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Abstract

The gene KRAS is commonly mutated in lung cancer to encode a constitutively active and

oncogenic protein that is well established to initiate and maintain lung tumorigenesis. How-

ever, the remaining wild-type KRAS protein, or the other family members HRAS and NRAS,

can still be activated in the presence of oncogenic KRAS. Moreover, loss of any one of

these three genes has been shown to increase the sensitivity of mice to the carcinogen ure-

thane, which induces Kras mutation-positive early lung lesions. To determine the contribu-

tion of progressively disrupting Hras and Nras genes on urethane lung tumorigenesis, mice

with different combinations of wild-type and null alleles of Hras and Nras were exposed with

urethane and tumor burden was assessed. As previously reported, loss of one allele of Hras

increased the sensitivity of mice to this carcinogen, and this effect was further exacerbated

by the loss of the second Hras allele. However, loss of one or both alleles of Nras failed to

alter tumor burden, either in the absence or presence of Hras, after exposure to urethane.

Additionally, no obvious difference between lung lesions in mice with wild-type versus null

alleles was detected, suggesting that wild-type Ras proteins may exert a tumor suppressive

effects at the time of initiation, although other interpretations are certainly possible. In sum-

mary, these data suggest that in some genetic backgrounds inactivation of different wild-

type Ras genes can have different effects on urethane-induced lung tumorigenesis.

Introduction

Approximately one third of human cancers have an activating mutation in one of the three

RAS genes; HRAS, NRAS, or KRAS [1]. RAS proteins function as molecular switches, alternat-

ing between inactive GDP-bound and active-GTP bound forms [2]. Conversion to the active

GTP-bound state is greatly accelerated by guanine nucleotide exchange factors (GEFs)

that promote the exchange of GDP for GTP, whereas GTPase activating proteins (GAPs)

enhance GTP hydrolysis, reverting RAS proteins back to their inactive GDP-bound state [3].
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Oncogenic mutations in these genes, typically at codons 12, 13, or 61, inactivate the inherent

or GAP-stimulated GTPase activity of the enzyme, thereby rendering RAS constitutively

active. In this state, chronic activation of downstream signaling pathways, including MAPK,

PI3K, and RalGEF, results in uncontrolled cellular proliferation among other effects, driving

tumor formation and growth [4].

KRAS is the most commonly mutated isoform in human cancers, and is well known to both

initiate and maintain a wide spectrum of cancers, but especially pancreatic, colorectal, and

lung cancers [5]. In regards to the latter, approximately 220,000 individuals in the United

States are diagnosed with lung carcinoma each year, making it the second-most commonly

diagnosed type of cancer [6]. Non-small-cell lung carcinoma (NSCLC) is the most prevalent

type of lung cancer, and KRAS is the driving oncogene in about 20 to 30% of these cases [7]. As

such, NSCLC is the cancer in which RAS mutations affect the highest number of individuals.

Therefore, it is important to understand the role that RAS signaling plays in this disease.

Although oncogenic RAS proteins are well appreciated to drive tumorigenesis, the remain-

ing wild-type family members can also be activated in the presence of the oncogenic proteins

[8–12]. The consequences of this activation are complex. In some cases, particularly in models

of early stage cancer, the wild-type isoforms inhibit oncogenic RAS-driven tumorigenesis [8,

13–15]. In contrast, in KRAS-mutation-positive cancer cell lines, wild-type RAS signaling

instead promotes proliferation and tumorigenesis [9–13, 16]. These observations suggest that

wild-type RAS proteins may have temporal, tissue, or other context-dependent effects on

oncogenic RAS-driven tumorigenesis.

With regards to lung cancer, loss of both alleles of wild-type Hras, loss of both alleles of

wild-type Nras, or loss of the remaining wild-type Kras allele, significantly increases the num-

ber of oncogenic Kras-driven lung tumors in mice exposed to the carcinogen urethane [13, 15,

17]. In agreement, the opposite experiment, namely increasing the expression of the remaining

wild-type Kras allele, reduces lung tumorigenesis driven by oncogenic Kras [18]. These find-

ings suggest that in early lung tumorigenesis induced by the carcinogen urethane, the wild-

type Ras genes have tumor suppressive properties.

Since the loss of any of the wild-type Ras genes individually enhances urethane carcinogen-

esis, we explored whether progressive loss of an increasing number of Ras alleles would have

an additive effect at promoting lung tumorigenesis. To this end, we generated littermates with

different combinations of Nras and/or Hras null alleles. These mice were then treated with

the carcinogen urethane to induce Kras mutation-positive lung lesions. We report here that,

consistent with previous findings [13], loss of one allele of wild-type Hras enhanced lung

tumorigenesis in mice treated with the carcinogen urethane, and that this effect was more pro-

nounced when both alleles of Hras were inactivated. Interestingly however, loss of one or both

alleles of wild-type Nras had no significant effects on the number of lung tumors that devel-

oped. Moreover, loss of wild-type Nras did not enhance the numbers of tumors observed in

an Hras-null background. These results suggest the intriguing possibility that there are iso-

form-specific effects of wild-type Ras genes on urethane-induced lung tumorigenesis in some

genetic backgrounds.

Materials and Methods

Generation of mice and genotyping

Hras-/- and Nras-/- mice were obtained from the NCI and Eugenio Santos (University of Sala-

manca, Spain). Hras+/-;Nras+/- mice on a mixed 129/BL6 background were bred to obtain lit-

termates with various combinations of native and null Hras and Nras alleles. Genomic DNA
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isolated from a total of 268 pups was genotyped for Hras and Nras wild-type and null alleles as

previously described [19].

Urethane carcinogenesis

9 to 14 mice per cohort at 7 to 9 weeks of age were intraperitoneally injected with 1 mg/g ure-

thane (Sigma-Aldrich, dissolved in sterile PBS) as previously described [15]. Mice were then

visually monitored for signs of pain, distress, or moribundity (sudden behavioral change, poor

posture or ambulation difficulty, loss of hair coat condition, sudden activity change, painful

facial expressions, neurological disorders, and cardiopulmonary disorders, according to the

Duke University Institutional Animal Care and Use Guidelines) and weighed three times a

week. Animals reaching these endpoints, or exhibiting at 15% reduction in weight were to be

euthanized. However, no mouse exhibited signs of pain, distress, or moribundity or during the

course of evaluation, and as such all mice in this study (barring one animal that was found

dead for unexplained reasons) were humanely euthanized at the fixed time point of 11 months

post-injection. Humane euthanasia was achieved by gradually replacing atmosphere air

with CO2 followed by bilateral thoracotomy. This study was carried out in strict accordance

with the recommendations in the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health and under protocol A279-13-11 approved by the Institutional

Animal Committee on Use and Care at Duke University.

Quantification of lesions

Mice were euthanized at a fixed endpoint of 11 months after administration of urethane, the

lungs were removed, and the number and size of surface tumors visible under a dissecting

microscope at 10X magnification was documented without knowledge of the genotype. The

left lung from each mouse was formalin-fixed, paraffin-embedded, and sectioned every

200 μm. Eight such sections were mounted on slides and H&E stained for pathologic analysis.

Two pathologists (JMC and ENP), blinded to genotype, independently graded and counted

the lesions in each section from 9 to 14 mice per cohort.

Immunohistochemistry

Additional slides prepared from the above sectioning of the left lungs of mice exposed to ure-

thane were subjected to epitope retrieval and stained with, anti-Ki67 (Thermo Scientific

RM9106), anti-CC3 (Cell Signaling, D175), anti-P(Thr 202/Tyr 204)-Erk1/2 (Cell Signaling

4376), and anti-P(Ser473)-Akt (Cell Signaling 4060), anti-F4/80 (ABDserotec MCA497GA), and

anti-CD3 (ThermoFisher RM9107) antibodies, followed by peroxidase-based detection with

Vectastain Elite ABC Kits (Vector Labs) and counterstained with haematoxylin. Photographs

were taken of 6 to 10 (10X) random fields in a blinded fashion. The tumor areas were deter-

mined from these photographs using the freehand selection tool in Image J (imagej.nih.gov).

Color thresholding was applied to determine positive-staining areas, using the same parameters

for each tumor image. Areas staining positive by these parameters were selected and the posi-

tive-staining area in pixels recorded. The percentage of positive-staining area was calculated by

dividing the positive-staining area of the tumor in pixels by the total area of tumors in pixels.

Statistics

Statistical Analyses were performed using GraphPad Prism v5 (GraphPad Software). A 2-sided,

unpaired t-test was used to compare the number of lesions and levels of immunohistochemical

staining between cohorts, and p values were calculated using the log-rank (Mantel-Cox) test.
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Results

Loss of wild-type Hras, but not Nras, enhances the formation of

urethane-induced lung tumors

To determine the effects of loss of progressively more wild-type Ras genes on carcinogen-

induced lung tumorigenesis, mice lacking different combinations of wild-type Hras and Nras
alleles were administered the chemical carcinogen urethane, which is well established to

induced Kras mutation-positive lung adenomas and adenocarcinomas by 9 to 12 months [13,

15, 17]. More specifically, Hras+/-;Nras+/- mice on a mixed 129/B6 background were interbred,

generating littermates with one of the following 9 genotypes: Hras+/+;Nras+/+, Hras+/-;Nras+/+,

Hras+/+;Nras+/-, Hras+/-;Nras+/-, Hras-/-;Nras+/+, Hras+/+;Nras-/-, Hras+/-;Nras-/-,Hras-/-;Nras+/-,

and Hras-/-;Nras-/-. PCR amplification of genomic DNA isolated from of 268 pups was used

to identify the status of the Hras and Nras alleles (e.g. Fig 1A), which revealed roughly the

expected Mendelian ratios of the 9 genotypes (Table 1). The only exception was Hras-/-;Nras-/-

mice, which were observed at a lower than expected frequency (Table 1), as documented previ-

ously [19]. At 7 to 9 weeks of age, 9 to 14 littermates from each of the 9 aforementioned geno-

types were injected intraperitoneally with urethane to induce Kras-mutation-positive lung

lesions. These mice were euthanized 11 months later, and number and size of surface lung

tumors visible at 10-fold magnification was determined.

As expected, urethane induced lung lesions in all the mice (e.g. Fig 1B). Consistent with pre-

vious studies [13], microscopic analysis revealed that Hras+/-;Nras+/+ mice, which have one Hras
null allele, developed roughly three times more visible tumors than control Hras+/+;Nras+/+

mice. This effect was further exasperated by loss of the second wild-type allele, as Hras-/-;Nras+/+

mice developed, on average, more than twice as many tumors as Hras+/-;Nras+/+ mice (Fig 1C).

In contrast to the progressive effect that the loss of wild-type Hras alleles had on lung tumorigen-

esis, there was no statistically significant difference in the number of lung tumors in Hras+/+;
Nras+/- or Hras+/+;Nras-/- (Fig 1D) mice that contain either one or two Nras null alleles. Thus, in

this mixed genetic background, the progressive loss of Hras alleles, but not Nras alleles, results in

an increase in tumor burden upon exposure to the carcinogen urethane.

Concomitant loss of wild-type Hras and Nras does not enhance the

formation of urethane-induced tumors

Previous studies have shown that loss of both wild-type Hras and wild-type Nras individually

enhanced urethane-induced tumorigenesis in a dosage-dependent manner [13]. This suggests

that loss of both of these isoforms could have an additive effect on promoting tumorigenesis in

this model. To explore the effects of losing both Hras and Nras on urethane-induced tumors,

the number of lung lesions that developed in double homozygous Hras-/-;Nras-/- knockout

mice was determined. These mice developed approximately the same number of tumors as

Hras-/-;Nras+/+ mice lacking only Hras (Fig 2A). Thus, the enhanced tumorigenesis in mice

lacking wild-type Hras is unaffected by the additional loss of wild-type Nras in this genetic

background.

To assess if loss of progressively more Ras alleles alters tumor progression, tumors develop-

ing in Hras+/+;Nras+/+ control mice, Hras-/-;Nras+/+ mice lacking Hras, Hras+/+;Nras-/- mice

lacking Nras, or Hras-/-;Nras-/- mice lacking both Hras and Nras were graded in a blinded fash-

ion by 2 pathologists. All but one of the lesions were either atypical adenomatous hyperplasia

(AAH) or adenoma (AD), both of which are early stages of lung tumorigenesis. One mouse

(Hras-/-;Nras+/+) had a lesion graded as adenocarcinoma (not shown in figure). Comparing

tumors from all 4 genotypes revealed no significant difference in the grade of lesions between
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Fig 1. Loss of wild-type Hras, but not Nras, promotes formation of urethane induced lung tumors. (A) PCR-genotyping for

Hras (top panel: wild-type (WT) band = 434 bp; null band = 336 bp) and Nras (lower panel: wild-type (WT) band = 146 bp; null

band = 315 bp). (B) Representative H&E-stained lung tissue (magnification = 2X) from wild-type (WT), Hras-/-, and Nras-/- mice (top)

untreated and (bottom) 11 months after urethane administration. Arrowheads: lung lesions. (C and D) Number of lesions counted per

H&E stained section from left lungs of mice 11 months after urethane administration in mice with the indicated combinations of wild-

type (+) or null (-) alleles of (C) Hras or (D) Nras (bar: mean ± S.E.M.). ns: not significant. *p < 0.05. **p < 0.001. ***p < 0.0001.

n = 4 to 6 sections from 9 to 14 mice per cohort.

doi:10.1371/journal.pone.0167205.g001
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these different genotypes (Fig 2B). Thus, loss of any of the tested combinations of wild-type

Hras or Nras alleles did not alter the grade of lesions developing in the urethane model of lung

tumorigenesis.

Loss of wild-type Hras and Nras does not affect levels of proliferation,

apoptosis, or downstream-signaling within urethane-induced tumors

To explore the effect of loss of wild-type Ras genes on tumor characteristics, 6 to 10 lung

lesions from urethane-treated mice with the two extreme genotypes, namely Hras+/+;Nras+/+

versus Hras-/-;Nras-/-, were stained for markers of apoptosis (cleaved caspase 3), proliferation

(Ki67), inflammation (F480), and Ras signaling (phosphorylated ERK and AKT). No signifi-

cant differences in immunohistochemical staining using antibodies against cleaved caspase 3

(Fig 3A), Ki67 (Fig 3B), or F480 (Fig 3C) were observed between these two cohorts. Further-

more, the average levels of phosphorylated AKT (Fig 3D) and ERK (Fig 3E) immunostaining

within the lesions were also similar between these two cohorts. Similarly, loss of just Hras

had no measurable effect of MAPK signaling, as assessed by the levels of phosphorylated ERK

(S1A Fig).

Loss of wild-type Hras and Nras in combination increases the number of

lymphoid aggregates in the lungs of urethane-treated mice

Pathological examination of lung sections revealed an aggregation of lymphoid cells in mice

exposed to urethane (Fig 4A). To assess whether disruption of either or both Hras and Nras
alleles influenced this lymphoid aggregate phenotype, two pathologists determined the num-

ber of lymphoid aggregates in each section of lungs isolated from the 4 genotypes Hras+/+;
Nras+/+, Hras-/-;Nras+/+, Hras+/+;Nras-/-, and Hras-/-;Nras-/-. Binning these data into groups of

no aggregates, 1–5 aggregates, or greater than 5 aggregates per section revealed that the num-

ber of lymphoid cell clusters were higher in Hras-/-;Nras+/+ mice, and even more prevalent in

Hras-/-;Nras-/- mice (Fig 4B). We note here this was not associated with changes in F480 stain-

ing (Fig 3C). Staining for cluster of differentiation (CD3) was also similar between Hras+/+;
Nras+/+, Hras-/-;Nras+/+, and Hras-/-;Nras-/- genotypes (S1B Fig). Thus, loss of wild-type Hras
enhances the lymphoid response in the lungs to the chemical carcinogen urethane, and this

response is further augmented by the additional loss of wild-type Nras.

Table 1. Distribution of genotypes from crossing Hras+/-;Nras+/- mice.

Genotype Expected ratio % (#) Observed ratio % (#)

Hras+/+;Nras+/+ 6.25 (16.75) 7.46 (20)

Hras+/-;Nras+/+ 12.5 (33.5) 13.06 (35)

Hras+/+;Nras+/- 12.5 (33.5) 12.31 (33)

Hras+/-;Nras+/- 25.0 (67) 24.25 (65)

Hras-/-;Nras+/+ 6.25 (16.75) 5.22 (14)

Hras+/+;Nras-/- 6.25 (16.75) 7.46 (20)

Hras-/-;Nras+/- 12.5 (33.5) 12.69 (34)

Hras+/-;Nras-/- 12.5 (33.5) 14.18 (38)

Hras-/-;Nras-/- 6.25 (16.75) 3.36 (9)

18 pairs of Hras+/-;Nras+/- mice were bred to generate 268 pups. The percent and number of pups with each

of the 9 possible genotypes (observed ratio) is show in comparison to the expected frequency based on

Mendelian ratios (expected ratio).

doi:10.1371/journal.pone.0167205.t001
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Fig 2. Effects of concomitant loss of wild-type Hras and Nras on urethane-induced tumorigenesis. (A)

Number of lesions counted per H&E-stained section of lung tissue from urethane-treated mice with the

indicated combinations of wild-type (+) or null (-) Hras and Nras alleles. (B) Number and grade of lesions from

H&E-stained lung sections (bar: mean ± S.E.M.). AAH = atypical adenomatous hyperplasia. AD = adenoma.

ns: not significant. ***p < 0.0001. n = 4 to 6 sections from 9 to 14 mice per cohort.

doi:10.1371/journal.pone.0167205.g002
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Discussion

We demonstrate that loss of wild-type Hras enhances carcinogen-induced lung tumorigenesis

in mice, in agreement with previous findings [8, 13]. This effect was not, however, observed in

mice lacking wild-type Nras, nor did loss of Nras increase the sensitivity of Hras-/- mice to ure-

thane. Such a finding presumably reflects a difference in either the expression or function of

these two Ras isoforms. We note that loss of Nras had previously been shown to yield more

lung tumors in mice treated with urethane [13]. One possible explanation for this difference is

that the experiments described here employed a mixed genetic background while the afore-

mentioned study use a pure 129 strain. Indeed, strain background is well established to greatly

influence the susceptibility of mice to urethane-induced tumorigenesis [20]. More specifically,

Fig 3. Immunohistochemical staining in urethane-induced lung lesions. (A) Cleaved caspase 3 (CC3),

(B) Ki67, (C) F480, (D) phosphorylated AKT (pAKT), and (E) phosphorylated ERK (pERK)

immunohistochemical staining (left panels, examples) and quantification thereof (right, graphs), based on the

percentage of positively-staining tumor area calculated for 6–10 lesions from 3–5 mice with the indicated

combinations of wild-type (+) or null (-) Hras and Nras alleles. Bar: mean ± S.E.M. ns: not significant.

doi:10.1371/journal.pone.0167205.g003
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the mix background of the study described here was less sensitive to urethane carcinogenesis,

which may mask effects due to disrupting Nras alleles. Nonetheless, in this background loss of

Hras promoted Kras-driven lung tumorigenesis, while loss of Nras had no measureable effect.

Levels of Ras signaling, as measured by pAKT and pERK immunostaining, were similar in

the lesions between mice with wild-type versus null Hras and Nras alleles. These lesions also

had similar staining patterns for markers of proliferation, apoptosis, and inflammation. It is

therefore possible that the effect of losing wild-type Hras occurs before the tumors develop,

perhaps at the stage of initiation, and as such would not manifest a phenotype in established

Fig 4. Loss of wild-type Hras alone or in combination with loss of wild-type Nras promotes lymphoid infiltration

in the lungs of urethane-treated mice. (A) Representative photograph at 2X (right) and 10X (left) magnification of

H&E-stained lung tissue containing lymphoid aggregates (indicated by arrowheads). (B) Quantification of the percentage

of sections from mice with the indicated combinations of wild-type (+) or null (-) Hras and Nras alleles in which lymphoid

aggregates are binned as no aggregates, 1–5 aggregates, or >5 aggregates. n = 4 to 6 sections from 9 to 14 mice per

cohort.

doi:10.1371/journal.pone.0167205.g004
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lesions. For example, loss of wild-type Hras may alter lung development, increasing the num-

ber of the cell types susceptible to urethane carcinogenesis. Alternatively, losing Hras in the

stroma could affect tumorigenesis without altering tumor cell signaling. Finally, we recognize

that there may yet be differences in signaling or markers of cellular features like proliferation,

apoptosis or inflammation, but the effects are just too subtle to detect by immunohistochemi-

cal staining. Further studies are needed to determine the exact mechanisms by which loss of

Hras promotes the growth of carcinogen-induced lung lesions.

Finally, lymphocyte infiltration was observed in Hras knockout mice exposed to urethane, a

phenotype more pronounced upon the additional loss of the Nras gene. Aggregates of lym-

phoid tissue in the lung are most often in response to infection, but occasionally are seen in

cases of NSCLC [21]. Knockdown of wild-type Nras has also been shown to alter pathways

related to immune responses [22], and Hras-/-;Nras-/- mice are unable to mount an immune

response to parasitic infection, due to hampered Th1 immunity [23]. Taken together, these

results suggest a relationship between the loss of wild-type Ras and an immune response,

although whether this is related to urethane carcinogenesis, and if so how, remains to be

determined.

In summary, we demonstrate that different wild-type Ras isoforms can have different effects

on urethane carcinogenesis, adding important insight into the relationship between wild-type

Ras proteins and early tumorigenesis.

Supporting Information

S1 Fig. Immunohistochemical staining in urethane-induced lung lesions. (A) Phosphory-

lated ERK (pERK) and (B) cluster of differentiation 3 (CD3) immunohistochemical staining

and quantification of percentage of positively-staining tumor area calculated for 6–10 lesions

from 4–6 mice of the indicated combinations of wild-type (+) and null (-) Hras and/or Nras
alleles. bar: mean ± S.E.M. ns: not significant.
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