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ABSTRACT Genetic diversity is often generated during adaptation to stress, and in eukaryotes some of this diversity is thought to
arise via recombination and reassortment of alleles during meiosis. Candida albicans, the most prevalent pathogen of humans,
has no known meiotic cycle, and yet it is a heterozygous diploid that undergoes mitotic recombination during somatic growth. It
has been shown that clinical isolates as well as strains passaged once through a mammalian host undergo increased levels of re-
combination. Here, we tested the hypothesis that stress conditions increase rates of mitotic recombination in C. albicans, which
is measured as loss of heterozygosity (LOH) at specific loci. We show that LOH rates are elevated during in vitro exposure to oxi-
dative stress, heat stress, and antifungal drugs. In addition, an increase in stress severity correlated well with increased LOH
rates. LOH events can arise through local recombination, through homozygosis of longer tracts of chromosome arms, or by
whole-chromosome homozygosis. Chromosome arm homozygosis was most prevalent in cultures grown under conventional lab
conditions. Importantly, exposure to different stress conditions affected the levels of different types of LOH events, with oxida-
tive stress causing increased recombination, while fluconazole and high temperature caused increases in events involving whole
chromosomes. Thus, C. albicans generates increased amounts and different types of genetic diversity in response to a range of
stress conditions, a process that we term “stress-induced LOH” that arises either by elevating rates of recombination and/or by
increasing rates of chromosome missegregation.

IMPORTANCE Stress-induced mutagenesis fuels the evolution of bacterial pathogens and is mainly driven by genetic changes via
mitotic recombination. Little is known about this process in other organisms. Candida albicans, an opportunistic fungal patho-
gen, causes infections that require adaptation to different host environmental niches. We measured the rates of LOH and the
types of LOH events that appeared in the absence and in the presence of physiologically relevant stresses and found that stress
causes a significant increase in the rates of LOH and that this increase is proportional to the degree of stress. Furthermore, the
types of LOH events that arose differed in a stress-dependent manner, indicating that eukaryotic cells generate increased genetic
diversity in response to a range of stress conditions. We propose that this “stress-induced LOH” facilitates the rapid adaptation
of C. albicans, which does not undergo meiosis, to changing environments within the host.
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Stress-induced mutagenesis fuels the evolution of bacterial patho-
gens, resistance to antibiotics, tumor progression, and resistance

to chemotherapy, all of which occur under stress and are driven by
genetic changes (reviewed in references 1 and 2). Although initially
controversial because of a lack of distinction between the stress con-
ditions and the conditions used to select for the mutations, the idea
that stress-induced mutagenesis induces a hypermutagenic state in
subpopulations of bacterial cells is now widely accepted (2). Several
studies in Escherichia coli and Saccharomyces cerevisiae focused on
genome alterations leading to adaptation in starving or aging cells (3).
Importantly, in subsequent starvation episodes, organisms carrying
stress-induced genomic rearrangements exhibited a fitness advantage
relative to the parental strain (4).

Loss of heterozygosity (LOH) reveals genetic variability in dip-
loid organisms by exposing the phenotypes associated with reces-
sive alleles and often has detrimental outcomes for an organism.

For example, LOH is a prerequisite for the initiation and the de-
velopment of cancer (5) via inactivation of tumor suppressor
genes (two-hit hypothesis) (6); indeed, LOH has been associated
with breast (7), skin (8), and colorectal (9) cancer. In addition,
allele-specific gene expression or allelic imbalance plays a critical
biological role in human variability (10). Finally, increased re-
combination in response to stress (fitness-associated recombina-
tion [FAR] [11, 12]) is thought to promote the evolution of com-
plex traits by accelerating the rate of adaptation (13).

LOH events may reveal genetic diversity that affects fitness un-
der stress conditions and/or unstressed conditions. The extent of
LOH can range from short LOH tracts that form via gene conver-
sion or double crossovers to long LOH tracts which arise via a
single crossover event or by nonreciprocal events such as break-
induced replication (BIR), and generate a region of homozygosity
extending from the site of recombination to the telomere.

RESEARCH ARTICLE

July/August 2011 Volume 2 Issue 4 e00129-11 ® mbio.asm.org 1

mbio.asm.org


Whole-chromosome (whole-Chr) LOH, a product of chromo-
some nondisjunction that most frequently occurs because of de-
fects in centromere/kinetochore/mitotic spindle function, usually
results in aneuploidy, an imbalance in the number of chromo-
somes. Most aneuploid strains grow less well than their euploid
parental strain. However, under specific stress conditions such as
extreme temperature, nutrient shortage, and exposure to chemo-
therapeutic (14) or antifungal (15–17) drugs, some aneuploidies
provide a strong fitness advantage. Strains monosomic for a spe-
cific chromosome often undergo reduplication of the remaining
homolog, yielding a disomic, homozygous chromosome (18). If
the two alleles in the heterozygous parental strain provide a dif-
ferential benefit under a given stress, cells that retain the more
beneficial allele after LOH may exhibit a growth advantage over
cells that do not undergo LOH.

Candida albicans is a commensal fungus that resides in the
human oral cavity, the gastrointestinal tract, and the genitouri-
nary tract. Within the host, it competes with other microbes for
nutrition in different body niches and adapts to different temper-
atures, different pH ranges, and different levels of oxidative stress,
for example, when it encounters immune cells such as phagocytes
(for a review, see reference 19). Under conditions of weakened
immunity or imbalance in the commensal flora, C. albicans be-
comes an opportunistic pathogen with a disease spectrum ranging
from mild superficial infections, such as oral thrush and vaginitis,
to severe, life-threatening bloodstream infections such as dissem-
inated candidiasis. These different candidal infections involve col-
onization of, and thus adaptation to, different host environmental
niches and growth conditions, including elevated temperatures in
the febrile host. Treatment with antifungal drugs is sometimes
accompanied by the rapid acquisition of drug resistance, which
can arise by chromosome rearrangements and/or chromosome
missegregation (15, 16).

How C. albicans adapts to abrupt changes in environmental
conditions is not well understood. C. albicans is a highly heterozy-
gous diploid that reproduces primarily via mitotic division (20,
21). It possesses a mating locus (MAT) (22) and undergoes a para-
sexual cycle, in which diploids mate (23, 24) to form tetraploids
that subsequently undergo “concerted chromosome loss,” pro-
ducing near-diploid progeny that are often trisomic and/or ho-
mozygous for one or more whole chromosomes. Multiple short-
range recombination events occur within a subset of parasexual
progeny, yielding recombinant chromosomes (25, 26). Ho-
mothallic mating further enriches the repertoire of routes that
C. albicans can use to generate the wide range of genetic diversity
observed in clinical isolates (27–29). Importantly, since no meio-
sis has been detected in C. albicans, genetic diversity is assumed to
arise only via mitotic events.

In C. albicans, LOH events, as well as whole-Chr and segmental
aneuploidies, have been observed in strains growing under selec-
tion for antifungal drug resistance (15–17). For example, homozy-
gosis of hyperactive alleles of positive regulators of drug efflux
pumps (15, 30) or of genes encoding drug targets, such as ERG11
(31), or increased copy numbers of these genes provide a selective
advantage in the presence of these drugs (32). In contrast, growth
on poor carbon or nitrogen sources sometimes selects for LOH
due to loss of whole chromosomes or chromosome segments (18,
33).

In C. albicans, little is known about the frequency of genetic
changes that arise spontaneously and whether the rate of appear-

ance of those changes is affected by exposure to stress. Further-
more, rates of spontaneous LOH have been measured only at one
genomic locus (GAL1) (34, 35). Since the types of events that arise
at different loci are often influenced by local features of the DNA
(e.g., proximity to direct or inverted repeats or transposons can
lead to gross chromosomal rearrangements, chromosome aberra-
tions, and overall genome instability in S. cerevisiae [36–38]), it is
important to determine both the rates and the types of LOH
events that occur most frequently and to ask if there are chromo-
some regions with especially high or low rates of LOH in general.
Furthermore, since candidal infections are treated with antifungal
drugs and antifungal drug resistance can cause significant clinical
complications, it is important to understand how C. albicans cells
respond to physiologically relevant stresses, including antifungal
drug stress.

Here, we measured rates of LOH and the distribution of types
of LOH events that appeared in the absence and in the presence of
physiologically relevant stresses. Importantly, we found that stress
affected the rates and types of LOH events in a manner that was
proportional to the degree of stress. Thus, it appears that C. albi-
cans generates increased genetic diversity in response to a range of
stress conditions but that it employs more than one mechanism to
do so.

RESULTS
Establishment of a system to measure LOH rates and types in
Candida albicans. We first set out to measure LOH rates at a
number of different loci. A critical issue in the measurement of
LOH rates is that selection pressure for the marker used should
not influence the interpretation of results. We used two counter-
selectable markers, which greatly facilitate the detection of rare
events (39): GAL1 (34, 40), which we were able to use only at its
native locus on Chr1, and the URA3 marker, which could be in-
serted at different loci across the genome. We asked if marker
selection affected rates using strain YJB9318, in which one copy of
GAL1 was replaced with the URA3 gene. LOH rates calculated for
each marker were very similar (see Fig. S1A in the supplemental
material), indicating that the two different selection conditions
could be used interchangeably and that they did not exert any
obvious bias on the LOH rate.

In S. cerevisiae and in limited analyses in C. albicans, LOH is
influenced by chromosomal position, including proximity to cen-
tromeres (39, 41). We used 18 different strains, each one heterozy-
gous for URA3 at a different locus, with each chromosome arm
represented at least once (Fig. 1C; also see the supplemental ma-
terial). We then compared LOH rates across the genome and as a
function of distance from the centromere and other genome fea-
tures. LOH rates were similar between independent isolates car-
rying the same marked locus but were different between different
marked loci, with LOH rates ranging from ~10�6 to ~10�7/cell
division (Fig. 1D; also see Table S1 in the supplemental material).
LOH rates at different loci generally correlated with increased dis-
tance from the centromere (R2 � 0.3, Fig. S2A) and did not cor-
relate with the distance of the loci from the nearest major repeat
sequence (Fig. S2B). The most obvious outlier was the ERG13
locus, which is on the right arm of ChrR adjacent to the rDNA
repeats (Fig. 1C; Table S1). This is consistent with the results of
Andersen et al. (39), who found nonstereotypical LOH rates for
loci near the rDNA repeats in S. cerevisiae. Importantly, the rate of
reversion of a point mutation in C. albicans (Fig. 1B; also see the

Forche et al.

2 ® mbio.asm.org July/August 2011 Volume 2 Issue 4 e00129-11

http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
mbio.asm.org


supplemental material) was 5.9 � 10�10 (� 2.1 � 10�10) per
generation, which is much lower than rates of LOH measured in
this study (see Discussion).

We next determined the types of LOH events using whole-
genome single nucleotide polymorphism (SNP) microarray anal-
ysis for a set of 21 isolates derived from YJB9318 (GAL1/gal1::
URA3) (34) (Fig. 2A). All 21 Gal� isolates exhibited alterations on

Chr1. Importantly, no SNP changes were detected on other Chrs.
Long LOH tracts involving homozygosis of Chr1L, including SNP
loci starting between GAL1 and CEN1 and extending to the left
telomere (Fig. 2C), were most common. Short LOH tracts sur-
rounding and including the GAL1 locus were less frequent, and
only one example of whole-Chr LOH was detected (Fig. 2C).

Since the SNP microarray analysis described above detected
only changes on Chr1 (the marked chromosome), we next ana-
lyzed types of LOH events that arose at 8 different loci using 4
SNP-RFLP (restriction fragment length polymorphism) markers
located on the same Chr as the URA3 marker that had been lost
(42) (Fig. 2B). For each locus studied, we collected 24
5-fluoroorotic acid-resistant (5-FOAr) isolates taken from the 20
independent cultures used to determine LOH rates. When SNP-
RFLP markers were distal to the marker that underwent LOH (as
they were for URA3 inserts on Chr1, -4, -5, and -6), the analysis

FIG 1 Determination of LOH and point mutation rates. (A) Configuration of
Chr1 for comparing LOH rates using selection for loss of GAL1 or URA3. One
copy of GAL1 was replaced with URA3. Fluctuation analysis was performed
using selection on either 2-deoxygalactose (2-DOG) or 5-fluoroorotic acid
(5-FOA). (B) Configuration of Chr4 for measuring the rate of point mutations
that revert the his4 G929T point mutation at the native HIS4 locus (18). Fluc-
tuation analysis selected for the appearance of rare His� colonies. (C) Posi-
tions of URA3 insertions (one per strain) used to measure LOH rates. In
addition, the position of ADE2, used for half-sector analysis (strain YJB11848,
which is ade2�/� at the native ADE2 locus), is shown. (D) LOH rates for
markers on all 16 chromosome arms. The distance between the URA3 marker
used and the centromere (CEN) is indicated below.

FIG 2 SNP analysis of LOH types. (A and B) Detection of LOH events using
an SNP microarray (A) and using SNP-RFLP analysis (B). (C) Total propor-
tion of each type of LOH event (n � 21 post-fluctuation strains for array
analysis [above] and 15 to 24 isolates per marker for 8 different markers yield-
ing n � 173 post-fluctuation analysis strains for SNP-RFLP analysis of the
URA3-marked chromosome [below]). (D) Percentages of LOH types from
SNP-RFLP analysis at individual Chr arms for the 8 different marked strains
tested (n � 15 to 24 for each strain).
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distinguished between short LOH tracts (LOH of only URA3
and/or URA3 and the marker closest to it), long LOH tracts (loss
of both markers on the same chromosome arm as URA3), and
whole-Chr events (LOH of all SNP markers on the chromosome).
The SNP-RFLP analysis, like the SNP microarray study, found
that long LOH tracts were the most frequent type of LOH event
(Fig. 2C; see also Table S2 in the supplemental material).

Long LOH tracts can arise by reciprocal (single crossovers
[XO]) or nonreciprocal (BIR) recombination. We used half-
sector analysis (see the supplemental material) with a strain car-
rying a heterozygous ADE2 marker (YJB11848) to distinguish be-
tween these two mechanisms (Fig. 3C and D), Interestingly, 88%
of the long-tract LOH events arose by a nonreciprocal mechanism
such as BIR (see Table S3 in the supplemental material). The re-
maining 12% arose by a reciprocal recombination event, most
likely a single crossover (Fig. 3C).

Stress conditions cause elevated rates of LOH and aneu-
ploidy. LOH and aneuploidy are found frequently in strains resis-
tant to azole antifungal drugs (17, 43) and can arise multiple times
in an individual patient (32). Furthermore, at least some aneup-
loidies clearly confer a fitness advantage over the parental strain in
the presence of azoles and, perhaps surprisingly, exert little, if any,
fitness cost in the absence of the drugs (16). In addition, in
S. cerevisiae, while point mutations can increase the fitness of ane-

uploid strains (44), different combinations of aneuploid chromo-
somes also can confer a fitness advantage under different types of
stress conditions (14).

We asked if physiologically relevant stress conditions that
C. albicans regularly encounters in the host (increased tempera-
ture [39°C, mimicking moderate fever in the host], oxidative
stress [hydrogen peroxide, mimicking the production of reactive
oxygen species by the host’s immune cells], or antifungal stress
[fluconazole, the most widely and commonly used antifungal
drug, at subinhibitory concentration]) affected the rate at which
LOH and/or aneuploidy arises. Importantly, because stress con-
ditions can be selective for specific aneuploidies or LOH events,
these analyses were performed using six different parental strains,
three strains with URA3 inserted at different positions on Chr5
and three strains with URA3 inserted on Chr1, -2, or -7 (Fig. 1C;
location of URA3 is indicated by brown boxes with black frame;
see also Table S6 in the supplemental material). Chr 5 has been the
focus of several studies on genome instability (15, 17, 45), and
Chr1 (~3.2 Mbp), Chr2 (~2.2 Mbp), and Chr7 (~0.95 Mbp) were
chosen to account for differences in Chr size that potentially could
influence LOH rates and events. Furthermore, by measuring LOH
rates using several different strains with markers on different
chromosomes, there is less likelihood that selection pressure on a
given gene or chromosome region will affect the general conclu-
sions.

A critical point is that the URA3 marker does not have a known
role in the in vitro survival of C. albicans cells under heat, oxida-
tive, or antifungal stress. In addition, we performed the stress ex-
periments with strain YJB9318, which has URA3 inserted at the
GAL1 locus, and strains were analyzed as described above but with
selection for GAL1 loss (on 2-deoxygalactose [2-DOG]) or URA3
loss (on 5-FOA) after exposure to the stress condition. Impor-
tantly, similar to the results under nonstress conditions, LOH
rates of the two markers under stress conditions were not different
(see Fig. S1A and Table S4 in the supplemental material), and thus
any change in LOH rate is independent of the counterselectable
marker used and can be attributed to the particular stress condi-
tion.

Strikingly, LOH rates were higher under stress conditions than
under unstressed conditions. Fold changes for LOH rates were
variable and yet lower on average for temperature stress (ranging
from a 1- to a 40-fold increase) and intermediate for oxidative
stress (from a 3- to a 72-fold increase). Fluconazole exposure re-
sulted in the most dramatic increases in LOH rate, with up to a
285-fold increase (Fig. 4; see also Table S5 in the supplemental
material). While strain YJB9834 appeared to be an outlier with
respect to LOH rates in all three stresses (Table S5 and Fig. 4),
these differences were not statistically significant (Kruskal-Wallis;
P � 0.45 for each stress). Additional statistical analyses were per-
formed for each stress to determine whether LOH rates are signif-
icantly different between control and stress conditions. While
there was no statistically significant difference observed for tem-
perature stress (U � 54; P � 0.125), for both H2O2 and flucona-
zole stress control LOH rates were statistically different from the
stress LOH rates (U � 0; P � 0.001).

Growth under stress conditions alters the proportion of dif-
ferent LOH events that are recovered. We next analyzed the types
of LOH events that accompanied the loss of URA3 during expo-
sure to stress. For each of the three stress conditions, we analyzed
24 5-FOAr isolates derived from each of the strains carrying a

FIG 3 Half-sector analysis to distinguish reciprocal versus nonreciprocal
LOH events. (A) Configuration of Chr5 in strain YJB11848, which has one
copy of ADE2 inserted on the left arm of Chr5 and distal SNP marker 10080A.
(B) Examples of half-sectored colonies detected on MIN medium supple-
mented with uridine, histidine, and adenine. (C and D) Reciprocal (C) and
nonreciprocal (D) LOH yield half-sectored colonies in which the phenotype of
the white sector is homozygous or heterozygous, respectively. Adapted from
the work of Andersen et al. (39).
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marked locus, using SNP-RFLP analysis. Interestingly, the pro-
portions of short LOH tracts, long LOH tracts, and whole-Chr
LOH differed depending upon the stress condition. In strains ex-
posed to 39°C, a stress that did not cause a statistically significant
increase in LOH rate (see above), the proportion of whole-Chr
LOH increased ~6-fold (Fig. 5A; see also Table S2 in the supple-
mental material). In contrast, in cells exposed to H2O2, the pro-
portion of short LOH tracts increased almost 2-fold (Fig. 5A; Ta-
ble S2). Finally, exposure to fluconazole, which caused the most
dramatic increase in LOH rate, resulted in a ~5-fold increase in the
proportion of whole-Chr LOH (Fig. 5A). The rate of LOH did not
correlate with the type of LOH events seen: both febrile tempera-
ture (no increase in LOH rate) and an azole antifungal (285-fold
increase in LOH rate) resulted in an increased proportion of
whole-Chr LOH. Furthermore, exposure to different stresses trig-
gered different mechanisms of genome alteration: oxidative stress
caused an increased proportion of short LOH tracts, while the
other two stresses caused an increased proportion of whole-Chr
LOH, presumably due to elevated chromosome nondisjunction.

Increased H2O2 stress causes increased LOH rates and is ac-
companied by a shift in LOH types. The effects of stress on LOH
rates in the experiments above appeared to be proportional to the
degree to which cells were stressed (with H2O2 � temperature �
fluconazole, measured as reduction in growth rates and levels of
viability [see Fig. S1B and S2C to S2F in the supplemental mate-
rial]), with the three types of stresses having very different physi-
ological consequences. Thus, we next asked if LOH rates were
directly related to the degree of stress using a single type of stress.
To determine the degree to which H2O2 stress affected cell growth,
we first performed growth curves and fluctuation analysis using a
range of H2O2 concentrations. YJB9318 grew as well as did the
no-stress control at up to 1 mM H2O2 (Fig. S1B), which suggests
that the 0.4 mM stress condition used above (and in several other
C. albicans studies [46, 47]) should be considered a mild stress
condition. Growth decreased at 3 mM H2O2 and stopped com-
pletely at 10 mM H2O2. Fluctuation analysis was performed using
the same H2O2 concentrations as those for the growth curves, and
FUN-1 staining was performed to correct for nonviable cells. Per-
cent dead cells ranged from 0.6% in the no-stress controls to 7% in
10 mM H2O2 (data not shown).

Importantly, the rate of LOH increased linearly with the in-
creased level of H2O2 used (R2 � 0.9) (Fig. 5B). This linear rela-

tionship was also observed for different temperatures and a range
of fluconazole concentrations (see Fig. S2C to S2F in the supple-
mental material). In addition, SNP-RFLP analysis was performed
for 24 5-FOAr isolates after fluctuation analysis for 1 mM, 5 mM,
and 10 mM H2O2 stress to determine the LOH events accompa-
nying URA3 loss. Strikingly, SNP-RFLP analysis revealed a shift in
LOH types from 100% short LOH tracts for no stress and 0.4 mM
H2O2 stress to mostly long LOH tracts for 1 mM, 5 mM, and
10 mM H2O2 stress (Fig. 5C). Since the SNP-RFLP analysis fol-

FIG 5 Effect of stress on types and rates of LOH events. (A) Short-tract,
long-tract, and whole-Chr events are diagrammed above and framed with a
color corresponding to the type: cyan for short-tract, light gray for long-tract,
and lavender for whole-Chr events. (B) LOH rates in cells exposed to different
concentrations of H2O2 (R2 � 0.96). (C) Types of LOH events in cells exposed
to different H2O2 concentrations shift from primarily short-tract events to
primarily long-tract events. Color scheme is as in panel A.

FIG 4 LOH rate fold changes in stressed cells. The graph shows fold increases
in LOH rates in stressed cells for 6 different strains each with URA3 inserted at
a different locus (Fig. 1C; see also Table S6 in the supplemental material). The
y axis shows fold change in LOH rate (note that the y axis is on a logarithmic
scale).

Stress Increases Recombination Rates and Genome Instability

July/August 2011 Volume 2 Issue 4 e00129-11 ® mbio.asm.org 5

http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00129-11/-/DCSupplemental
mbio.asm.org


lowed only two markers per Chr arm, we cannot rule out the
possibility that long LOH tracts were due to two separate short
LOH events. The most parsimonious explanation is that the large
increase in the proportion of these events is due to increases in
single crossovers and/or BIR events. Perhaps, the proportion of
double-strand breaks (DSBs) relative to single-strand nicks in-
creases with increasing H2O2 concentration. Thus, for a single
type of stress, it is clear that increasing levels of stress result in
increased LOH rates and a shift in the types of events that occur.

DISCUSSION

In asexual organisms, mitotic recombination is a major mecha-
nism of genome evolution (48, 49). Here, we exploited the natu-
rally high levels of heterozygosity in C. albicans to measure LOH
events that reveal genetic diversity at the population level. Impor-
tantly, we found that LOH rates increased with increased levels of
stress and that different stress conditions caused increases in dif-
ferent types of LOH events, many of which have been seen in
clinical isolates (reviewed in reference 50) as well as lab isolates
that were passaged through a mammalian host (34). Increasing
rates of LOH in the presence of stress may facilitate the rapid
adaptation of C. albicans populations to changing environments
within the host, and the types of LOH events that arise likely reflect
the stress conditions to which the population was exposed.

Rates and types of LOH in C. albicans. LOH rates measured
here for C. albicans are similar to those reported previously for
S. cerevisiae (39, 51). Similarly, the rate of reversion of a point
mutation in C. albicans was comparable to rates of point muta-
tions in S. cerevisiae, Neurospora crassa, and E. coli (51, 52). Im-
portantly, C. albicans LOH rates are several orders of magnitude
more frequent than point mutation rates. While we do not have
strains that allow us to directly compare point mutation and LOH
rates at the same locus, the data are consistent with the idea that
LOH events are much more frequent than point mutations.

The types of LOH events that arise in C. albicans are indepen-
dent of the marker employed or the method used to identify LOH
events (Fig. 2A to 2C) and yet are locus dependent both in the
absence and in the presence of stress (Fig. 2D). Similarly, in
S. cerevisiae, locus-specific effects on the types of LOH have been
observed (39). Thus, despite the lack of meiosis, C. albicans un-
dergoes a range of recombination events that resemble those seen
in an organism with a conventional sexual cycle.

It is not clear if whole-Chr homozygosis or long LOH tracts
occur more efficiently or whether they provide more benefit (or
less fitness cost) during growth under stress conditions. For exam-
ple, chromosome nondisjunction, which causes whole-Chr LOH,
may be less costly to the cell than activation of the recombination
machinery, which is involved in generating short and long LOH
tracts. In addition, whole-chromosome events may provide a
larger opportunity to provide a selective advantage and yet can
also incur a larger fitness cost (14, 44, 53, 54).

The influence of stress on rates and types of LOH events. Dif-
ferent stress conditions clearly increase the levels of different types
of LOH. We propose that this is directly related to the type of DNA
damage inflicted by the stress condition. Temperature stress
causes chromosome loss (55), as well as aneuploidy (56), and we
speculate that this occurs through a limitation in heat shock pro-
tein chaperones and cochaperones Sgt1, Sti1, and Cdc37, which
have roles in the assembly of functional kinetochores (reviewed in

reference 57) and spindle pole bodies/centrosomes (58) and the
function of mitotic checkpoints (59).

The mechanism by which fluconazole treatment causes whole-
Chr LOH is less obvious. However, fluconazole-resistant (Flur)
strains are often aneuploid (16, 17), consistent with the idea that
fluconazole affects chromosome segregation, either directly or in-
directly. For example, we imagine that alterations in ergosterol
biosynthesis may affect nuclear membrane fluidity, which would
then impact the function of the spindle pole bodies embedded in
the nuclear membrane (reviewed in reference 60) and/or the abil-
ity of cytoplasmic dynein to properly associate with the cortex and
execute proper nuclear separation (61). Such defects would indi-
rectly affect chromosome segregation mechanisms, resulting in
polyploidy and/or aneuploidy.

All organisms are constantly exposed to oxidative stress as a
normal by-product of respiratory metabolism (62, 63). In
S. cerevisiae, oxidative stress caused an increase in double-strand
breaks (DSBs) (64, 65) and a ~10-fold increase in mitotic recom-
bination rates (66). Similarly, H2O2 caused a dose-dependent in-
crease in mutation frequency at the human leukocyte antigen class
A locus in human T lymphocytes (65). We propose that H2O2 in
C. albicans causes increased LOH rates by generating chromo-
some breaks that are repaired by recombination, resulting in the
linear relationship between LOH rate and H2O2 concentration.

Benefits and costs of LOH. The C. albicans genome and pop-
ulation structure suggests that the organism is generally clonal
(20, 21) and, as we show here, gives rise to long LOH tracts during
mitotic growth (Fig. 2D and 5A and C; see also Table S2 in the
supplemental material). Interestingly, a recent study revealed that
the distribution of genetic variation in clinical isolates of S. cerevi-
siae differs from that of environmental isolates (67). Like C. albi-
cans, clinical S. cerevisiae isolates exhibited high levels of heterozy-
gosity, reduced sporulation efficiency, and more efficient
pseudohyphal formation compared to environmental isolates
(67). Strikingly, heterozygous clinical S. cerevisiae isolates had
long LOH tracts, consistent with long periods of clonality pre-
dicted by the facultative asexuality hypothesis (68), where diploid
asexual organisms persist by means of mitotic recombination. Ev-
idence for long-tract LOH events in the evolutionary past also can
be found in C. albicans strain SC5314 (69), as well as in strain
WO-1 (69). Thus, it appears that, as in S. cerevisiae, the stress of
growth within host niches has had an important influence on the
genome structure of C. albicans.

Relevant to this work, C. albicans and other pathogenic Can-
dida species can adapt to very high levels of oxidative stress (70,
71) while S. cerevisiae laboratory strains cannot. It would be inter-
esting to determine if clinical S. cerevisiae isolates, which have
LOH patterns more like those seen in C. albicans, also adapt to
oxidative stress more readily, since adaptation to oxidative stress is
thought to be important for survival of an initial oxidative attack,
as well as for the subsequent establishment of an infection.

While homozygosis of some alleles may provide a fitness ad-
vantage under stress and may not have a major fitness cost as
measured under laboratory conditions (16, 72, 73), the fact that
clinical C. albicans strains carry homozygous regions, and yet
heterozygosity remains prevalent at most loci, implies that there is
an advantage to the maintenance of heterozygosity during growth
in the human host. Whether cells that undergo LOH are eventu-
ally lost from the population or whether they regain heterozygos-
ity through rare mating events (74) remains to be determined.
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MATERIALS AND METHODS
Determination of LOH rates by fluctuation analysis. To measure LOH
rates, fluctuation analysis was essentially carried out as described previ-
ously (56). Briefly, strains were streaked for single colonies on either MIN
(0.67% yeast nitrogen base without amino acids, 2% dextrose, 1.5% agar)
(5-FOA selection) or MIN-Gal (2-DOG selection) with appropriate
amino acids and grown for 2 days at 30°C. For nonstress conditions, 20
independent single colonies each were inoculated into 5-ml liquid yeast
extract-peptone-dextrose (YPD; 1% yeast extract, 1% Bacto peptone, 2%
dextrose, 1.5% agar) cultures and grown for 16 h at 30°C. After 16 h of
growth, cells were pelleted, washed once with distilled water, and resus-
pended in 1 ml distilled water. Appropriate dilutions of each culture were
spotted onto YPD for total cell count and onto 5-FOA to determine the
proportion of cells that lost the URA3 marker (5-FOAr) or onto 2-DOG to
determine the proportion of Gal� cells (2-DOGr). YPD CFU were
counted on day 2, and 5-FOAr colonies were counted on day 3, which is
prior to the time that colonies would have formed “adaptive” mutations
on the 5-FOA medium (75). URA3 and GAL1 loss rates were determined
using the method of the median by Lea and Coulson (76).

Standard deviations were calculated in Excel. A Kruskal-Wallis test
was performed to test if LOH rates at the different genomic loci were
statistically different from each other. For each Chr arm locus, two inde-
pendent transformants were analyzed (see Table S6 in the supplemental
material) and at least two independent fluctuation analyses were per-
formed for each transformant.

Determination of LOH rates under stress. To determine whether
stress alters LOH rates, strains were grown using three different stress
conditions that mimic different host environments: increased tempera-
ture mimicking a mild fever, oxidative stress (hydrogen peroxide [H2O2])
mimicking C. albicans interaction with host immune cells, and antifungal
drug (fluconazole) stress. Twenty cultures, each inoculated with a single
colony, were grown at 30°C in YPD containing 0.4 mM H2O2 or 1 �g/ml
fluconazole for 16 h. For temperature stress, the cultures were grown in
YPD at 39°C for 16 h. In parallel, for each stress experiment, 20 cultures
were grown at 30°C in YPD and served as no-stress controls. Fluctuation
analysis was carried out at least twice for each strain under each condition.
LOH rates were determined as described above. To determine if an in-
crease in severity of a particular stress resulted in increased LOH rates,
fluctuation analysis was performed using a range of H2O2 concentrations
(0.4 mM, 0.6 mM, 0.8 mM, 1 mM, 3 mM, 5 mM, 7 mM, and 10 mM in
strain YJB9318); different temperatures for strains YJB9318, YJB9984, and
YJB9834; and a range of fluconazole concentrations (0 �g/ml, 0.4 �g/ml,
0.8 �g/ml, 1.0 �g/ml, and 1.4 �g/ml for strain YJB9318). LOH rates were
measured as described above, and determination of doubling times,
growth curves, and FUN-1 staining are described in the supplemental
material. A nonparametric Mann-Whitney U test was performed for each
stress to test if LOH rates for stressed conditions were statistically different
from those for unstressed conditions.

Determination of LOH events. SNP microarray analysis was per-
formed as described elsewhere (26). We previously developed an SNP-
RFLP assay for distinguishing short-tract LOH, long-tract LOH, and
whole-Chr LOH events in C. albicans using a set of 32 SNP-RFLP markers,
4 per Chr and 2 markers per Chr arm (42). To distinguish the LOH events
that accompanied the loss of the URA3 marker, for Chr1, -4, -5, and -6, 24
5-FOAr isolates obtained after fluctuation analysis were analyzed by SNP-
RFLP for the chromosome carrying the URA3 marker (42). Briefly, PCR
was performed in 96-well plate format in a total volume of 25 �l with 5�
PCR buffer; 2.5 mM (each) dATP, dCTP, dGTP, and dTTP; 10 �M (each)
primer (see Table S7 in the supplemental material); 0.25 �l e2TAK (Ta-
kara); and 30 ng of genomic DNA (gDNA) using the following conditions:
initial denaturation at 98°C for 3 min; 30 cycles with denaturation at 98°C
for 10 s, annealing at 55°C for 10 s, and extension at 72°C for 1 min; and a
final extension time at 72°C for 5 min. For restriction digests, 5 �l of PCR
product was digested overnight in a total volume of 15 �l with 1 �l re-
striction enzyme, 10� restriction buffer, and 10� bovine serum albumin

(where indicated) at 37°C or 65°C (for details, see Table S7 in reference
42). Digested PCR products were separated in a 3% agarose gel along with
undigested and digested controls, gels were photographed, and restriction
patterns were analyzed.

For details of materials and methods not given here, please see Text S1
in the supplemental material.
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