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A variety of pathogens take advantage of cellular heat shock proteins (HSPs) to
complete their life cycle and exert pathogenic effects. MRJ (DNAJB6), a member of the
heat shock protein 40 family, acts as a molecular chaperone for a wide range of cellular
processes. MRJ mutations are linked to human diseases, such as muscular dystrophy
and neurodegenerative diseases. There are two MRJ isoforms generated by alternative
use of terminal exons, which differ in their C-terminus. This mini-review summarizes how
these two MRJ isoforms participate differentially in viral production and virulence, and
the possibility for MRJ as a therapeutic target.
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INTRODUCTION

Heat shock proteins (HSPs) function as molecular chaperones, thereby assisting protein folding,
and non-covalent assembly or disassembly of macromolecules (Whitley et al., 1999). HSPs are
structurally related proteins and classified based on their molecular weights, ranging from 10
to >100 kDa (Jee, 2016). HSP subfamily members exert similar functions across species. For
example, small HSPs (HspB1 to HspB10) prevent the aggregation of misfolded proteins in an
ATP-independent manner (Bakthisaran et al., 2015). ATP-dependent chaperones include Hsp60,
Hsp70, and Hsp90. Hsp60 assists protein refolding throughout transport from the cytoplasm to
the mitochondrial matrix (Cheng et al., 1989), while Hsp70 exerts the anti-aggregation activity with
co-chaperones Hsp40 or Hsp110 (Kampinga and Craig, 2010). Hsp40 presents unfolded proteins to
Hsp70 and stimulates its ATP hydrolysis (Bascos et al., 2017). Hsp90 regulates assembling, refolding
and stabilizing of substrate proteins (Wandinger et al., 2008). HSPs function in a wide range of
cellular processes to maintain protein homeostasis under physiological conditions and in response
to environmental stresses (Hipp et al., 2019).

Invasion of pathogens, such as bacteria or viruses, may trigger cell stress responses and hence
induces the production of cellular HSPs. Various viruses take advantage of cellular HSPs to
overcome host environmental challenges and complete their infectious cycles (Neckers and Tatu,
2008). HSPs may participate in distinct steps during infection processes, such as viral entry,
replication, and viral particle assembly and movement (Table 1). It is noteworthy that dengue
virus particularly utilizes a set of Hsp70 family members for its entry, RNA replication and virion
production (Taguwa et al., 2015). Moreover, some of the HSPs, particularly Hsp70, even become an
integral component of virions (Santoro et al., 2009). All these findings emphasize the importance
of HSPs in viral infection.
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Heat shock proteins may also negatively impact viral infection.
For example, two Hsp40 members inhibit the replication of
human hepatitis B virus (HBV) (Sohn et al., 2006). Hsp70
interferes with nuclear import of the human immunodeficiency
viruses (HIV) preinitiation complex, and viral gene expression
and replication (Kumar et al., 2011). In addition, HSPs have
immunomodulatory roles, although opposing. HSPs may act as
a pro-inflammatory molecule by facilitating pathogenic antigen
presentation on the antigen-presenting cells (Binder, 2014).
On the other hand, HSPs may prevent immune activation
by reducing inflammatory damages and promoting anti-
inflammatory cytokines production (Hauet-Broere et al., 2006;
Broere et al., 2011). Together, HSPs are engaged in both host
immune response and viral pathogenesis during infection.

THE MRJ PROTEIN AND ITS
FUNCTIONAL DOMAINS

Mammalian relative of DnaJ (MRJ/DNAJB6) is an Hsp40 family
member. The Hsp40 family can be categorized into three
major types (I, II, and III), all of which share the ∼70-amino
acid J-domain (Li et al., 2009; Figure 1A). In type-I Hsp40
proteins, the J-domain is at the N-terminus, followed by the
glycine/phenylalanine (G/F)-rich region, the zinc finger domain,
and the peptide-binding domain in the C-terminus. Type-II
is similar to type-I but lacks a zinc finger domain. Type-III
members contain only the J-domain, whose location differs
between members (Qiu et al., 2006). Many, but not all, Hsp40
members act as cochaperones of Hsp70 by forming a heterodimer
through the J-domain (Langer et al., 1992; Meacham et al., 1999;
Lee et al., 2002). The J-domain of Hsp40 containing the invariant
histidine-proline-aspartic acid (HPD) tripeptide stimulates the
ATPase activity of Hsp70 and increases the affinity of Hsp70 for
the polypeptide substrate released from Hsp40 (Summers et al.,
2009). The G/F-rich region of MRJ contains several hydrophobic
residues responsible for substrate recognition; phenylalanine
mutations disrupt its anti-aggregation activity (Sarparanta et al.,
2012; Palmio et al., 2015). The C-terminal part of MRJ contains
a serine/threonine (S/T)-rich region, which is important for
substrate binding (Kakkar et al., 2016). Nevertheless, Hsp40s
bind and transfer non-native polypeptides to Hsp70 through
distinct mechanisms, which are subject to further processing
(Summers et al., 2009). In addition, the C-terminal region of
MRJ is also involved in polydisperse oligomeric complexes and
oligomerization (Hageman et al., 2010; Figure 1B, protein). All
these functional domains are present in both splice isoforms of
MRJ (see below).

REGULATION OF MRJ ISOFORM
EXPRESSION

MRJ is ubiquitously expressed in human tissues, with a higher
level in the brain (Chuang et al., 2002). MRJ is upregulated
during mitosis in HeLa cells perhaps to support mitotic activities
(Dey et al., 2009). Human MRJ has two splice isoforms, MRJ-L

and MRJ-S, generated through alternative splicing (Hanai and
Mashima, 2003). The MRJ gene has ten exons. The first eight
exons are included in both isoforms, while the last two exons
are missing in MRJ-S (Ko et al., 2018; Figure 1B, mRNA). MRJ-
L and MRJ-S proteins are comprised of 326 and 241 amino
acid residues, respectively; both possess the aforementioned three
functional domains. MRJ-L has a nuclear localization signal
(NLS) in its very C-terminal region. Suppression of splicing in
conjunction with activation of aberrant polyadenylation signals
in intron 8 leads to MRJ-S expression. MRJ has been identified
as a potential target transcript of cleavage stimulation factor
subunit 2 (CstF64/CSTF2), a cleavage stimulation factor for
mRNA 3’-end processing (Yao et al., 2012). Knockdown or
overexpression of CstF64, respectively, increases and decreases
the L/S isoform ratio (Ko et al., 2018). A decline in the CstF64
level during macrophage differentiation favors MRJ-L expression
(Figure 1B, mRNA). In addition, serine/arginine-rich splicing
factor 3 (SRSF3) may promote MRJ-S expression (Ko et al., 2018).
Cyclin-dependent kinase 12 (CDK12) amplification in breast
cancer results in downregulation of MRJ-L via modulating its
terminal exon selection (Tien et al., 2017). Thus, the MRJ isoform
ratio may be modulated in response to different cellular signals.
Moreover, MRJ-L expression can be enhanced by increasing
the strength of the 5’ splice site of intron 8. Single nucleotide
variations in the proximal polyadenylation signal and the
polypyrimidine tract of intron 8 also affect MRJ isoform ratios.
Thus, both alternative splicing and alternative polyadenylation
activities determine MRJ isoform expression (Ko et al., 2018).

CELLULAR FUNCTIONS OF MRJ

MRJ knockout mice show embryonic lethality due in part to
placental abnormalities and neural tube defects (Hunter et al.,
1999; Watson et al., 2009). MRJ is involved in a variety of
physiological processes, from transcription, cellular signaling
to cell adhesion. MRJ suppresses the transcriptional activity
of nuclear factors of activated T-cells (NFAT) by recruiting
class II histone deacetylases, and hence, reduces calcineurin-
induced cardiac myocyte growth. This observation suggests a
role of MRJ in preventing cardiac hypertrophy (Dai et al.,
2005). More notably, MRJ suppresses Wnt/β-catenin signaling
through multiple pathways. Essentially, MRJ upregulates the
secretary glycoprotein and Wnt inhibitor dickkopf 1 (DKK1)
and maintains the dephosphorylation status of glycogen synthase
kinase 3β (GSK3β) through the protein phosphatase PP2A and
hence promotes degradation of β-catenin (Meng et al., 2016).
This suppressive effect of MRJ on Wnt-β-catenin signaling
negatively regulates tumor growth and metastases. Accordingly,
a reduction of the MRJ level is present in various invasive and
metastatic cancers as earlier mentioned. On the other hand, MRJ
influences cytoskeletal organization, which is responsible for cell
growth, division, and migration. For example, MRJ modulates
intermediate filament organization via its direct interaction
with keratins (Izawa et al., 2000). MRJ knockout causes actin
cytoskeletal collapse in chorionic trophoblast cells (Watson et al.,
2011). MRJ also contributes to cell adhesion and migration
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TABLE 1 | Function of the HSP-virus interaction.

HSP family Member Virus Interacting viral
proteins

Engrave roles in HSP-virus
interaction

References

Hsp40 DNAJA1,
DNAJB1

IAV NP, PB2, PA Enhance nuclear import of vRNP
complex and viral RNA synthesis

Cao et al., 2014; Batra
et al., 2016

DNAJA2 HCV NS5A NS5A-mediated IRES translation Gonzalez et al., 2009

Hsp60 HSPD HBV HBx Enhance HBx-induced apoptosis and
HBx protein folding

Tanaka et al., 2004; Zhang
et al., 2005

Virus polymerase Enhance viral polymerase activity Park et al., 2002

Hsp70 HSPA1A HIV Virion Virion assembly Gurer et al., 2005

HSPA1A MuV P protein Facilitate IBs formation and modulate
degradation of P protein

Katoh et al., 2015

HSPA1A HCV NS5A NS5A-mediated IRES translation Gonzalez et al., 2009

HSPA1,
HSPA2, HSPA8

KSHV RTCs Facilitate RTCs formation and nuclear
import

Baquero-Perez and
Whitehouse, 2015

HSPA5 RSV Viral IBs Enhance viral polymerase activity Brown et al., 2005

HSPA9 HBV HBx Viral protein folding Zhang et al., 2005

Hsp90 HSP90AA1,
HSP90AB1

IAV PB1, PB2 Facilitate vRNP stabilization and nuclear
import, viral RNA synthesis

Momose et al., 2002; Naito
et al., 2007

HSP90AA1 Rotavirus NSP3 Viral protein folding and stabilization Dutta et al., 2011

HSP90A RSV Viral filaments and IBs Viral particle assembly Radhakrishnan et al., 2010

HSP90 MuV L protein Viral protein stabilization Katoh et al., 2017

HSP90 HCV NS3 Viral protein stabilization Ujino et al., 2009

IAV, influenza A virus; NP, nucleoprotein; vRNP, viral ribonucleoprotein complex; PB2, polymerase basic protein 2; PB1, polymerase basic protein 1; PA, polymerase acidic
protein; HCV, hepatitis C virus; NS5A, non-structural 5A protein; HBV, hepatitis B virus; HBx, hepatitis B virus X protein; HIV, human immunodeficiency virus; MuV, mumps
virus; P protein, phophoprotein; KSHV, kaposi’s sarcoma-associated herpes virus; RTCs, replication and transcription compartments; RSV, respiratory syncytial virus; IBs,
inclusion bodies; NSP3, non-structural protein 3; L protein, large protein; NS3, non-structural protein 3.

via its interaction with urokinase-type plasminogen activator
receptor (uPAR) (De Bock et al., 2010; Lin et al., 2014). A recent
report reveals that MRJ promotes spindle pole focusing via its
interaction with dynactin, which is essential for chromosome
segregation during cell division (Rosas-Salvans et al., 2019).

PATHOLOGICAL EFFECTS OF
DEFECTIVE MRJ

Genetic mutations or dysfunction of MRJ have been
observed in human diseases such as limb-girdle muscular
dystrophy (LGMD), myopathy and neurodegenerative diseases.
Phenylalanine mutations in the (G/F)-rich region of MRJ
are found in LGMD and distal myopathy, indicating that the
chaperone activity of MRJ is critical for preventing proteinopathy
(Harms et al., 2012; Sarparanta et al., 2012; Li et al., 2016; Jonson
et al., 2018). MRJ mutations result in myofibrillar aggregates
containing ubiquitin, ubiquitin-binding protein p62 and TAR
DNA-binding protein 43 (TDP-43) (Sato et al., 2013; Sandell
et al., 2016). Notably, TDP-43 aggregation is a characteristics of
amyotrophic lateral sclerosis (Tamaki et al., 2018), emphasizing
the pathological effect of defective MRJ in neurodegenerative
disorders. The C-terminal S/T-rich region in MRJ exhibits the
suppressive effect on the formation of different aggregation-
prone peptides such as amyloid-β and polyglutamine peptides
that are involved in the pathogenesis of Alzheimer’s disease and
Huntington’s disease, respectively (Kakkar et al., 2016; Mansson
et al., 2018; Bason et al., 2019). MRJ has also been implicated

in Parkinson’s disease. Upregulation of MRJ in parkinsonian
astrocytes prevents the neuronal release of α-synuclein/SNCA,
which has the potential to form toxic aggregates, suggesting
a protective role of MRJ (Durrenberger et al., 2009; Aprile
et al., 2017). A more recent study indicates that the chaperone
activity of MRJ also suppresses mutant parkin aggregation
(Kakkar et al., 2016). Thus, it is likely that the chaperone
function of MRJ contributes to preventing protein misfolding in
neurodegenerative diseases.

ROLE OF MRJ IN VIRUS INFECTION

In addition to the cellular functions above mentioned, both MRJ
isoforms have been implicated in infection and pathogenesis of
multiple human viruses. A recent report unveils the involvement
of a translocon complex factor, Sec61, in the biogenesis of
several different viral proteins, suggesting that targeting Sec61
can provide an antiviral strategy against multiple viruses (Heaton
et al., 2016). In light of this finding, we review the roles of MRJ
in infection and propagation of several viruses and discuss the
potential of targeting MRJ as an antiviral strategy.

Human Immunodeficiency Viruses (HIV)
Human immunodeficiency viruses is a retrovirus that causes
acquired immunodeficiency syndrome (AIDS), which destroys
the immune system of infections (Sharp and Hahn, 2011). HIV
infects macrophages and CD4+ T helper cells through the CD4
receptor and its coreceptor, i.e., chemokine receptor CCR5 or
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FIGURE 1 | Human MRJ gene and functions in the viral life cycle. (A) Schematic diagram of three major types of Hsp40. All contain the J-domain. The J-domain is
located at the N-terminus of type I and II Hsp40 but is found at various locations within the type III members. Additional domains are as depicted. (B) Schematic
diagram (upper) shows genomic organization of the human MRJ gene and its transcript isoforms that are generated by alternative splicing and polyadenylation.
A reduction in the CstF64 level in macrophages favors MRJ-L production. A morpholino oligonucleotide targeting the 5’ splice site of intron 8 suppresses

(Continued)
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FIGURE 1 | Continued
MRJ-L expression. The bottom schematic diagram shows three major domains of the MRJ protein, including the J-domain followed by the G/F-rich domain in the
N-terminal part, and the C-terminal peptide-binding domain, which interacts with denatured polypeptides and also directs the function of Hsp70. The conserved
HPD motif of the J-domain, the SSF and SST motifs (namely the S/T-rich region) in the C-terminal peptide-binding domain and LGMD-associated mutations in the
G/F domain are indicated. MRJ-S has a truncated C-terminal domain that lacks the NLS. (C) The two MRJ isoforms participate in the infection of the following
viruses. HIV, MRJ-L facilitates nuclear import of the PIC via its interaction with Vpr (HIV-1) or Vpx (HIV-2), and hence facilitates the integration of the HIV genome into
host chromosomes. HCMV, MRJ-L interacts with the DNA polymerase UL70 of HCMV and facilitates its nuclear import so that MRJ-L enhances viral genome
synthesis. RSV, MRJ-L is essential for the expression of viral mRNAs and proteins, and viral production, but how it functions remains yet unclear. DENV: DENV
replicates its genomes released from the pore of DENV-induced vesicle-like structures. The newly synthesized genome is packaged in the nucleocapsid with the
capsid protein, which subsequently buds form proximal ER membranes. MRJ-S is colocalized with the viral capsid protein on the LD surface and facilitates viral
assembly. Assembled viruses are transported to the Golgi apparatus for the maturation processes.

CXCR4 (Maartens et al., 2014). After infection, HIV is integrated
into the human genome, which is essential for the viral life
cycle (Moir et al., 2011). For integration, HIV establishes the
pre-integration complex (PIC), consisting of the cDNA that is
converted from its genomic RNA and several cellular and viral
proteins including the viral protein R (Vpr). Vpr participates
in proviral integration into the host genome (Chiang et al.,
2014; Pirrone et al., 2014). MRJ-L facilitates nuclear localization
of the HIV-1 pre-integration complex via its direct interaction
with Vpr (Chiang et al., 2014). As compared to MRJ-L, MRJ-
S displays a relatively weak activity in nuclear localization of
Vpr/Vpx likely due to its lack of the C-terminal NLS of MRJ-L
(Cheng et al., 2008; Chiang et al., 2014). Notably, mutations in the
HPD motif of MRJ-L disrupt the activity of MRJ-L in facilitating
Vpx (or HIV) nuclear import, indicating the involvement of
Hsp70 (Cheng et al., 2008). Analogously, MRJ-L assists nuclear
import of the HIV-2 viral protein X (Vpx), the paralog of HIV-
1 Vpr. Depletion of MRJ-L restricts HIV-2 replication due to
reduced nuclear import of the PIC (Cheng et al., 2008). On the
other hand, overexpression of MRJ-S suppresses HIV proviral
transcription and hence compromises HIV-1 production (Urano
et al., 2013). These observations together suggest that a higher
L/S ratio of MRJ may promote HIV infection (Figure 1C, HIV).
A cohort study reveals that HIV-infected individuals indeed
exhibit a slightly higher level of MRJ-L in macrophages than
healthy subjects (Chiang et al., 2014), supporting the positive
role of MRJ-L in HIV-1 infection. It is speculated that cis-
element polymorphisms of MRJ that favor L isoform expression
may increase the probability of HIV infection (Ko et al., 2018).
Therefore, the MRJ-L level difference between individuals may
predict HIV susceptibility. On the other hand, the negative
regulatory factor (Nef) of HIV facilitates nuclear translocation
of Hsp40, which subsequently facilitates viral gene expression.
Nevertheless, Hsp70 can counteract the nuclear import of Vpr-
mediated PIC complex and hence inhibits viral replication
(Iordanskiy et al., 2004).

Human Cytomegalovirus (HCMV)
Human cytomegalovirus is a common opportunistic pathogen
that may establish long-life latency without any symptoms
in healthy individuals but may threaten immunocompromised
individuals and neonates (Kenneson and Cannon, 2007). HCMV
has the largest genome among the human herpesviruses and
replicates in the nucleus of cells. The HCMV DNA-dependent
RNA polymerase, i.e., the primase UL70, forms the helicase-
primase complex with UL102/105 to synthesize short RNA

primers for viral DNA replication (McMahon and Anders, 2002).
MRJ-L interacts with UL70 through a fragment containing the
G/F-rich region and facilitates nuclear entry of UL70, thereby
promoting viral DNA synthesis (Figure 1C, HCMV). On the
other hand, MRJ-S is co-localized with the primase in the
cytoplasm that reduces viral genome expression and synthesis
(Pei et al., 2012). Thus, MRJ isoforms differentially modulate
HCMV replication. Reduction of the MRJ-L expression level
conceivably inhibits viral lytic infection and can be used as an
anti-HCMV strategy (Biron, 2006).

Respiratory Syncytial Virus (RSV)
Human RSV causes lower respiratory tract infection in infants
and children worldwide. RSV infection shows a higher risk
of mortality compared to seasonal influenza infection in
elder individuals (Kwon et al., 2017). RSV belongs to the
Paramyxoviridae family, consisting of a negative-sense single-
stranded RNA genome that replicates in the host cytoplasm.
The viral RNA-dependent RNA polymerase is responsible for
both viral transcription and replication (Noton et al., 2019).
Intriguingly, knockdown of MRJ-L reduces viral mRNA and
protein expression and virion production, while depletion of
MRJ-S has no such effects (Ko et al., 2018), indicating the critical
role of MRJ-L in RSV propagation. Nevertheless, whether MRJ-
L interferes with the RNA polymerase activity of RSV remains
to be determined. Additionally, whether the nuclear localization
property of MRJ-L is required for RSV viral production also
remains puzzling (Figure 1C, RSV). If this were the case, it would
be interesting to elucidate why an RNA virus, which completes
its life cycle in the cytoplasm, requires the nuclear function(s) of
MRJ-L for propagation.

Dengue Virus (DENV)
Dengue virus is a mosquito-transmitted pathogen and its
infection may cause haemorrhagic fever (Brady et al., 2012;
Bhatt et al., 2013). DENV is a member of the Flaviviridae
family with a positive-sense single-stranded RNA genome.
Viral genome replication and package solely occur in the host
cytoplasm. DENV infection induces autophagy that targets
cellular lipid droplets (LDs), which are endoplasmic reticulum-
derived storage organelles of neutral lipids, and hence stimulates
lipid metabolism (Randall, 2018). On the other hand, LDs are
essential for DENV production. During virion assembly, the
DENV capsid protein binds to an LD surface protein and
forms the nucleocapsids with viral genomes in the endoplasmic
reticulum (Samsa et al., 2009; Heaton and Randall, 2010).
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HSPs participate in multiple steps in the DENV life cycle
(Taguwa et al., 2015). Among them, MRJ-S is colocalized with
the capsid protein on LDs and aids viral particle assembly
(Taguwa et al., 2015; Figure 1C, DENV). Depletion of MRJ-S
impairs viral RNA replication and virion production (Taguwa
et al., 2015). MRJ-S with mutations in the HPD motif fails to
rescue viral production in MRJ-S-depleted cells, indicating the
cooperative role of MRJ-S and Hsp70 in viral particle biogenesis.
Nevertheless, MRJ-L is not engaged in the process of DENV
propagation (Taguwa et al., 2015).

TARGETING MRJ AS AN ANTIVIRAL
STRATEGY

Antisense morpholino oligonucleotides targeting viral RNAs or
host mRNAs that encode proteins essential for viral propagation
have been designed for treatment of viral infection (Warren
et al., 2012). For example, a splice switching morpholino
oligonucleotide can restrict influenza viral replication by
suppressing exon inclusion of the host transmembrane serine
protease 2 (TMPRSS2) (Bottcher-Friebertshauser et al., 2011). In
light of the findings that MRJ is involved in viral propagation,
it is possible to interfere with viral infection by targeting
MRJ or modulating its splice isoform expression. Depletion
of MRJ-L by siRNAs inhibits viral life cycles of HCMV and
HIV (Cheng et al., 2008; Pei et al., 2012). Our recent report
shows that a morpholino oligonucleotide complementary to
the 5’ splice site of MRJ intron 8 efficiently inhibits MRJ-L
expression in vitro (Ko et al., 2018). This morpholino disrupts
the propagation of both pesudotyped and native HIV-1 in
macrophage-like cells, and also effectively restricts subgenomic
synthesis of RSV (Ko et al., 2018). It is likewise possible that
masking the polyadenylation signal in intron 8 can suppress MRJ-
S production. Since flaviviruses share a similar viral processing
mechanism in LDs, it would be interesting to know whether MRJ-
S-targeting agents may have a broad-spectrum antiviral effect.
Since small molecule splicing modulators developed recently
demonstrate their therapeutic potentials (Bates et al., 2017), it
is worthy to evaluate whether any of them could influence MRJ
isoform ratios, and hence impact viral infection. As described
above, MRJ acts as an efficient suppressor of polyglutamine
aggregation (Chuang et al., 2002). Therefore, harnessing the
expression or chaperone activity of MRJ would be used for

treatment of neurodegenerative disorders. Together, MRJ holds
a great potential as drug targets.

CONCLUSION

It has been demonstrated that single nucleotide polymorphisms
near splice sites or polyadenylation sites of MRJ affect its isoform
expression ratio (Ko et al., 2018). Thus, individuals may vary
their susceptibility to viral infection, cancer or other disorders.
Although the chaperone activity of MRJ is likely important
for protein proteostasis, particularly disease-causing proteins,
it is yet unclear whether this activity is critical for its various
functions in viral infection. Nevertheless, the importance of the
MRJ HPD motif in supporting HIV and dengue viral production
suggests that the ATPase activity of Hsp70 contributes to viral
propagation. Identification of small molecule compounds that
selectively target HSPs has the values in prevention and treatment
of viral infection. It has been demonstrated that Hsp70 inhibitors
exert substantial antiviral activities against DENV as well as other
flaviviruses (Taguwa et al., 2015, 2019). Small molecules targeting
different domains of Hsp90 or interfering with its cochaperone
or substrate protein binding have also shown the potential in
therapeutic treatment of cancer or neurodegenerative disorders
(Shrestha et al., 2016). However, pharmacologically manipulating
the activity of Hsp40 is not yet available. Therefore, to have
a better understanding of the isoform expression and domain
structure-function relations of MRJ would be important for drug
design toward viral infection.
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