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Modulation of acoustomechanical 
instability and bifurcation behavior 
of soft materials
Fengxian Xin   1,2 & Tian Jian Lu1,2,3

We demonstrate acoustically triggered giant deformation of soft materials, and reveal the snap-
through instability and bifurcation behavior of soft materials in nonlinear deformation regime in 
response to combined loading of mechanical and acoustic radiation forces. Our theoretical results 
suggest that acoustomechanical instability and bifurcation can be readily modulated by varying either 
the mechanical or acoustic force. This modulation functionality arises from the sensitivity of acoustic 
wave propagation to nonlinear deformation of soft material, particularly to ratio of initial geometrical 
size of soft material to acoustic wavelength in the material. The tunable acoustomechanical instability 
and bifurcation behavior of soft materials enables innovative design of programmable mechanical 
metamaterials. PACS numbers: 43.35.+d, 43.25.+y, 46.70.De, 61.41.+e.

Nonlinear deformation of soft materials in response to various external stimuli is often accompanied with elas-
tic stability and bifurcation phenomena, which are traditionally averted for they represent mechanical failure. 
Recently, however, there is arising interest in harnessing such elastic instability and bifurcation to enable new 
functionalities of soft materials, such as triggering giant deformation1,2, auxetic material design3, amplifying 
response4, tunable mechanical response5, and acoustic rectification6. Particular focus has been placed upon 
developing soft materials with programmable behaviors, which often show non-monotonic and discontinuous 
responses or instabilities5,7. Nonetheless, a remarkable limitation to realize these programmable behaviors is that 
architected microstructures with beam elements are typically required.

We address this deficiency by demonstrating a novel strategy for tunable instability and bifurcation of homo-
geneous and isotropic soft materials by manipulating the acoustic radiation forces8–11. The acoustic radiation 
force is interpreted as a time-averaged steady force, which is generated when high-frequency acoustic wave such 
as ultrasound propagates in a nonlinear medium12–14. Harnessing the sensitivity of acoustic radiation force to 
material configuration, we demonstrate first the occurrence of acoustomechanical instability and bifurcation of 
soft material when it is subjected to combined mechanical and acoustical loads, and then realize their modulation 
via programmable mechanical force and acoustic input, respectively. The fast and non-contact modulation of 
acoustic input enables instantaneous and highly controllable nonlinear behavior of soft materials, with promising 
applications in medical devices, microfluidic actuators, adaptive robots, and so like.

Theoretical Model
The propagation of ultrasonic wave from surrounding medium into a soft material generates acoustic radiation 
force due to acoustic momentum transfer inside the medium and material as well as at the interface between the 
two, which manifests in the form of a second-rank stress tensor if we consider a micro-cubic element of the mate-
rial. This acoustic radiation stress tensor can be expressed as15–20
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where P is acoustic pressure, ρa medium density, ca acoustic speed in medium, ui, uj and uk velocity components, 
and 〈⋅〉 denotes time-average manipulation over an oscillation cycle. Therefore, the acoustical radiation stress is 
scaled as ρp c/( )a a0

2 2 , p0 being amplitude of input sound pressure. Commonly, as a focused acoustic pressure lies 
between 0.1 and 4 MPa, the corresponding acoustic radiation stress ranges from 70247 Pa to 112 MPa in air, and 
from 4.44 Pa to 7111 Pa in water. If one note that the elastic modulus of soft materials is generally several times 
kPa, the acoustic radiation stress is lager enough to cause material deformation: even large nonlinear deformation 
is possible13,21–24.

To be more specific, we consider in Fig. 1a thin sheet of soft material. Let its outside and inside media have 
acoustic impedance ρ1c1 and ρ2c2, respectively. The thickness of the sheet is considered comparable to the wave-
length of acoustic wave propagating in the sheet, while its in-plane dimensions are much larger than sheet thick-
ness. Representative dimensions of such a sheet may be ~5 mm × 100 mm × 100 mm. We further assume that 
the material is nearly incompressible. Along the thickness direction, two counterpropagating acoustic waves p(x, 
t) = p0e−j(k⋅x−ωt) (k is wavenumber vector, x position vector, and ω angular frequency) strike the thin sheet, gov-
erned by momentum equation ∇⋅σ = ρ∂2u/∂t2 in Eulerian coordinates, σ being Cauchy stress tensor. The prop-
agation of acoustic waves with wavelength Λ = 2πca/ω in the sheet induces acoustic radiation forces, causing it to 
deform from reference state (L1, L2, L3) of Fig. 1(a) to current state (l1, l2, l3) of Fig. 1(b).

For ultrasonic wave propagation in soft materials, the Cauchy stress can be obtained by incorporating the 
elastic deformation stress and acoustic radiation stress as
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where W(F) is the Helmholtz free energy corresponding to nonlinear elastic deformation of material, which is a 
symmetric function of deformation gradient F(≡∂x/∂X). If we consider the Cauchy stress as external mechani-
cal stress, this equation actually gives the force balance condition among the external mechanical Cauchy stress, 

Figure 1.  Deformation of soft material sheet by acoustical radiation forces: (a) undeformed sheet of dimensions 
(L1, L2, L3); (b) the sheet deforms to dimensions (l1, l2, l3) under two opposing sound pressure fields pL = pL0ejωt 
and pR = pR0ejωt; (c) equivalent stresses induced by acoustic radiation forces.
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elastic deformation Cauchy stress and acoustic radiation Cauchy stress. Although it looks no explicit coupling 
term between the elastic deformation stress and acoustic radiation stress in Eq. (2), actually the acoustic radiation 
stress is highly coupled with material deformation via acoustic wave propagation in deformed configuration (see 
more details in Supplementary Material), which thus constitutes a nonlinear acoustomechanical coupling system. 
The Gent model25 for Helmholtz free energy of nearly incompressible materials is adopted, as:
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where μ and K are initial shear and bulk moduli of material, Jm is extension limit, I1 = tr(FTF), and J = det(F). 
When Jm → ∞, the Gent model becomes the classical neo-Hookean model. Under symmetric acoustic fields 
(Fig. 1), force balance requires vanishing Cauchy stresses in x- and y-directions: ∫ ∫σ σ= =dz dz 0
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While, the Cauchy stress in z-direction should balance the outside acoustic radiation as σ = − T outside

3 33 . 
Considering these force boundary conditions, we obtain from Eq. (3) acoustic radiation induced equivalent 
stress, as:
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where I is identity tensor and B = FFT is left Cauchy-Green deformation tensor. With reference to Fig. 1(c), the 
principal components of equivalent stress tensor t are related to the corresponding acoustic radiation stresses, as:
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We further constrain the soft material sheet to be undeformed in the x-direction (i.e., λ1 = l1/L1 = 1) and 
exert a mechanical force f in the y-direction, as shown schematically in Fig. 1(b). We then demonstrate that the 
mechanical response of soft material can be modulated by altering acoustic wave input with f fixed or altering f 
with acoustic wave input fixed.

Results and Discussion
The acoustomechanical theoretical model of compressible soft material is developed in the above section. As a 
large number of soft materials are nearly incompressible, the above theoretical model can be applied to incom-
pressible soft material if the incompressible condition of J = det(F) = 1 is fully enforced. For an incompressible soft 
material, the relationship between normalized mechanical force fn ≡ f/(μL1L3) and principal stretches (λ1, λ2, λ3)  
can be obtained by applying the constitutive relation of Eq. (4) and the incompressible condition, as:
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where λ2 = l2/L2 and λ3 = l3/L3, with λ λ= −
3 2

1. For fixed acoustic input of μρ = .p c/( ) 1 40
2

0 0
2 , Fig. 2(a) plots fn as a 

function of λ2 for soft material sheet with initial thickness L3 = 2Λ. The neo-Hookean model can well reproduce 
the Gent model in the considered stretch range. In response to variation of mechanical force at prescribed acous-
tic field, snap-through instability occurs in the soft material. This instability causes the stretch λ2 to jump discon-
tinuously from a small value to a much larger one, accompanied by excessive thinning down of soft material sheet. 

Figure 2.  Acoustomechanical snap-through instability of soft material in response to mechanical force f at 
prescribed acoustic input of μρ = .p c/( ) 1 40

2
0 0

2 : (a) acoustomechanical hysteretic loop; (b) acoustomechanical 
responses for different extension limits Jm.
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During snapping, the normalized mechanical force first goes up, then down and then up again, showing a 
non-monotonic behavior. The region with negative slope in the force-stretch curve signifies negative incremental 
stiffness, which is unstable. If the mechanical force is uniformly distributed and controlled, a hysteresis loop 
would be developed in the material, as marked by the two arrows in Fig. 2(a). In practice, the hysteresis may oper-
ate in a loop smaller than ( fn

peak, fn
dip) because material defects may decrease the threshold for converting from 

one state to another state in a local region. Figure 2(b) presents the acoustomechanical responses of the soft mate-
rial sheet with different extension limits Jm, among which the case of Jm = ∞ corresponds to the neo-Hookean 
curve in Fig. 2(a) and the case of Jm = 253 corresponds to the Gent curve in Fig. 2(a). As observed in Fig. 2(b), 
with the decrease of the extension limit, the acoustomechanical snap-through instability tends to be suppressed. 
This is because the extension limit signifies the finite extensibility of polymer chains or the collective straightening 
of collagen fibers in biological tissues. The smaller the extension limit, the stiffener the soft material. The dramat-
ically increased force-stretch curve of the stiffened soft material is capable of suppressing any possible instability.

We demonstrate that the snap-through instability of soft material in response to mechanical force can be mod-
ulated by adjusting acoustic wave inputs. Figure 3 plots the bifurcation diagrams of mechanical force as a function 
of deformed dimensions when triggered from different initial states. The force versus stretch curves intersect the 
horizontal line of zero force at different stretch points, implying the soft material is loaded at different initial states 
with different acoustic inputs. In more detail, as shown in Fig. 3, the different force-stretch curves correspond to 
different acoustic inputs µρp c/( )0

2
0 0

2  = (2.45, 2.73, 3.02, 3.30, 3.58, 3.87), in other words, the different acoustic 
inputs can programme different force-stretch relation of the soft material. Each force-stretch curve has multiple 
intersection points with the zero force line, these intersection points can be regarded as initial states of the 
mechanical force loading process. At these points, the soft material can be hold at these initial states with a steady 
deformation because of the acoustic radiation force generated by the fixed acoustic input. The multiple intersec-
tion points manifest the multiple steady states of the acoustomechanical response of soft material for the same 
acoustic input. This is because for different initial states (i.e., different current configurations), the ultrasonic wave 
propagation can generate different acoustic fields and the corresponding different acoustic radiation stresses, 
these different acoustic radiation stresses are just in balance with the elastic deformation stresses in these current 
configurations. It is also found from Fig. 3 that the different initial states lead to significant variation of these 
curves. In other words, the mechanical response of soft material can be significantly modulated by varying the 
acoustic input. Especially, the snap-through instability is enlarged by increasingly varying the acoustic input.

To be more specific, the mechanical response of the soft material to the mechanical force f/(μL1L3) at the spec-
ified acoustic input μρ = .p c/( ) 3 300

2
0 0

2  is solely selected to plot as a function of the in-plane deformed dimension 
l2/Λ (or λ2) and the out-plane deformed dimension l3/Λ (or λ3), respectively in Figs 4 and 5. As shown in Fig. 4(a), 
the force-stretch curve has three intersection points A, B and C with the zero force line. Without external mechan-
ical force, the soft material is able to hold at the deformed sates A, B and C, owing to the acoustic radiation force 
generated by the acoustic input μρ = .p c/( ) 3 300

2
0 0

2 . At these intersection points, there is no mechanical force, so 
the corresponding states can be considered as the initial sates of the mechanical force loading process. As shown 
in Fig. 4, for the in-plane deformation, the completed response, the response from initial state A, B and C are 
separately plotted. Correspondingly, as shown in Fig. 5, for the out-plane deformation, the completed response, 
the response from initial state A, B and C are separately plotted as well. In these figures, the red dash lines denote 
the positive loading path, while the green dash lines signify the unloading path (or negative loading path). 
Whatever the loading path or the unloading path, the snap-through instability can occur. From the initial state A, 
the force-stretch curve first goes up and then undergoes the snap-through instability in the positive loading pro-
cess, or goes down in the negative loading process. From the initial state B, the force-stretch curve first undergoes 
the snap-through instability, and then goes up in the positive loading process, or goes down in the negative 

Figure 3.  Bifurcation diagrams for the relationship between normalized mechanical force f/(μL1L3) and 
deformed dimensions triggered from different initial states: (a) mechanical force as a function of in-plane 
deformed dimension; (b) mechanical force as a function of out-of-plane deformed dimension.
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loading process. From the initial sate C, the force-stretch curve goes up in the positive loading process, or first 
goes down and then undergoes the snap-through instability in the negative loading process. All the force-stretch 
curves in Fig. 5 have the same trends as their counterpart curve in Fig. 4.

As shown in Fig. 6, analogous to acoustic modulation, bifurcation diagrams for the relationship between 
acoustic input and deformed dimensions under different mechanical forces indicate that the acoustical response 
of soft material can also be modulated by manipulating the pre-mechanical force. In these diagrams, each curve 
represents the mechanical response of soft material to the acoustic input at a fixed pre-mechanical force. In more 
detail, as shown in Fig. 6(a,b), the different acoustic input-stretch curves correspond to different pre-mechanical 
force, which demonstrates that the pre-mechanical force can programme the acoustic input-stretch relation of soft 
material. Or in other words, the acoustic input-stretch relation can be modulated by varying the pre-mechanical 
force. Also, it is observed from Fig. 6 that each acoustic input-stretch curve has different intersection point with 
the zero acoustic input line (i.e., the x-axis), these intersection points can be regarded as the initial state of each 
acoustical loading process. Without acoustical loading, the soft material can hold at a steady deformed state due 
to the stretch of the pre-mechanical force. From these initial states with different fixed pre-mechanical forces, 
each acoustic input-stretch curve tracks different acoustical loading path with the increase of the acoustic input. 
If we plot a horizontal line for any given acoustic input, this line will have multiple intersection points with the 
acoustic input-stretch curve with a fixed pre-mechanical force. These multiple intersection points manifest that 
there exist multiple steady states with different deformed configuration for a fixed pre-mechanical force. This is 
because for different deformed configurations, the ultrasonic wave propagation can generate different acous-
tic fields and the corresponding different acoustic radiation stresses, these different acoustic radiation stresses 
accompanying with the fixed mechanical stress/force are just in balance with the elastic deformation stresses in 
these multiple deformed configurations. Furthermore, it is found from Fig. 6 that the different pre-mechanical 
forces can lead to significant different acoustic input-stretch curves. In particular, the snap-through instability is 
remarkably enlarged as the acoustic input increases.

Figure 4.  Mechanical response of soft material to mechanical force f/(μL1L3) as a function of in-plane deformed 
dimension l2/Λ (or λ2) at the specified acoustic input μρ = .p c/( ) 3 300

2
0 0

2 . The four responses are triggered from 
different initial states: (a) completed response; (b) initial state A; (b) initial state B; (d) initial state C. The red 
dash lines denote the positive loading path, while the green dash lines signify the unloading path (or negative 
loading path).
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To be more specific, the acoustical response of the soft material to the acoustic input μρp c/( )0
2

0 0
2  at the speci-

fied mechanical force f/(μL1L3) = −0.9 is solely selected to plot as a function of the in-plane deformed dimension 
l2/Λ (or λ2) and the out-plane deformed dimension l3/Λ (or λ3), respectively in Fig. 7(a,b). In these figures, the red 

Figure 5.  Mechanical response of soft material to mechanical force f/(μL1L3) as a function of out-plane 
deformed dimension l3/Λ (or λ3) at the specified acoustic input µρ = .p c/( ) 3 300

2
0 0

2 . The four responses are 
triggered from different initial states: (a) completed response; (b) initial state A; (b) initial state B; (d) initial 
state C. The red dash lines denote the positive loading path, while the green dash lines signify the unloading 
path (or negative loading path).

Figure 6.  Bifurcation diagrams for relationship between acoustic input and deformed dimensions under 
different mechanical forces: (a) acoustic input as a function of in-plane deformed dimension l2/Λ (or λ2); (b) 
acoustic input as a function of out-of-plane deformed dimension l3/Λ (or λ3)
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dash lines denote the acoustical loading path, while the green dash lines signify the unloading path. As shown in 
Fig. 7(a,b), the acoustic input-stretch curve has an intersection point with the zero acoustic input line, which can 
be considered as the initial state of the acoustic loading process. At the intersection point, without acoustic input, 
the soft material can hold at a steady deformed state because of the stretch of the pre-mechanical force. From the 
initial state, the acoustic input-stretch curve first goes up, undergoes the snap-through instability and continues 
to go up in the loading process. Or in the unloading process, the acoustic input-stretch curve goes down, under-
goes the snap-through instability and continues to go down.

Harnessing the sensitivity of acoustic wave propagation to normalized initial sheet thickness L3/Λ, we further 
reveal the modulated bifurcation behavior of soft material in mechanical response by exerting different acoustic 
inputs (Fig. 8). The ratio L3/Λ can be treated as a sole loading parameter, which exhibts load-stretch responses 
when different acoustic inputs are prescribed. With the initial thickness L3 fixed, this loading parameter can be 
readily realized by modulating the frequency (or wavelength) of inputting acoustic waves. As shown in Fig. 8, 
each bifurcation diagram presents five loading-stretch branches, which are associated with five prescribed acous-
tic inputs of μρ =p c/( ) 1, 2, 3, 4, 50

2
0 0

2 . These bifurcation branches demonstrate that the load-stretch response 
of soft material can be modulated by altering the acoustic waves.

The branch of μρ =p c/( ) 50
2

0 0
2  in Fig. 8 is individually plotted in Fig. 9 to reveal the fact that snap-through 

instability can also occur in bifurcation regime under the combined effect of mechanical and acoustical loading. 
Upon gradually increasing the loading parameter L3/Λ, the dimension of soft material jumps discontinuously 
from point A to point B, accompanied by a sudden and large alteration of sheet stretching, which signifies the 
occurrence of snap-through instability.

Figure 7.  Mechanical response of soft material to acoustic input μρp c/( )0
2

0 0
2  at the specified mechanical force  

f/(μL1L3) = −0.9: (a) acoustic input as a function of in-plane deformed dimension l2/Λ (or λ2); (b) acoustic 
input as a function of out-of-plane deformed dimension l3/Λ (or λ3). The red dash lines denote the loading path, 
while the green dash lines signify the unloading path.

Figure 8.  Bifurcation diagrams for relationship between initial thickness and deformed stretches of soft 
material sheet under fixed mechanical force f/(μL1L3) = 0.02 and varying acoustic loads: (a) initial thickness as a 
function of in-plane deformed stretch; (b) initial thickness as a function of out-of-plane deformed stretch.
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Similar to acoustic modulation, we demonstrate that the bifurcation behavior of soft material can be modu-
lated by varying the mechanical force when prescribing the acoustic input. Figure 10 presents bifurcation dia-
grams for the relationship between initial thickness and deformed stretches, in which L3/Λ is treated as the sole 
loading parameter and each curve in these diagrams represents the load-stretch response or loading history. 

Figure 9.  Bifurcation diagrams for relationship between initial thickness and deformed stretches of soft 
material sheet under fixed mechanical force f/(μL1L3) = 0.02 and fixed acoustic field μρ =p c/( ) 50

2
0 0

2 : (a) initial 
thickness as a function of in-plane deformed stretch; (b) initial thickness as a function of out-of-plane deformed 
stretch; (c) in-plane stretch as a function of out-of-plane stretch.

Figure 10.  Bifurcation diagrams for relationship between initial thickness and deformed stretches under fixed 
acoustic field μρ =p c/( ) 20

2
0 0

2  and varying mechanical forces: (a) initial thickness as a function of in-plane 
deformed stretch; (b) initial thickness as a function of out-of-plane deformed stretch.
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Each diagram of Fig. 10 show five distinct bifurcation branches related to five prescribed mechanical forces  
f/(μL1L3) = −1, −2, −3, −4, −5, implying mechanical force modulated load-stretch response. In Fig. 11, the 
branch of f/(μL1L3) = −1 is individually plotted to reveal the appearance of snap-through instability when L3/Λ is 
gradually increased. The deformation state discontinuously jumps from point A to point B not only in the (L3/Λ, 
λ2/λ3) parameter space but also in the (λ2, λ3) stretch space. This snap-through jumping realizes the direct switch 
from one equilibrium sate to another equilibrium state, striding over the unstable state between the two.

Conclusions
In summary, we demonstrate the snap-through instability and bifurcation behavior of homogeneous, isotropic 
soft material sheets in response to not only mechanical load but also acoustic load. Snap-through instability can 
even show up in bifurcation branches when the ratio of initial sheet thickness to wavelength is taken as a sole 
loading parameter. We further uncover the feasibility of convenient modulation of acoustomechanical instability 
and bifurcation by altering either the mechanical or acoustic load. This new functionality of soft material ena-
bles pre-programmable response of soft material by varying the pre-mechanical force and instant-programmable 
response via adjusting the frequency and amplitude of acoustic input. This work would inspire innovative designs 
of soft actuators, microfluidic devices, adaptive robots, etc. by harnessing the tunable and programmable acous-
tomechanical behavior of soft materials.
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