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OBJECTIVE—Large-scale genome-wide association (GWA)
studies have thus far identified 16 loci incontrovertibly associ-
ated with obesity-related traits in adults. We examined associa-
tions of variants in these loci with anthropometric traits in
children and adolescents.

RESEARCH DESIGN AND METHODS—Seventeen variants
representing 16 obesity susceptibility loci were genotyped in
1,252 children (mean � SD age 9.7 � 0.4 years) and 790
adolescents (15.5 � 0.5 years) from the European Youth Heart
Study (EYHS). We tested for association of individual variants
and a genetic predisposition score (GPS-17), calculated by sum-
ming the number of effect alleles, with anthropometric traits. For
13 variants, summary statistics for associations with BMI were
meta-analyzed with previously reported data (Ntotal � 13,071
children and adolescents).

RESULTS—In EYHS, 15 variants showed associations or trends
with anthropometric traits that were directionally consistent
with earlier reports in adults. The meta-analysis showed direc-
tionally consistent associations with BMI for all 13 variants, of
which 9 were significant (0.033–0.098 SD/allele; P � 0.05). The
near-TMEM18 variant had the strongest effect (0.098 SD/allele
P � 8.5 � 10�11). Effect sizes for BMI tended to be more
pronounced in children and adolescents than reported earlier in
adults for variants in or near SEC16B, TMEM18, and KCTD15,
(0.028–0.035 SD/allele higher) and less pronounced for rs925946
in BDNF (0.028 SD/allele lower). Each additional effect allele in
the GPS-17 was associated with an increase of 0.034 SD in BMI
(P � 3.6 � 10�5), 0.039 SD, in sum of skinfolds (P � 1.7 � 10�7),
and 0.022 SD in waist circumference (P � 1.7 � 10�4), which is
comparable with reported results in adults (0.039 SD/allele for
BMI and 0.033 SD/allele for waist circumference).

CONCLUSIONS—Most obesity susceptibility loci identified by
GWA studies in adults are already associated with anthropomet-
ric traits in children/adolescents. Whereas the association of
some variants may differ with age, the cumulative effect size is
similar. Diabetes 59:2980–2988, 2010

O
ver the past three decades, the prevalence of
obesity has reached epidemic proportions not
only in adults, but in children and adolescents
alike (1,2). A high BMI during childhood and

adolescence often persists into adulthood (3–5) and has
been independently associated with cardiovascular risk
factors, coronary heart disease events, and all-cause mor-
tality (2,6–9). Family and twin studies have estimated that
40–70% of the variance in obesity-related traits is due to
genetic factors (10,11). Longitudinal twin studies have
shown that the genetic contribution to BMI increases from
childhood to adolescence (12–14), and cross-sectional
twin studies suggest that the heritability of BMI is higher in
adolescence than during adulthood (15,16).

Six genome-wide association (GWA) studies in adults of
white European descent have thus far identified 16 obesity
susceptibility loci; 12 loci were consistently associated
with BMI (17–22), and 4 loci were identified in GWA
studies for waist circumference. Only variants in the FTO

and near-MC4R loci have as of yet convincingly been
associated with obesity-related traits in children and ado-
lescents (12,18,20,23–27). Two studies have examined the
effect of variants in GWA-derived loci other than FTO and
MC4R in children and adolescents (20,28). However, both
studies focused only on BMI and neither study examined
the association of all 16 obesity susceptibility loci or their
cumulative effect. Examining the association of these
obesity susceptibility loci with measures of adiposity in
childhood and adolescence may provide insight into their
impact on obesity risk early in life. Furthermore, it has
been suggested that physical activity modifies the associ-
ation of genetic variation with general adiposity in adults
(29–31). Thus far, this has not been demonstrated in
children.

In this study, we examined whether obesity susceptibil-
ity loci identified by GWA studies in adults are associated
with anthropometric traits and risk of obesity in children
and adolescents from the European Youth Heart Study
(EYHS). To increase statistical power and to compare
effect sizes in children/adolescents and adults, we addi-
tionally meta-analyzed our findings with those reported by
others (20,28). Furthermore, we examined the cumulative
effect of variants in the 16 loci on anthropometric traits in
EYHS and tested whether the association between genetic
predisposition and anthropometric traits is modified by
physical activity.

From the 1Medical Research Council Epidemiology Unit, Institute of Meta-
bolic Science, Cambridge, U.K.; the 2School of Health and Medical Sciences,
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RESEARCH DESIGN AND METHODS

Study population and anthropometry. The EYHS is a school-based, mixed
longitudinal study of pre- and early pubertal children and adolescents aged
9.7 � 0.4 and 15.5 � 0.5 years, respectively (32). Participants were randomly
selected via application of a two-stage sampling strategy in four countries
(Denmark, Estonia, Norway, and Portugal). The present study includes 1,252
children and 790 adolescents from Denmark and Estonia (944 boys and 1,098
girls) for whom data on anthropometric traits were available at baseline
(Table 1). DNA was not available for the other two EYHS centers.

Body mass and height were measured using standard procedures, with
participants dressed in light clothing and barefoot (33). The BMI was
standardized according to BMI reference charts derived by Cole’s LMS
method (34). Thickness of skinfolds was measured at four locations (triceps
brachi, biceps brachi, sub-scapula and supra-iliaca in millimeters) (35) and
was combined to obtain the sum of skinfolds. Waist circumference was
measured using a metal anthropometric tape midway between the lower rib
margin and the iliac crest at the end of a gentle expiration. Sexual maturity
was assessed using the five-stage Tanner scale for breast development in girls
and pubic hair in boys (Table 1) (36).

Overall physical activity and the fraction of time spent on moderate and
vigorous intensity physical activity (�2,000 cpm [ref. 37]) were measured in
daily life during 2 weekdays and 2 weekend days with a validated MTI
Actigraph accelerometer (Manufacturing Technology, Fort Walton Beach, FL)
(38). For the present study, physical activity data were available for 870
children and 413 adolescents (Table 1).

The study was approved by the local scientific committees and was
performed in accordance with the Declaration of Helsinki. All parents gave
written informed consent for their child to participate, and all children and
adolescents gave verbal consent.
Genotyping. Seventeen SNPs in the 16 obesity susceptibility loci (17–22)
identified by recent GWA studies were genotyped: rs2815752, rs10913469,
rs2605100, rs6548238, rs7647305, rs10938397, rs987237, rs545854, rs1488830,
rs925946, rs10838738, rs7138803, rs10146997, rs8055138, rs1121980,
rs17782313, and rs11084753 (NEGR, SEC16B, LYPLAL1, TMEM18, ETV5,
GNPDA2, TFAP2B, MSRA, BDNF, MTCH2, BCDIN3D, NRXN3, SH2B1, FTO,
MC4R, and KCTD15 loci, respectively) (supplementary Table 1, available in
the online appendix [http://diabetes.diabetesjournals.org/cgi/content/full/
db10-0370/DC1]). Two variants in the BDNF locus were included (rs1488830
[BDNF SNP 1]) and rs925946 [BDNF SNP 2]; linkage disequilibrium r2 � 0.10)
because these variants were previously independently associated with BMI
(19).

Markers rs7647305, rs10938397, and rs1121980 were genotyped using
Custom TaqMan SNP Genotyping assays according to the manufacturer’s
protocol (Applied Biosystems, Warrington, U.K.). The remaining markers
were genotyped using a Sequenom iPLEX platform (Sequenom, San Diego,
CA) as previously described (39).

All variants passed quality-control criteria with a call rate �95% and a blind
duplicate concordance rate of 100%. The distributions of all variants were in
Hardy-Weinberg equilibrium, as determined by a �2 test with 1 d.f. (supple-
mentary Table 1).

Statistical analyses. Before testing for associations, all traits were trans-
formed to normal distributions, with a mean of zero and an SD of 1 in all
participants combined using inverse normal transformation. Effect sizes can
be interpreted as changes in Z scores, which allows comparison across traits
and with effect sizes previously reported in adults.

The association of each SNP with BMI, sum of skinfolds, and waist
circumference was tested using linear regression assuming an additive effect.
Associations with height were examined to evaluate whether SNPs were
specifically associated with adiposity or with body size in general. The effect
alleles were those that increased BMI in adults in the original GWA studies
(17–22). Logistic regression was used to test the association of each SNP with
the risk of obesity and overweight versus not overweight. Assessing the risk
by comparing with nonobese instead of not overweight did not change the
results. Obesity (N � 105) and overweight (N � 309) were defined using age-
and sex-specific thresholds of BMI (�95th and �85th percentiles, respectively
[ref. 34]).

A genetic predisposition score (GPS) was calculated by summing the
number of effect alleles carried by each individual (GPS-17). The GPS-17 was
normally distributed, with the majority of individuals (73.8%) carrying 13–18 of
the 34 possible effect alleles. Only 2.9% of the individuals carried 10 or fewer
effect alleles, and 3.2% carried �21 (Fig. 1). We did not weight the effect alleles
by their effect size, which has been suggested to have only a limited effect (40),
to allow comparison with the nonweighted score reported for adults of the
European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk
study. The latter represents the largest population-based study (N � 20,431)
thus far in which the association of variants in all 12 loci identified in GWA
studies for BMI have been examined in a consistent manner and the only study
that has additionally reported their cumulative association with BMI and waist
circumference (39). Given its large sample size, effect sizes are likely stable
and representative. An alternative GPS (GPS-12) was calculated in EYHS,
which contained 12 variants representing the 12 loci discovered in GWA
studies for BMI (Fig. 3) (39). Associations of GPS-17 and GPS-12 with
continuous anthropometric traits and the risk of obesity and overweight were
examined using general linear model and logistic regression analyses, respec-
tively. Differences in effect size of the GPS-12 between children/adolescents
and adults were examined by estimating the amount of heterogeneity between
the two groups.

All analyses were adjusted for sex, age, age-group, country, and maturity,
including BMI, which was still significantly associated with age and sex after
application of the LMS method. Associations with sum of skinfolds and waist
circumference were additionally adjusted for height. For the GPS-17, interac-
tions with sex, age-group, country, habitual physical activity, and the time
spent on moderate and vigorous intensity physical activity were tested via
inclusion of product terms in the model.

To increase the statistical power to detect an association, a meta-analysis
using inverse variance weighted–fixed-effect models was performed for single-
SNP associations with BMI. Summary statistics from the current study were
meta-analyzed with those from two recently reported studies examining a
cohort of children of the Children’s Hospital of Philadelphia (CHP) (N �
6,078) (28) and the Avon Longitudinal Study of Parents and Children

TABLE 1
Descriptive characteristics of children and adolescents of the EYHS stratified by sex

Children (n � 1,252) Adolescents (n � 790)
Male (n � 593) Female (n � 659) Male (n � 351) Female (n � 439)

Age (years) 9.7 � 0.4 9.6 � 0.4 15.5 � 0.5 15.5 � 0.5
Tanner stage (1–5) 1.03 � 0.17 1.29 � 0.50 4.30 � 0.89 4.35 � 0.68
BMI (kg/m2) 17.1 � 2.2 17.1 � 2.6 20.5 � 2.5 20.5 � 2.7
Weight (kg) 33.3 � 6.1 33.1 � 6.9 62.5 � 10.1 56.2 � 8.3
Height (cm) 139.1 � 6.6 138.7 � 6.7 174.3 � 7.6 165.3 � 6.0
Sum of skinfolds (mm) 29.5 � 14.4 37.0 � 18.1 32.1 � 15.3 47.8 � 17.0
Waist circumference (cm) 59.4 � 5.5 58.4 � 6.6 71.3 � 5.9 66.8 � 5.8
Physical activity (cpm) 740.2 � 235.7 613.2 � 188.3 558.8 � 238.5 455.0 � 166.4
Moderate/vigorous physical activity

(% registered time) 11.1 � 5.2 7.9 � 3.8 8.0 � 4.9 6.2 � 3.5
% normal weight 80.8 85.7 86.0 88.2
% overweight, nonobese 12.1 9.1 8.8 9.3
% obese 7.1 5.2 5.1 2.5

Data are means � SD. Obese, BMI �95th percentile; overweight but nonobese, BMI � 85th percentile and �95th percentile; normal weight,
BMI �85th percentile. For moderate and vigorous intensity physical activity, data were available for 408 and 462 children (male and female,
respectively) and 166 and 247 adolescents.
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(ALSPAC) (N � 4,951) (20) for SNPs in loci identified in GWA studies for
BMI. The meta-analysis included a maximum sample of 13,071 children and
adolescents for variants in or near NEGR1, TMEM18, GNPDA2, MTCH2,
SH2B1, FTO, MC4R, and KCTD15, for which data were available from EYHS,
ALSPAC, and CHP, and 8,120 children and adolescents for variants in or near
SEC16B, ETV5, BDNF and BCIN3D, for which data were available from EYHS
and CHP only. Five SNPs were identical to those studied in the EYHS. For
eight SNPs, the CHP and/or ALSPAC studies had reported results on proxy
SNPs that were either in complete linkage disequilibrium (r2 � 1; three SNPs)
or high linkage disequilibrium (r2 � 0.8–1.0; four SNPs). For the KCTD15

locus, the CHP study reported on a variant of which linkage disequilibrium
with the variant chosen in EYHS and ALSPAC was somewhat lower but still
acceptable (r2 � 0.64) (supplementary Table 2). Effect sizes observed in the
meta-analysis in children and adolescents were compared with those reported
recently in adults from the EPIC-Norfolk study, a large population-based
sample (N � 20,431) in which the associations of variants in the 12 obesity
susceptibility loci identified in GWA studies for BMI with BMI and waist
circumference were recently reported (39).

Statistical analyses were performed using SAS, version 9.1, for Windows
(SAS Institute, Cary, NC). STATA software was used for the meta-analysis and
to compare effect sizes of children/adolescents and adults (metan), as well as
to determine the power to detect such a difference in effect size (sampsi)
(version 10; StataCorp, College Station, TX). A two-sided P value �0.05 was
considered statistically significant.

Quanto, v1.1.1 (http//hydra.usc.edu/gxe), was used to estimate the smallest
effect size detectable with a power of 80% and an �-level of 5% (supplementary
Fig. 1A), as well as to estimate the power to detect association as a function
of the frequency of the effect allele—both assuming an additive model
(supplementary Fig. 1B).

RESULTS

The association of 15 of the 17 obesity susceptibility SNPs
with BMI, sum of skinfolds, and waist circumference was

directionally consistent with results reported in the origi-
nal GWA studies, 7 of which reached statistical signifi-
cance (Table 2). Variants in/near TMEM18 and SEC16B

showed the largest effect size for all three continuous
traits (Table 2 and supplementary Fig. 2). For both loci,
effect sizes were twofold larger for associations with BMI
and sum of skinfolds than for waist circumference. For
rs2605100 near LYPLAL1, effect sizes were fivefold larger
for associations with sum of skinfolds and waist circum-
ference than for association with BMI (Table 2 and sup-
plementary Fig. 2). Associations with sum of skinfolds and
waist circumference remained significant after addition-
ally adjusting for BMI (effect size 0.047 and 0.050 SD/allele;
P value � 0.0035 and 0.0095, respectively). Associations
with obesity risk were most pronounced for variants near
TMEM18 and ETV5 (supplementary Table 3 and supple-
mentary Fig. 3). Variants in/near TMEM18 and BCIN3D
were significantly associated with greater height (Table 2).

Based on effect allele frequencies (supplementary Table
1) and effect sizes for BMI reported earlier in children/
adolescents (Fig. 2), the power to detect single SNP
associations with anthropometric traits in EYHS alone
ranged from �10% for variants in/near ETV5, BDNF (SNP
2), MTCH2, and SH2B1 to 80% for the SNP in FTO
(supplementary Fig. 1). This may explain why few associ-
ations reached statistical significance. The meta-analysis
in up to 13,071 children and adolescents, however, showed
significant associations with BMI for 9 of 13 variants (Fig.
2). There was little heterogeneity in effect size across the
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three studies except for the near-NEGR1, SEC16B, FTO,
and near-MC4R variants (Pheterogeneity � 0.13, 0.045, 0.006,
and 0.069, respectively). The most pronounced effect on
BMI was observed for the near-TMEM18 variant (0.098
SD/allele [95% CI 0.07–0.13]), followed by variants in or
near FTO (0.076 [0.05–0.10]), SEC16B (0.068 [0.03–0.10]),
and MC4R (0.067 [0.04–0.09]) (Fig. 2). Variants in/near
ETV5, BDNF (SNP 2), MTCH2, and SH2B1 were not
significantly associated with BMI in the meta-analysis.

The power to detect a difference in effect size between
children/adolescents and adults was low (5–47%), and
differences in effect size ranging from 0.045 to 0.069
SD/allele between age-groups could be detected with 80%
power (supplementary Table 1). Whereas no differences
reached statistical significance (Fig. 3), the associations
tended to be more pronounced in children/adolescents
than in adults for variants near KCTD15, SEC16B, and
TMEM18 (Pheterogeneity � 0.086, 0.11, and 0.16, respec-
tively). The effect size of the BDNF variant (rs925946), on
the other hand, was twice as large in children and adoles-
cents as that in adults (Pheterogeneity � 0.14) (Fig. 3).

The GPS-17, which examines the cumulative effects of
the 17 SNPs in EYHS, was significantly associated with
BMI (effect size 0.034 SD/allele [95% CI 0.018–0.050]; P �
3.6 � 10�5), sum of skinfolds (0.039 [0.024 - 0.053]; P �
1.7 � 10�7), and waist circumference (0.022 [0.011–0.034];
P � 1.7 � 10�4) (Table 2), explaining 0.8, 1.1, and 0.4% of
their variance, respectively. The 3.2% (N � 58) of individ-
uals who carried 21 or more effect alleles had a BMI that
was 0.51 SD, a sum of skinfolds that was 0.28 SD, and a
waist circumference that was 0.35 SD larger than the 2.9%
(N � 53) of individuals who carried 10 or fewer effect
alleles (Fig. 1). The associations of the GPS-12, which
includes only the 12 variants of the GPS used in the
EPIC-Norfolk study for adults (N � 20,431), were slightly
more pronounced; 0.044 SD/allele for BMI (95% CI 0.025–
0.063), 0.043 for sum of skinfolds (0.026–0.061), and 0.025
for waist circumference (0.011–0.039). These effect sizes
were similar to those reported for adults of the EPIC-
Norfolk study (i.e., 0.039 SD/allele for BMI [95% CI 0.031–
0.047] and 0.033 for waist circumference [0.025–0.041])
(39).

The GPS-17 did not show a significant association with
height (effect size 0.012 SD/allele [95% CI �0.004 to 0.029];
P � 0.15), whereas the GPS-12 did (0.023 [0.003–0.043];
P � 0.024) (Table 2). The latter association was substan-
tially attenuated after removing the near-TMEM18 and
BCIN3D variants from the score (effect size 0.015 SD/
allele; P value 0.19), suggesting that the association was
largely driven by these variants.The association of the
GPS-17 and the risk of obesity and overweight showed that
each additional effect allele was associated with a 1.12-fold
increased odds of obesity (95% CI 1.04–1.22) and a 1.09-
fold increased odds of overweight (1.04–1.15) (supplemen-
tary Table 3). Consistent with the observation for
continuous traits, the GPS-12 showed somewhat more
pronounced effects than the GPS-17, with 1.18-fold (1.08–
1.30) and 1.13-fold (1.06–1.20) increased odds for obesity
and overweight per additional effect allele, respectively.
These effects were similar to those reported for adults, i.e.,
1.11 (1.08–1.14) and 1.06 (1.04–1.07) for obesity and
overweight, respectively (39).

We found no evidence for sex-, age-group–, or country-
specific effects of the GPS-17 on BMI, sum of skinfolds, or
waist circumference or on the risk of obesity or over-
weight (P � 0.4 for product terms). Furthermore, no
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significant interactions were observed between either
overall physical activity or the fraction of time spent on
moderate and vigorous intensity physical activity and the
GPS-17 for any of these anthropometric traits (P � 0.15 for
product terms).

DISCUSSION

Nine of 13 variants in the obesity susceptibility loci
identified by GWA studies in adults also showed significant
associations with BMI in a meta-analysis of up to 13,071
children and adolescents. In the EYHS, for which we had
data on 16 obesity susceptibility loci, BMI, skinfolds, and
waist circumference, effect sizes were similar across traits
for most variants. Each additional effect allele in the
GPS-17, which combined the data of 17 variants in 16
obesity susceptibility loci, increased BMI by 0.034 SD, sum
of skinfolds by 0.039 SD, and waist circumference by
0.022 SD.

Four of the 13 variants included in the meta-analysis for
BMI showed a moderate to high heterogeneity in effect
size between studies (I2 � 50%), which is more than would
be expected based on chance. The near-NEGR1 and
SEC16B variants were more strongly associated with BMI
in EYHS than reported earlier in children and adolescents
(20,28), whereas the variants in/near FTO and MC4R were
strongly and significantly associated with BMI in ALSPAC
(20) and CHP (28) but not in EYHS.

Overall, the effect size for BMI was largest for the
near-TMEM18 variant (0.098 SD/allele), followed by the
FTO, SEC16B, and near-MC4R variants (0.076, 0.068, and
0.067 SD/allele, respectively), and ranged from 0.033 to
0.055 SD/allele for the five remaining variants that reached
significance. In adults, the FTO locus has the largest effect
of all currently established obesity susceptibility loci
(19,20). Our study was not sufficiently powered to examine
whether differences in effect size between the near-
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TMEM18 and FTO variants were statistically significant.
Larger studies, as well as longitudinal studies, are needed
to identify changes in effect sizes during the life course. A
recent longitudinal study on the life course effects of the
FTO and near-MC4R loci suggests that, at least for these
loci, effects strengthen during childhood and adolescence,
peak at age 20 years, and weaken during adulthood (24).

Of the four variants that were not significantly associ-
ated with BMI, the association of rs925946 in BDNF (P �
0.076) was directionally consistent with that observed in
adults (19,39,41), whereas for the near-MTCH2 variant the
association was completely absent. For variants near
ETV5 and SH2B1, results remain inconclusive; associa-
tions were not significant in the meta-analysis but were
directionally consistent with those reported earlier in
adults (19,20,39,41). Studies of larger samples may be
required to confirm an association of these variants with
anthropometric traits in children.

In EYHS, rs2605100 was associated with sum of skin-
folds and waist circumference but not with BMI. This SNP,
which is located 	259 kb upstream of LYPLAL1, was also
associated with waist circumference but not with BMI in
adult women (22). The present study extends these re-
sults, strongly suggesting that the locus represents a pure
abdominal obesity hit that is already seen in children. This
is an important finding because waist circumference is
independently associated with the risk of death in adults
(42) and is already associated with elevated concentra-
tions of lipids and insulin in children (43). Contrary to the
original study in adults, no evidence was observed for a
sex-specific effect of the near-LYPLAL1 variant on waist
circumference (Pinteraction term � 0.50) in children and
adolescents. The LYPLAL1 gene encodes a lysophospho-
lipase-like 1 protein that may act as a triglyceride lipase
and is upregulated in subcutaneous adipose tissue of
obese individuals (44).
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No significant differences in effect size were observed
for BMI between children/adolescents and adults of the
EPIC-Norfolk study (39). However, effect sizes tended to
be 1.4- to 2.8-fold higher in children/adolescents than in
adults for variants in/near SEC16B, TMEM18, and
KCTD15 and twofold lower for rs925946 in BDNF. This
discrepancy may reflect a truly different association with
adiposity between age-groups but may also result from a
lack of comparability of the phenotype. The GPS-12
showed that the cumulative or average effect of 12 obesity-
susceptibility loci on BMI and waist circumference was
very similar in children/adolescents and adults (39).

As was reported earlier in adults of the EPIC-Norfolk
study, the GPS-12 and GPS-17 tended to be more strongly
associated with BMI than with waist circumference. The
GPS-17 and GPS-12 both explained 	1% of the inter-
individual variation in BMI and sum of skinfolds and
	0.4% of the variation in waist circumference. This
suggests that the predictive value for risk of obesity
based on these variants is likely very low in children and
adolescents, consistent with observations in adults (39).
In the EYHS, effect sizes were larger for the GPS-12 than
the GPS-17 for all anthropometric traits. Apparently,
SNPs identified in GWA studies for BMI are on average
more strongly associated with (abdominal) obesity than
SNPs identified in GWA studies for waist circumference
in children/adolescents.

In contrast with previous results in adults, the GPS-12
was additionally associated with height. However, this
association was largely attenuated after removal of the
near-TMEM18 and BCIN3D variants from the score. More-
over, the effect size of the GPS-12 for BMI was almost
twice that of height, indicating a larger effect on body mass
than on height. Objectively measured habitual physical
activity did not modify the association of the GPS-17 with
anthropometric traits in EYHS. This may result from a
relatively high level of physical activity in children and
adolescents compared with adults. Physical activity mea-
sured by Actigraph in EYHS was comparable with earlier
reports in children from the ALSPAC and SPEEDY cohorts
(45,46) but higher than reported in adults (47,48). Alterna-
tively, the lack of interaction may result from the relatively
small sample in which objective data on physical activity
were available.

At this stage, little is known about the mechanisms
responsible for the association of these loci with anthro-
pometric traits. Given that NEGR1, TMEM18, GNPDA2,
FTO, MC4R and KCTD15 are all expressed at high levels in
the hypothalamus (20,49,50), the associations may result
from a neuronal effect on energy balance. However, many
of these loci are located near multiple genes, and before a
neuronal influence on energy balance can be confirmed,
the causal variants will have to be identified.

In conclusion, common variants in obesity susceptibility
loci identified by GWA studies in adults have, on average,
similar effect sizes on anthropometric traits and risk of
obesity in children and adolescents, with variants in the
TMEM18 locus showing the largest effect. Although the
association of some variants may not be constant through-
out life, this discrepancy levels off when their cumulative
effect is evaluated.
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