% were used for removing homologous 
protein sequences first as for high similarity of sequence may cause over-fitting in the training process. (2n + 
1)-mer window size was segmented to extract fragmented sequences centered on the crotonylation sites with n 
neighbored amino acids upstream and downstream. The negative dataset was generated from non-crotonylation 
sites, on which those segmented sequences are centered on lysine residues without crotonylation annotation. 

Table 3.  Performance comparison between our method and existing available crotonylation site prediction 
tools (pKcr). The above comparison indicates that our study is more robust and gives a more balanced 
performance than the pKcr method.

Features Dataset Tool Accuracy Sensitivity Specificity MCC AUC 

AAC Non-histone
pKcr 0.83 0.21 0.90 0.10 0.67

This method 0.64 0.60 0.68 0.28 0.68

CKSAAP Non-histone
pKcr 0.83 0.22 0.90 0.11 0.68

This method 0.64 0.60 0.68 0.28 0.71

BE Non-histone
pKcr 0.84 0.33 0.90 0.19 0.74

This method 0.68 0.73 0.63 0.36 0.77

EAAC Non-histone
pKcr 0.85 0.42 0.90 0.27 0.81

This method 0.77 0.83 0.70 0.54 0.84

EGAAC Non-histone
pKcr 0.85 0.42 0.90 0.25 0.81

This method 0.77 0.83 0.70 0.51 0.82

Table 4.  Performance comparison between our method and other two existing tools (CKSAAP_CrotSite and 
iKcr-PseEns). The above comparison indicated that our study works competitively good as these two published 
work.

Dataset Method Classifier Feature Sn Sp Acc MCC AUC 

Mammalian
CKSAAP_CrotSite libsvm CKSAAP 0.92 0.99 0.98 0.92 0.99

This paper libsvm CKSAAP 0.92 0.81 0.86 0.73 0.94

Mammalian
iKcr-PseEns Ensemble Random Forest PseAAC 0.90 0.95 0.94 0.81 0.97

This paper Random Forest PseAAC 0.93 0.87 0.89 0.79 0.95

Table 5.  Comparison of performance before and after feature selection method in the incorporated feature. 
Here ‘original’ corresponds to the incorporated feature, which is AAC + AAPC + BE + CKSAAP +EAAC + 
EGAAC + PSSM, of 3935 dimension. ‘Chi-square’ corresponds to the selected top-100 dimension of features 
after selection in Chi-square method, ‘LGBM’ corresponds to the selected top-100 dimension of features based 
on LGBM feature selection method, ‘MRMD’ corresponds to the selected top-100 dimension of features based 
on MRMD feature selection method.

Selection method Number of features Classifier Sn Sp Acc MCC AUC 

Original 3935

svm

0.74 0.71 0.73 0.43 0.78

Chi-square 100 0.77 0.70 0.74 0.47 0.81

LGBM 100 0.77 0.75 0.76 0.45 0.83

MRMD 100 0.75 0.73 0.74 0.45 0.84

Original 3935

RF

0.83 0.65 0.74 0.49 0.82

Chi-square 100 0.84 0.70 0.77 0.55 0.84

LGBM 100 0.85 0.72 0.78 0.54 0.84

MRMD 100 0.83 0.70 0.76 0.55 0.83

http://www.bioinfogo.org/pkcr/download.php
http://www.bioinfogo.org/pkcr/download.php
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31-mer window size, where n = 15, was chosen after performing best for predicting of crotonylation sites based 
on the basic feature amino acid composition. Those sequences of length less than 31 amino acid compositions 
or those contain uncertain composition were filtered out, and a total of 3453 positives and 37,134 negatives seg-
ment sequences were obtained for plant dataset, and 379 positives and 500 negatives for mammalian dataset. 
Among each dataset, 80% and 20% were divided for training and testing dataset, respectively. Here 2548 posi-
tive and 26,859 negative sites in the training set of plant dataset, and 669 positives and 6720 negatives for the 
testing set. For the mammalian dataset, 167 positives and 388 negatives in the training set, and 44 positives and 
95 negatives in the testing set. Both of these two datasets are very imbalanced in positive and negative, which 
would cause the performance of cross validation  biased24, random under sampling method were employed in 
the training step, after which these two datasets contain equal-sized positive and negative sites in their training 
set, which means 2548 positive and 2548 negative samples in the plant dataset, 167 positive and 167 negative 
samples in the mammalian dataset.

Feature extraction. In this study, sequence-based characterization of crotonylation were carried out. 
Sequence-schemed features were extracted, typically amino acid composition (AAC), amino acid pair composi-
tion (AAPC), binary encoding (BE), composition of k-spaced amino acid pair (CKSAAP), enhanced amino acid 
pair (EAAC), enhanced group amino acid pair (EGAAC) and position specific scoring matrix (PSSM)25.

AAC . AAC indicates the frequency of each amino acid occurs in a sequence. As there are 20 types of amino 
acid in a protein sequence, the dimension of an AAC feature is 20. For the sequences x, which is of fixed length 
n ( n = 31 in this study), the probability Px(k) of amino acid k is

where nx(k) refers to occurrence of amino acid k. The figure of position-specific amino acid in both the plant 
and the mammalian dataset has been indicated previously in Fig. 1d,e.

AAPC. Similar to AAC, AAPC shows the frequency of each amino acid pair occurs in the sequence. There are 
totally 20 types of amino acid in protein, hence 20× 20 types of amino acid pairs available, so the dimension of 
AAPC feature should be 400. The probability Px(k) of amino acid pair in a sequence x is

where nx(k) is the occurrence of amino acid pair k. The figure of position-specific amino acid pairs in both the 
plant and the mammalian dataset has been indicated previously in Supplementary Fig. S6.

Binary encoding. Binary encoding is a straightforward way to encoding features, which is also known as 
“one-hot” encoding. Each amino acid corresponds to a vector of length 20 as there are possibly 20 types of 
amino acid in a protein sequence as mentioned. These 20 types of amino acid are sorted in a certain order, in 
this study alphabetic order, which is ‘ACDEFGHIKLMNPQRSTVWY’, was adopted as the target vector. For 
instance, ‘A’ will be reflected as a 20-dimensional vector ‘10000000000000000000’ (19 zeros here) and ‘C’ will be 
‘01000000000000000000’(18 zeros after the digit ‘1’) etc. As an amino acid will be converted to a 20-dimensional 
vector, the output feature of binary encoding in this study should be 620 dimensional.

Px(k) =
nx(k)

n
,

Px(k) =
nx(k)

n ∗ (n− 1)
,

Table 6.  Performance of cross-species evaluation. In this evaluation, the plant dataset were treated as the 
training set and mammalian dataset as the testing set.

Training set Feature Validation set Classifier Sn Sp Acc MCC AUC 

Plant AAC Mammalian SVM 0.48 0.51 0.49 − 0.02 0.54

Plant AAPC Mammalian SVM 0.11 0.57 0.34 − 0.36 0.30

Plant BE Mammalian SVM 0.44 0.36 0.40 − 0.20 0.55

Plant CKSAAP Mammalian SVM 0.26 0.54 0.40 − 0.20 0.39

Plant EAAC Mammalian SVM 0.48 0.70 0.59 0.19 0.45

Plant EGAAC Mammalian SVM 0.28 0.74 0.51 0.02 0.45

Plant PSSM Mammalian SVM 0.15 0.55 0.35 − 0.33 0.35

Plant AAC Mammalian RF 0.16 0.65 0.41 − 0.21 0.45

Plant AAPC Mammalian RF 0.19 0.66 0.43 − 0.16 0.45

Plant BE Mammalian RF 0.40 0.625 0.51 0.02 0.53

Plant CKSAAP Mammalian RF 0.48 0.60 0.54 0.08 0.59

Plant EAAC Mammalian RF 0.42 0.70 0.56 0.13 0.64

Plant EGAAC Mammalian RF 0.33 0.71 0.52 0.05 0.63

Plant PSSM Mammalian RF 0.21 0.68 0.45 − 0.14 0.47
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CKSAAP. CKSAAP is a criterion which is wildly used in the field of analysing of protein functions. When 
an integer k has been fixed, the number of k-spaced amino acid pair will be determined as containing the case 
that the gap between two neighbored amino acid ranges from 0 to the given integer k. CKSAAP indicates the 
frequency of amino acid pairs separated by any k composition. In this study k was chosen to be 4, which should 
contain the cases that k ranges from 0 to 4, meanwhile, as CKSAAP gives the same result as AAPC when k 
equals to 0, only cases in which k ranges from 1 to 4 are considered in this study, totally given 1600 dimension 
of feature for a single sequences. Supplementary Fig. S7a shows the general processing of CKSAAP generation, 
the comparison of CKSAAP in positive and negative samples of the plant and the mammalian dataset has been 
indicated in Supplementary Figs. S8 and S9 respectively in supplementary materials.

EAAC . EAAC was first raised by Chen in  201825, where the AAC values are calculated based on the sequence 
window of fixed length (in this study, 5 was chosen) that continuously slides from the N- to C-terminus of each 
peptide. EAAC is calculated by

where

f (t, composition) =
N(t, composition)

N(composition)
,

Figure 2.  Flowchart of this paper. Four main steps contained: data collection and preprocessing, feature 
investigation, model training and evaluation and independent test.
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in this study, there are 27 composition possible for each sequence, so totally the EAAC will give a 540 dimensional 
feature for each sequence. Supplementary Fig. S7b has shown the illustration of EAAC feature.

EGAAC . EGAAC is an enhanced feature of Group Amino Acid Composition, which was first raised by Lee 
in  201126, where the 20 types of amino acid are further categorized into five classes according to their physico-
chemical properties, such as hydrophobicity, charge and molecular size(detailed list shown in Supplementary 
Table.S3). The calculation method of EGAAC is similar to EAAC, but focuses on the pair-wised amino acid in 
each group, which is:

where

Here N(g, win) is the number of amino acids in group g within the sliding window composition and 
N(composition) is the size of sliding window. We have the number of composition equals to 27 as mentioned in 
EAAC part, hence each feature for EGAAC will give a 135 dimensional vector.

PSSM. PSSM is the short for Position Specific Scoring Matrix, which is a feature from the structural viewpoint, 
and has been extensively applied in the field protein secondary structure  prediction27, subcellular  localization28 
and other bioinformatics  analysis29.

As shown in Supplementary Fig.s8, PSSM profile of each sequence, which was generated by performing PSI-
BLAST against the dataset of non-homologous crotonylated peptides, was composed of a matrix with win ∗m 
elements, where win stands for the sequence length, m represents 20 types of amino acids. The PSSM profile 
matrix can be shown as:

Then the w ∗m matrix was transformed into a matrix with 20× 20 features Sx(i, j) , where i and j range from 1 to 
20, by summing up the rows that were involved in the same type of amino acid i. The feature matrix is indicated 
as:

Finally, each element in the feature matrix PSSMx was normalized using a Sigmoid  function30, and �(x) can be 
written as:

w = 31 amino acid of each sequence in this study, so the sequence length ranges from −15 to +15 in this study.

Feature selection. For the aim of improving prediction performance and removing redundant features for 
speeding up the prediction process, feature selection is a phase which is of paramount importance. In the feature 
selection procedure, each dimension of the feature vectors was ranked according to certain criterion of “impor-
tance”, then those are of lower “importance” would be deleted, then the feature vector will be of lower dimension 
but higher importance, which is more information-rich than the original encoding feature. In this study, the 
Chi-square value method and the light gradient boosting machine(LGBM) feature selection method are listed.

In the ranking step of the Chi-square value method in this study, Chi-square value of each feature was calcu-
lated, then according to the Chi-square value, p-value for each dimension of the individual feature was obtained 
and whose p-value greater than 0.05 was removed. This selection was taken on each feature for deleting those 
redundant dimensions in each type of feature. 15 out of 20 dimensions of AAC, 80 out of 400 from AAPC, 55 
out of BE, 80 out of 1600 from CKSAAP, 100 out of 540 from EAAC, 93 out of 135 from EGAAC and 101 out 
of 620 from PSSM were selected.

LGBM is a highly efficient gradient boosting decision tree, suitable for scenarios with large amounts of data 
and high-dimensional  features31. The embedded approach is similar to the wrapper approach but seeks the 
optimal features subset by a built-in classification  algorithm32. In this work, the LGBM  wrapper31 was used for 
feature selection. Its purpose was to feed the LGBM model with training data and to determine and rank the 
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N(composition) ⊆ {composition1, composition2, ...compositionN}

f (p, composition) =
N(p, composition)

N(composition)
,

p ⊆ {group1, group2, ..., group5},
composition ⊆ {composition1, composition2, ...compositionN}.

ProfileX =







Px,−15(1) · · · Px,+15(m)

.

.

.
.
.
.

. . .
.
.
.

Px,+15(1) · · · Px,+15(m)






.

PSSMx =







Sx,−15(1) · · · Sx,+15(m)

.

.

.
.
.
.

. . .
.
.
.

Sx,+15(1) · · · Sx,+15(m)






.

�x(i, j) =
1

1+ exp
−Sx(i,j)

w



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20447  | https://doi.org/10.1038/s41598-020-77173-0

www.nature.com/scientificreports/

feature importance values, in order to select those features with importance values greater than the average. 
This step used the python toolkit from https ://light gbm.readt hedoc s.io33. Based on LGBM method, 10 out of 20 
dimensions of AAC, 70 out of 400 from AAPC, 65 out of BE, 85 out of 1600 from CKSAAP, 109 out of 540 from 
EAAC, 87 out of 135 from EGAAC and 120 out of 620 from PSSM were selected.

For both Chi-square method and LGBM method are mainly focused on the improvement of the classification 
accuracy, the stability of dimension reduction may be ignored, then we have enrolled Max-Relevance-Max-
Distance (MRMD) feature ranking  method34, which balances accuracy and stability of feature ranking and 
prediction task. For this method, it computes the maximum-relevance-maximum-distance of each dimension. A 
Java-based package from http://lab.malab .cn/soft/MRMD/conta ct.html can be found for the ranking  process34,35. 
In MRMD method, the selection model type can be selected among three options: rf, SVM and bagging, in this 
study rf was chosen.Another parameter, which is the distance function used in this method of calculation, could 
be selected among 1 for Euclidean distance, 2 for Cosine distance, 3 for Tanimoto distance and 4 for mean. In 
this study, 1 for Euclidean distance was chosen. Based on MRMD method, different dimensions of selected 
features were tried, among which the best-performed cases in every attribute were kept. In that case, 16 out of 
20 dimensions of AAC, 73 out of 400 from AAPC, 45 out of BE, 220 out of 1600 from CKSAAP, 150 out of 540 
from EAAC, 100 out of 135 from EGAAC and 150 out of 620 from PSSM were selected.

For the reason that some features might of higher importance than others, for instance, some dimensions in 
EGAAC might of higher Chi-square values than some dimensions in AAC. Considering that, the selection of the 
total incorporated feature has been carried out. The incorporated feature is of dimension 20 (AAC) + 620 (BE) + 
1600 (CKSAAP) + 540 (EAAC) + 135 (EGAAC) = 3935, and then those of top-100 Chi-square value dimensions 
were kept afterwards as these 100 dimensions are of p-value less than 0.05. Similar to the Chi-square method, 
top-100 features from LGBM and MRMD method are also selected. The statistics of selection of incorporated 
feature are shown on Supplementary Fig. S3–S4.

After feature selection we have efficiently reduced the dimension of features and improvement in perfor-
mance. In Supplementary Table S1–S6 of supplementary materials, performances of the three feature selection 
methods are attached.

Model construction. This study involves machine learning method is the prediction of crotonylation. Sup-
port vector machine (SVM) and Random Forest (RF) methods are adopted.

As a classical machine learning method, SVM is the most-often-used method for classification problems 
which are of enough data but not as plenty as required for deep learning method. It is a supervised learning 
method which was first proposed in 1963 by Vapnik and Lerner in the field of pattern  recognition36. After 
developed in decades, it is still the top-used machine learning method in binary-class-division. SVM is based 
on associated learning algorithms using regression analysis to classify  data37, the main idea is to find a boundary 
which can separate samples into different parts.

In this study, the SVM with radial basis function (RBF) kernel was adopted. Penalty parameter C was selected 
from set {20, 21, 22, . . . , 210} and the kernel parameter γ was selected from set {2−10

, 2
−9

, 2
−8

, . . . , 20} by grid 
searching. The SVM classifier was developed by using the python module ‘sklearn’38.

RF method is another wildly-adopted method in the field of machine learning, which was first proposed in 
2001 by Breiman,  L39. It is a combination of tree predictors such that each tree depends on the values of a random 
vector sampled independently and with the same distribution for all trees in the forest. RF is more advanced than 
traditional machine learning method as it can work efficiently in more complicated cases and gives out a more 
balanced result when imbalanced dataset provided. The training process of RF was by setting the tree number 
from set {1400, 1600, 1800, ..., 2400} , and it is also implemented based on python module ‘sklearn’38.

Performance evaluation. In the generation of machine learning classifier, the k-fold cross-validation was 
employed to evaluate their predictive performances. When implementing k-fold cross-validation, all the train-
ing data, including positive and negative sequences, were randomly clustered into k equal-sized subgroups. After 
that k-1 of them shall be regarded as the training sample and the remaining one subgroup was considered as the 
validation sample. In a round of k-fold cross-validation, each of the k subgroups should be considered as the 
validation sample once in turn. In this study, k equals 10 was chosen for the cross validation.

Sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews correlation coefficient (MCC) have been used 
as the metrics to determine the performance of the generated models. The four metrics are defined in terms of 
where TP, FN, TN, and FP denote the instances of true positive, false negative, true negative, and false positives, 
respectively as:

ROC curve is also adopted as an evaluation criterion in this study as a more objective measurement than sen-
sitivity and specificity. The area under curve (AUC) is an important criterion in performance evaluation for 

Sn =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + FP + TN + FN

MCC =
(TP × TN)− (FN × FP)

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

.

https://lightgbm.readthedocs.io
http://lab.malab.cn/soft/MRMD/contact.html
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imbalanced cases. After evaluating the of k-fold cross-validation, the classifier which achieved the best predic-
tive performance was further evaluated by an independent testing dataset that was not included at all in the 
training samples.

Independent test. For generalization evaluation and performance comparison with the baseline method, 
an independent test is necessary to further evaluate of the  performance40. In this study, the testing set was 20% 
non-overlapped part from the whole dataset, which contains 669 crotonylated and 2548 non-crotonylated sam-
ples from the plant dataset, 44 positive and 167 negative from the mammalian set. Moreover, a comparison 
between the existed method and this study in terms of predictive performance was also performed. Besides this, 
a cross-species validation has been involved, in which the classifier obtained from plant dataset was used for 
classification of mammalian samples, to see whether the classifier for the sample types of PTM which obtained 
from one species would work in another.

Conclusion
Since the release of experiment-verified crotonylation sites in different species has provided more samples in cro-
tonylation database, we have carried out a set of experiments for predicting of crotonylated and non-crotonylation 
sites by using machine learning method, aiming to give a more balanced performance in different species of 
datasets. The methods of classifiers SVM and RF have achieved competitively good performances as existed 
methods in both plant and mammalian datasets, which has filled the gap with no related research on different 
species. In this study, SVM tends to be more efficient in the mammalian dataset as the quantity of mammalian 
samples is relatively small. RF classifier could work much more efficiently than SVM in the plant dataset with 
various kinds of features, especially EGAAC, which has shown great accuracy and robustness in the classifica-
tion task, with accuracy 70%, 90% and AUC 0.84, 0.98 in plant and mammalian dataset respectively. Feature 
selection provided slightly improved and more robust result than the previously proposed method. Besides, a 
cross-species classification task was also involved in this study, to see whether the classifier trained from one spe-
cies of these two employed datasets could work well in the other, which proves the diversity of different species. 
But with the limitation of sample data, on the one hand, the differences between positive and negative samples 
in the perception of position-specific AAC is not quite large in the plant dataset, which makes the performance 
of the plant dataset much lower than on the mammalian dataset. On the other hand, the number of samples of 
these two datasets, is large enough for traditional machine learning method, but not as many as required for 
more advanced study such as deep learning, and that is a reason why those classification methods employed in 
this study are relatively traditional and not that up-to-date methods. However, these drawbacks can be chased 
up when more experiment-verified data released. As if more verified data were released, some advanced deep 
learning methods with neural networks can be employed for further study, also, more features that can reflect 
or even enhance the differences between positive and negative would be used, which can make up the relatively 
low performance caused by the sample components.
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