
Citation: Saavedra, E.; Mascaraque,

L.; Calderon, G.; del Campo, G.;

Santamaria, A. A Universal Testbed

for IoT Wireless Technologies:

Abstracting Latency, Error Rate and

Stability from the IoT Protocol and

Hardware Platform. Sensors 2022, 22,

4159. https://doi.org/10.3390/

s22114159

Academic Editors: Gianni Pasolini,

Margot Deruyck and Konstantin

Mikhaylov

Received: 14 April 2022

Accepted: 26 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Universal Testbed for IoT Wireless Technologies: Abstracting
Latency, Error Rate and Stability from the IoT Protocol and
Hardware Platform
Edgar Saavedra * , Laura Mascaraque, Gonzalo Calderon , Guillermo del Campo and Asuncion Santamaria

CeDInt-UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid,
Spain; lmascaraque@cedint.upm.es (L.M.); gcalderon@cedint.upm.es (G.C.); gcampo@cedint.upm.es (G.d.C.);
asun.santamaria@upm.es (A.S.)
* Correspondence: e.saavedra@upm.es

Abstract: IoT applications rely strongly on the performance of wireless communication networks.
There is a wide variety of wireless IoT technologies and choosing one over another depends on
the specific use case requirements—be they technical, implementation-related or functional factors.
Among the technical factors, latency, error rate and stability are the main parameters that affect
communication reliability. In this work, we present the design, development and validation of a
Universal Testbed to experimentally measure these parameters, abstracting them from the wireless
IoT technology protocols and hardware platforms. The Testbed setup, which is based on a Raspberry
Pi 4, only requires the IoT device under test to have digital inputs. We evaluate the Testbed’s
accuracy with a temporal characterisation—accumulated response delay—showing an error less than
290 µs, leading to a relative error around 3% for the latencies of most IoT wireless technologies, the
latencies of which are usually on the order of tens of milliseconds. Finally, we validate the Testbed’s
performance by comparing the latency, error and stability measurements with those expected for
the most common IoT wireless technologies: 6LoWPAN, LoRaWAN, Sigfox, Zigbee, Wi-Fi, BLE
and NB-IoT.

Keywords: testbed; latency; error rate; stability; performance; IoT; IIoT; LPWAN; wireless
communications

1. Introduction

In the last few years, the IoT has been established as one of the most acknowledged
paradigms, increasing the amount of related research and emerging technologies and
services [1,2], both regarding IoT devices —35 billion (×109) devices connected in 2021 [3]
and 75 billion devices expected by 2025 [4]—and monetary spending—more than EUR
1200 billion by 2027 [5].

The wireless paradigm for IoT allows medium and large coverage areas with relatively
low energy consumption by providing small processing power requirements for devices
as well as low transmission data rates [6,7], factors inherent in the IoT field itself. Despite
the wide variety in wireless IoT technologies, some actors widely dominate the current
picture of IoT communications, although this has always depended on the specific use case.
Medium-range communications such as Bluetooth and Zigbee may have accounted for up
to 28% of the wireless IoT chips in 2021 [8]. For long-range communications technologies,
only four accounted for over 96% of global, installed active devices in 2021: NB-IoT, LoRa,
LTE-M and Sigfox. NB-IoT leads this ranking with 47% of the global share, followed by
LoRa with 36% [9]. In fact, low-power wide-area network (LPWAN) protocols that rely on
licensed bands (NB-IoT, LTE-M) have surpassed those relying on non-licensed ones (LoRa,
Sigfox) in 2021 [10].

However, different technologies provide different levels of performance and need
different infrastructure requirements. Choosing one over another widely depends on the

Sensors 2022, 22, 4159. https://doi.org/10.3390/s22114159 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114159
https://doi.org/10.3390/s22114159
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8649-5849
https://orcid.org/0000-0003-0940-8814
https://orcid.org/0000-0002-2836-8013
https://orcid.org/0000-0002-4908-882X
https://doi.org/10.3390/s22114159
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114159?type=check_update&version=2

Sensors 2022, 22, 4159 2 of 23

specific use case [11], and it is not always clear how to compare their performance. The
very specific use case will set the requirements for wireless technology. Requirements may
be divided into technical factors (data rate, latency, range), implementation factors (cost,
documentation, available coverage) and functional factors (energy consumption, location
services, over-the-air upgrade) [12–15]. Into the bargain, exceptional attention must be
paid to security, especially considering the rapid growth of IoT and its more-than-ever
quasi-omnipresent presence in our lives. The research presented by Anand et al. in [16]
and that presented by Malhotra et al. in [17] are great references regarding the security
challenges in the IoT field.

Testbeds allow us to determine the realistic behaviour of IoT systems and even foresee
future possible upgrades and enhancements to the systems. As IoT systems are intrinsically
wide in nature, so are their possible characterisation targets, which make it arduously hard
to develop and validate universal performance tests for IoT in different matters.

In the literature, one can find testbed systems evaluating some specific IoT characteristics,
usually focused only on a few IoT technologies, for instance, the work of Pereira et al. [18],
in which an experimental characterisation of mobile IoT latency is carried out, or that by
Mroue et al. [19], evaluating LoRa, Sigfox and NB-IoT in a MAC layer-based approach.

There are also deep characterisations of specific IoT technologies for a relatively wide
range of matters, such as the survey by Rashmi Sharan et al. of LoRa and NB-IoT [20]; or
the work carried out by Alsukayti et al. [21], in which they analyse quality, transmission
range, power consumption and data rates for different scenarios and technologies. On top
of that, there are works evaluating different features, and challenges to face with eventual
low-latency or high-reliability IoT communication networks, such as those in [22–24].

Yet, there is not sufficient research in the literature about actual, universal, ubiquitous,
accountable testbeds. This may be due, indeed, to the massively wide nature of the IoT
field. Hossain et al. propose a manner to overcome this issue with the work presented
in [25], in which a large-scale IoT testbed-as-a-service is defined. Developing testbeds that
can integrate various types of systems, interfaces and technologies is tough but still needed
for a field with more variety and presence every day. This fact is clearly highlighted in [26],
where the authors emphasise the lack of interoperability among IoT platforms and devices.

Specifically, no universal testbed regarding temporal end-to-end characterisation for
IoT wireless technologies can be found in the literature. With this work, we want to abstract
the IoT wireless technology characteristics as much as possible, providing a straightforward
way of comparing wireless IoT technologies in different communication features: latency,
error rate and stability. We developed a universal Testbed based on a Raspberry Pi 4 (RPi),
which only requires the IoT device under test to have digital inputs (GPIO)—fact that can
be taken for granted for virtually every IoT node. In the scope of this work, we analysed
the performance of the following IoT wireless technologies: 6LoWPAN, LoRaWAN, Sigfox,
Zigbee, Wi-Fi, BLE and NB-IoT.

The rest of the paper is organised as follows: Section 2 describes the Testbed and
the workaround for this paper. In Section 3, we characterise the performance of the
Testbed to determine its temporal accuracy and precision, i.e., error range. Section 4
presents real measurements and results from our Testbed for the wireless technologies
under consideration. Finally, in Section 5, we briefly conclude the results of this work and
discuss future milestones.

2. Universal Testbed

In this Section, the Testbed environment is described, both regarding the Testbed
device itself and the laboratory set. First, we explain the IoT devices and configurations
deployed for the different wireless technologies, and how latency must be considered on a
user-level approach (Section 2.1). Then, we tackle some caveats regarding the wide variety
of wireless technologies to consider (Section 2.2). Finally, in Section 2.3, the Testbed’s user
interface and measurement data presentation are explained.

Sensors 2022, 22, 4159 3 of 23

2.1. Latency and Laboratory Workaround

Since distinct wireless IoT technologies have different topologies and key network
components, we first need to define latency. Pure upload messages are considered as they
are the main purpose of the majority of IoT applications: sending information from the
node to the user-end. So, for this scope, let us define latency—see Figure 1.

Latency: The time a message takes from the moment when the transmitting device is called to send
the message until the message is ready for utilisation at the other end (user-side).

Sensors 2022, 22, x FOR PEER REVIEW 3 of 23

2. Universal Testbed
In this Section, the Testbed environment is described, both regarding the Testbed de-

vice itself and the laboratory set. First, we explain the IoT devices and configurations de-
ployed for the different wireless technologies, and how latency must be considered on a
user-level approach (Section 2.1). Then, we tackle some caveats regarding the wide variety
of wireless technologies to consider (Section 2.2). Finally, in Section 2.3, the Testbed’s user
interface and measurement data presentation are explained.

2.1. Latency and Laboratory Workaround
Since distinct wireless IoT technologies have different topologies and key network

components, we first need to define latency. Pure upload messages are considered as they
are the main purpose of the majority of IoT applications: sending information from the
node to the user-end. So, for this scope, let us define latency—see Figure 1.

Latency: The time a message takes from the moment when the transmitting device is called to send
the message until the message is ready for utilisation at the other end (user-side).

Figure 1. Latency: abstract definition and message paths for different wireless IoT topologies. These
paths, along with the designated physical IoT devices—which are all compliant with the IoT tech-
nology of interest—actually portray the very use case deployed in the lab to do this work. Other
configurations could be also used for certain technologies and other devices as well.

Hence, time considers neither the acknowledgement (ACK) of the message nor pos-
sible retransmissions. Provided the message were lost, the transmission would count as
an error. In this manner, considering the different topologies regarding different wireless
technology’ specifications, three main groups can be defined: (1) technologies requiring a
specific gateway; (2) technologies requiring public Internet usage; and (3) technologies
requiring neither. Therefore, these groups (see Figure A1 for a detailed version on each
technology) correspond to one of the following paths:
1. A-B-E-F: 6LoWPAN, ZigBee, LoRaWAN
2. A-D-H: Sigfox, NB-IoT
3. A-C-G: Wi-Fi, BLE

Figure 1. Latency: abstract definition and message paths for different wireless IoT topologies. These
paths, along with the designated physical IoT devices—which are all compliant with the IoT tech-
nology of interest—actually portray the very use case deployed in the lab to do this work. Other
configurations could be also used for certain technologies and other devices as well.

Hence, time considers neither the acknowledgement (ACK) of the message nor pos-
sible retransmissions. Provided the message were lost, the transmission would count as
an error. In this manner, considering the different topologies regarding different wireless
technology’ specifications, three main groups can be defined: (1) technologies requiring
a specific gateway; (2) technologies requiring public Internet usage; and (3) technologies
requiring neither. Therefore, these groups (see Figure A1 for a detailed version on each
technology) correspond to one of the following paths:

1. A-B-E-F: 6LoWPAN, ZigBee, LoRaWAN
2. A-D-H: Sigfox, NB-IoT
3. A-C-G: Wi-Fi, BLE

Notice that we did not use any routing protocol or routing device so as to make all
wireless technologies point-to-point from the transmitter device to the receiver one. In
Table 1, we can see the physical devices used for every wireless technology. The message
commander is always the main RPi on which our Testbed software runs.

The first step from the RPi to the transmitter device is a wired link using two GPIOs.
We described a naïve protocol for this communication based on 2 one-way digital signals:
R (for reset) and S (for sequence). The S signal fires a rising-edge interrupt on the IoT
transmitter device, which increases the message sequence number and sends it if R is high
or otherwise resets it for a new test.

Sensors 2022, 22, 4159 4 of 23

Table 1. Physical equipment, depending on the wireless technology.

Wireless Technology RF Link Band Transmitter Receiver Gateway/Internet

6LoWPAN ISM 2.4 GHz T.I. CC2538 ARM
Based Mote

T.I. CC2538 ARM
Based Mote

gateway:
BeagleBone Black

LoRaWAN ISM 868 MHz Pycom FiPy Semtech SX1301
Based Mote

gateway:
Raspberry Pi 4

Sigfox ISM 868 MHz Pycom FiPy Sigfox Backend public Internet needed

Zigbee ISM 2.4 GHz SiLabs MGM210P SiLabs MGM210P gateway:
SiLabs SLWSTK6102A

Wi-Fi ISM 2.4 GHz Pycom FiPy Raspberry Pi 4 none

BLE ISM 2.4 GHz Pycom FiPy Raspberry Pi 4 none

NB-IoT LTE band 20 Pycom FiPy Vodafone Network public Internet needed

The next steps (B, C, D) are the RF link and correspond to the communication between
the IoT end-device and its receiver—what we can consider the pure IoT communication
phase. This path can be between two similar devices (path B: 6LoWPAN, Zigbee, LoRaWAN;
or path C: Wi-Fi, BLE) or between the end-device and a public base-station-type receiver
device (path D: Sigfox, NB-IoT).

In the last steps, the message travels (F, G, H) back to the main RPi, which parses the
data received for latency, error and stability calculations. All communications are local,
except for the last piece in the case of Sigfox and NB-IoT (H), as their own nature and
working principles imply the usage of the carrier’s infrastructure and the public Internet to
finally return back to the RPi.

It is worth noting that there might be other possible topologies and configurations for
the wireless technologies, especially for pieces E, F, G, H, as long as they comply with their
specifications and requirements. This whole work is focused on the very setup we used for
each wireless technology, bearing in mind our aim to make the message path as local and
simple as possible in order to have the most control over it.

The Transmitter IoT Device’s Firmware

The firmware of the transmitter IoT device is straightforward: it only needs to listen
to a rising-edge interrupt and send a message accordingly, taking into account the S-R
signals protocol. As a reference, the following piece of code depicts an implementation of
the required firmware in MicroPython used with FiPy devices (LoRaWAN, Sigfox, Wi-Fi,
BLE, NB-IoT):

import . . .
S = Pin(‘P21’, mode = Pin.IN, pull=Pin.PULL_DOWN)
R = Pin(‘P22’, mode = Pin.IN, pull=Pin.PULL_UP)n = 0x0
def pin_handler(arg):

global n
n = 0x0 if R.value() == 0 else n+1
send_message(n)
return

try:
S.callback(Pin.IRQ_RISING, pin_handler)

except KeyboardInterrupt:
sys.exit(0)

Depending on the technology under characterisation, send_message(n) would call the
required methods. As we are using point-to-point communications between the transmitter
device and the receiver device, the message they exchange only contains a text string with
the message sequence number as payload—the other parameters shown in Section 2.3.4

Sensors 2022, 22, 4159 5 of 23

herein are set by the receiver device/gateway/backend to be delivered to the main RPi. In
fact, the only task the receiver is in charge of is completing that information and steering it
back to the RPi.

2.2. Considerations Regarding Different Wireless Technologies

Since different technologies behave differently, have different requirements and pro-
vide different support on the development board’s software, some aspects of implementa-
tion must be known by the reader:

• Sigfox: The message payload was always set to be 12 bytes—the maximum allowed;
• LoRaWAN: is the most common configuration of Spreading Factor (SF7), and band-

width (125 kHz) was used;
• BLE: We used advertisements to spread the message (two transmissions for each

message). We did this because several problems were encountered in timing, and
too many losses appeared when advertising only once—too many even to consider
BLE an IoT technology. However, we attribute this to the fact of not being able to use
point-to-point messages and only advertisements, and advertisements were the only
BL- supported feature by Pycom at the time of doing this work;

• NB-IoT: We used Vodafone SIM card, i.e., Vodafone LTE network, with the layer of
Pycom Pybytes as a backend for receiving messages;

• Wi-Fi: Hypertext transfer protocol (HTTP) was used as the application layer to send
messages as it is an utterly common layer in Wi-Fi utilisation;

• 6LoWPAN: User datagram protocol (UPD) was used as the top layer to send messages;
• Zigbee: The clean Zigbee stack was used.

2.3. The Testbed’s Interface

The Testbed’s user interface is based on representational state transfer (REST) requests.
Therefore, our Testbed provides an HTTP endpoint on port 8080 to listen to REST requests—
get, put, post. A Node.js instance—the Testbed’s interface backend—is listening to those
requests so as to summon distinct actions accordingly.

So far, the basic, essential functions have been implemented, aiming to develop a more
user-friendly interface with deeper functionality in the near future. It is noteworthy that
two main types of resources can be categorised: (1) those used by the users themselves, i.e.,
the pure user interface described in Sections 2.3.1–2.3.3 and (2) the resource needed by IoT
devices to send messages and thereby measure latency, error and stability, as described in
Section 2.3.4

2.3.1. Start Test (Route: POST /start/{idtech}/period/{period}/limit/{limit})

This functionality must be invoked to start a new test for any wireless technology. The
following parameters must be specified in the uniform resource identifier (URI) contents:
wireless technology, period of transmissions and message limit, where:

• idtech is an integer designating the wireless IoT technology under test (required);
• period is the period between transmissions in milliseconds (defaults to 10,000);
• limit is the message limit (defaults to 100).

For instance, to start a 6LoWPAN test with half a second between messages and one
thousand thereof, the request would be: /start/1/period/500/limit/1000.

2.3.2. Print Current Results (Route: GET /print)

This functionality prints the test results thus far on a remote secure shell (SSH) terminal,
with the test still running. The user must have established an SSH connection with the
RPi to see the results. Although it might be counterintuitive, results are not part of the
request’s response but a log in the SSH terminal. This functionality might be modified, as it
seems more useful to send results alongside the REST response. They are presented in the

Sensors 2022, 22, 4159 6 of 23

same format as described in Section 2.3.3 herein. This resource is useful to check the proper
performance of an ongoing test.

2.3.3. Stop Test (Route: PUT/stop)

This invocation halts the current test, calculating the results and storing them in
JavaScript Object Notation (JSON) format. The user may invoke this at any time to stop the
ongoing test. The same functionality is auto-invoked if the test achieves the message limit,
or any kind of exception occurs.

The JSON results file contains time (all timestamps in milliseconds) and loss informa-
tion for every message as well as a summary with the most important information about
the test. For instance, for the test in Section 2.3.1:

{
“0”: {

“start”: 1601290079097.324,
“successful”: true,
“end”: 1601290079127.223,
“timestamp”: 1601290079114,
“latency”: 29.899

},
. . .
“999”: {

“start”: 1601290579130.133,
“successful”: true,
“end”: 1601290579152.390,
“timestamp”: 1601290579147,
“latency”: 22.257

},
“testInfo”: {

“testStart”: 1601290079071,
“testEnd”: 1601290579154,
“limit”: 1000,
“top”: 999,
“period”: 500,
“idtech”: 1,
“avgLatency”: 22.053,
“minLatency”: 19.573,
“maxLatency”: 283.493,
“stdDev”: 11.220,
“outliers”: 32,
“outliersRel”: 3.20,
“erorrCount”: 0
“errorRate”: 0.00,
“finishReason”: “limit”

}
}

For this kind of file, there are two main data groups:

• Individual message data (fields identified by a numeral, from “0” to “999” in this
example):

a. start is the timestamp when the IoT transmitter device was called to send
the message;

b. successful is a Boolean indicating if the message properly arrived at its destination;
c. end is the timestamp when the RPi received the call-back from the IoT receiver

device—the moment when the latency trip is completed;

Sensors 2022, 22, 4159 7 of 23

d. timestamp is a timestamp recorded by some gateways when processing the
messages (only for 6LoWPAN and LoRaWAN);

e. latency is the difference between end and start, i.e., the latency of the message.

• Whole test data (field “testInfo”):

a. testStart is the timestamp of the moment when the test began;
b. testEnd is the timestamp of the moment when the test finished;
c. limit is an integer indicating the number of messages defined in the test;
d. top is the maximum sequence number achieved when performing the test—it

should be limit–1 if the test goes well;
e. period is the period between messages defined in the test configuration;
f. idtech is an integer designating the wireless technology;
g. avgLatency is the average latency for the whole test;
h. minLatency is the minimum registered latency;
i. maxLatency is the maximum registered latency;
j. stdDev is the standard deviation for the cluster of latencies recorded in the test;
k. outliers is the count of latencies out of avgLatency ±10%;
l. outliersRel is the relative number of outliers with respect to top+1;
m. errorCount is the messages lost count during the test;
n. errorRate is the relative error rate—errorCount with respect to top+1;
o. finishReason is the reason the test finished; usually, the test finishes because the

message count (top) reaches its limit.

2.3.4. Callback (Route: POST /callback)

This is the endpoint to which the device under characterisation (user-end) must steer
its responses, also in JSON format. As stated before, this endpoint is located on the main
Testbed device (RPi) to reduce temporal incongruences.

These messages are used to calculate latency and losses—therefore error and stability
as well. Response messages were designed to be very small—so as to not be affected by
some wireless technologies’ highly restricted bitrates—and have the following format:

{
“id”: idtech,
“sq”: seq,
“ts”: epoch_ms

}

where:

• idtech is an integer designating the wireless technology;
• seq is the message sequence number, useful to sort messages upon arrival, measure

latency and determine losses;
• epoch_ms is the timestamp of the device under characterisation in milliseconds—

however, this time is not used to calculate this kind of latency as the Testbed device
uses its own time reference for that.

3. The Testbed’s Temporal Characterisation

In this Section we analyse the temporal performance of our Testbed device, as time-
keeping and congruence is crucial when characterising latencies in the order of a few
milliseconds. In the upcoming Sections 3.1–3.3, the device is characterised precisely to
demonstrate its ability to work with IoT typical latencies, determining its error range in
Section 3.4.

According to the IoT wireless technology spec sheets and the previous literature [11,12,27],
the fastest latencies to consider would be on the order of tens of milliseconds (~10 ms). Hence,
with a conservative approach of one order of magnitude precision, the error of our Testbed
device should be on the order of milliseconds (~1 ms) to properly be used in this scenario.

Sensors 2022, 22, 4159 8 of 23

The main software of our Testbed is a Node.js application running on a Debian-based
operating system (OS), which manages the requests and accordingly calculates the results
for a given test. Neither Node.js nor Debian are real-time intended. That being so, they
introduce a delay when reacting to events and performing actions. Furthermore, since
Node.js is JavaScript-based, it is synchronous—special care with time-related matters must
be taken [28].

To characterise the response time and stability of our Testbed, we evaluated three
matters which are considered fundamental to properly portray the Testbed’s temporal
response [29–31]:

1. Stability responding to external interrupts (Section 3.1);
2. Temporal stability of the internal clock (Section 3.2);
3. Auto-delay when responding to self-events (Section 3.3).

Our system introduces a certain delay every time it needs to react to some event or
perform some action. This delay must be characterised accordingly to evaluate its influence
on latency measurements. From these three parameters, we can evaluate the Testbed’s
precision and accuracy.

3.1. The Testbed’s Reaction to External Interrupts

We used a waveform generator (Keysight 33220A) to make a 50 Hz square wave, with
edges to trigger a GPIO interrupt (both rising and falling edge) on the RPi, meaning that the
interrupt triggers 100 times a second—a 10 ms interrupt period. This frequency of events is
far beyond what is needed for wireless IoT characterisation—one per second as much.

With this procedure, the RPi stores a timestamp in microseconds: this allows us to
determine the temporal stability of the Testbed as we are using fixed-frequency square
wave edges to trigger the interrupts.

We let the application run, reacting to 1.15 million interrupts and storing their mi-
croseconds timestamps; it ran for 192 min. Let us claim one million values are enough for
characterising the stability of the system. From this array of interruption timestamps, we
extracted the periods of trigger—the difference between every pair of timestamps.

Then, we analysed the data using Matlab. The array of periods was converted to a
cluster of errors between the observed period by the RPi vs. the deterministic period of
the waveform generator. The latter was double-checked using an oscilloscope (Keysight
Infiniium MSO8064A), sampling at 1 MS/s with 256 averages. The oscilloscope read out a
low-value width of 9.9555 ms and a high-value width of 10.0448 ms.

These values must correspond to the periods measured by the RPi. In fact, there
are two main groups of observed periods when plotting the recorded data (see Figure 2),
for which the cumulative distribution probability is half for each set, as expected with a
50%-duty-cycle square wave.

Converting these values to differences of time with respect to the deterministic values
of both the low part and high part of the square signal let us plot an error image of the
observed periods. In Figure 3, we depict this fact assuming the average central value for
splitting the set of values as the deterministic period. The absolute values of the time drift
for both sides of the wave are plotted out as a whole (blue bars) as well as the cumulative
probability (red line).

Sensors 2022, 22, 4159 9 of 23Sensors 2022, 22, x FOR PEER REVIEW 9 of 23

Figure 2. Histogram of the observed periods by the RPi reacting to an external 50 Hz square wave.

Converting these values to differences of time with respect to the deterministic values
of both the low part and high part of the square signal let us plot an error image of the
observed periods. In Figure 3, we depict this fact assuming the average central value for
splitting the set of values as the deterministic period. The absolute values of the time drift
for both sides of the wave are plotted out as a whole (blue bars) as well as the cumulative
probability (red line).

Figure 3. Histogram of the time drifting for both sides of the square wave.

As one can see, the time drifting realised when reacting to external interrupts is only
a few microseconds, being <5 µs for 80% of the times, <12 µs for 90 % of the times and <15
µs for 95 % of the times. Table 2 depicts the most important data for this characterisation.

Table 2. Observed periods to external interrupts: important values.

Deterministic
Low Width

Observed Avg.
Low Period

Deterministic
High Width

Observed Avg.
High Period

90%
Confidence ∆T

9.9555 ms 9.9556 ms 10.0448 µs 10.045 ms 12 µs

3.2. Temporal Stability of the Internal Clock
With this characterisation, we want to evaluate the long-term temporal stability of

the Testbed’s internal clock. We commanded the RPi to generate a 100 Hz square wave,
toggling the logical value of a GPIO every 10 ms.

Figure 2. Histogram of the observed periods by the RPi reacting to an external 50 Hz square wave.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 23

Figure 2. Histogram of the observed periods by the RPi reacting to an external 50 Hz square wave.

Converting these values to differences of time with respect to the deterministic values
of both the low part and high part of the square signal let us plot an error image of the
observed periods. In Figure 3, we depict this fact assuming the average central value for
splitting the set of values as the deterministic period. The absolute values of the time drift
for both sides of the wave are plotted out as a whole (blue bars) as well as the cumulative
probability (red line).

Figure 3. Histogram of the time drifting for both sides of the square wave.

As one can see, the time drifting realised when reacting to external interrupts is only
a few microseconds, being <5 µs for 80% of the times, <12 µs for 90 % of the times and <15
µs for 95 % of the times. Table 2 depicts the most important data for this characterisation.

Table 2. Observed periods to external interrupts: important values.

Deterministic
Low Width

Observed Avg.
Low Period

Deterministic
High Width

Observed Avg.
High Period

90%
Confidence ∆T

9.9555 ms 9.9556 ms 10.0448 µs 10.045 ms 12 µs

3.2. Temporal Stability of the Internal Clock
With this characterisation, we want to evaluate the long-term temporal stability of

the Testbed’s internal clock. We commanded the RPi to generate a 100 Hz square wave,
toggling the logical value of a GPIO every 10 ms.

Figure 3. Histogram of the time drifting for both sides of the square wave.

As one can see, the time drifting realised when reacting to external interrupts is only a
few microseconds, being <5 µs for 80% of the times, <12 µs for 90 % of the times and <15 µs
for 95 % of the times. Table 2 depicts the most important data for this characterisation.

Table 2. Observed periods to external interrupts: important values.

Deterministic
Low Width

Observed Avg.
Low Period

Deterministic
High Width

Observed Avg.
High Period

90%
Confidence ∆T

9.9555 ms 9.9556 ms 10.0448 µs 10.045 ms 12 µs

3.2. Temporal Stability of the Internal Clock

With this characterisation, we want to evaluate the long-term temporal stability of
the Testbed’s internal clock. We commanded the RPi to generate a 100 Hz square wave,
toggling the logical value of a GPIO every 10 ms.

This GPIO was connected to a Nordic Semiconductor Power Profiler Kit II (PPK)
with a 3.3 kΩ series resistor to measure current—the device we already checked as valid
laboratory equipment in [11]. We set the PPK to sample the signal at a rate of 10 kS/s,
complying with the Nyquist–Shannon sampling theorem for signals up to 5 kHz.

The data gathered with the PPK was processed in Matlab to determine its fast Fourier
transform (FFT). Since the recorded signal it is a square wave, it will have infinite harmonics,

Sensors 2022, 22, 4159 10 of 23

but the first one represents the fundamental frequency of the signal generated by the RPi,
which is ideally 50 Hz—10 ms high, 10 ms low: 20 ms period.

In Figure 4, the FFT of the square wave generated by the RPi is depicted for a range of
frequencies around the point of interest.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 23

This GPIO was connected to a Nordic Semiconductor Power Profiler Kit II (PPK) with
a 3.3 kΩ series resistor to measure current—the device we already checked as valid labor-
atory equipment in [11]. We set the PPK to sample the signal at a rate of 10 kS/s, complying
with the Nyquist–Shannon sampling theorem for signals up to 5 kHz.

The data gathered with the PPK was processed in Matlab to determine its fast Fourier
transform (FFT). Since the recorded signal it is a square wave, it will have infinite harmon-
ics, but the first one represents the fundamental frequency of the signal generated by the
RPi, which is ideally 50 Hz—10 ms high, 10 ms low: 20 ms period.

In Figure 4, the FFT of the square wave generated by the RPi is depicted for a range
of frequencies around the point of interest.

Figure 4. 50 Hz centred FFT of the RPi-generated square wave.

We can see that there is not only one peak at the desired frequency (50 Hz) but a
predominant peak around 49.4 Hz with some small lobes around it—certain bandwidth
(BW). This is due to the fact of the RPi not being 100% time-consistent. Moreover, the code
itself and the OS resources spend some time that cannot be directly controlled. The mag-
nitude of the signal does not show any units as the important matter is the relation in
magnitude between the central frequency and the side lobes, and those values are also
dependant on the FFT size. We also performed tests for other square wave frequencies
between 10 Hz and 100 Hz, and the temporal deviation (in units of time) was coherent,
which is the matter of interest for this analysis—not so, the frequency deviation, as it is
relative to the frequency of the wave. Important data from this plot are shown in Table 3.

Table 3. Temporal stability of the Testbed’s internal clock.

Target Measured Error Relative Error –10 dB BW 1
50.0 Hz
20.0 ms

49.4 Hz
20.24 ms

0.6 Hz
0.24 ms

1.2%
0.5 Hz

49.1–49.6 Hz
1 Range of frequency around the central peak for which the magnitude of the FFT is above a 10% of
the peak magnitude.

With this, the error related to the internal clock’s deviation can be claimed to have an
average value of 240 µs, with 90% confidence values between 160 µs and 370 µs.

3.3. Self-Delay
To characterise the delay of the proper master device itself, having no other external

reference per se, we used something we called a hardware loop—see Figure 5.

Figure 4. 50 Hz centred FFT of the RPi-generated square wave.

We can see that there is not only one peak at the desired frequency (50 Hz) but a
predominant peak around 49.4 Hz with some small lobes around it—certain bandwidth
(BW). This is due to the fact of the RPi not being 100% time-consistent. Moreover, the
code itself and the OS resources spend some time that cannot be directly controlled. The
magnitude of the signal does not show any units as the important matter is the relation
in magnitude between the central frequency and the side lobes, and those values are also
dependant on the FFT size. We also performed tests for other square wave frequencies
between 10 Hz and 100 Hz, and the temporal deviation (in units of time) was coherent,
which is the matter of interest for this analysis—not so, the frequency deviation, as it is
relative to the frequency of the wave. Important data from this plot are shown in Table 3.

Table 3. Temporal stability of the Testbed’s internal clock.

Target Measured Error Relative Error –10 dB BW 1

50.0 Hz
20.0 ms

49.4 Hz
20.24 ms

0.6 Hz
0.24 ms 1.2% 0.5 Hz

49.1–49.6 Hz
1 Range of frequency around the central peak for which the magnitude of the FFT is above a 10% of the peak
magnitude.

With this, the error related to the internal clock’s deviation can be claimed to have an
average value of 240 µs, with 90% confidence values between 160 µs and 370 µs.

3.3. Self-Delay

To characterise the delay of the proper master device itself, having no other external
reference per se, we used something we called a hardware loop—see Figure 5.

Sensors 2022, 22, 4159 11 of 23Sensors 2022, 22, x FOR PEER REVIEW 11 of 23

Figure 5. Hardware loop representation.

The hardware loop connects two GPIOs from the RPi in a manner that the proper
Testbed device fires an interrupt on itself. Two Node.js threads are run, so that they do
not interfere with one another:
1. tx.js: this process toggles a GPIO digital state, which is connected to another GPIO of

the RPi, firing the interrupt; it stores the timestamp of the toggling process as well in
microseconds;

2. rx.js: this process reacts to both rising and falling edge interrupts on the GPIO and
stores the timestamp of the event in microseconds.
With this, we get two arrays of equally referenced timestamps: one corresponding to

interruption command timestamps, the other corresponding to interruption reaction
timestamps. The difference between them is the delay in charge of the Testbed device
reacting to owned events. We set the tx.js script to fire an interrupt every 10 ms—100 per
second. We let the test run for 24 h, thus firing more than eight million interruption events.

The average delay was 214.85 µs, with a standard deviation of 96.99 µs. The delays
are depicted in Figure 6, along with the corresponding cumulative distribution function.
As can be seen, 90% of the time, the introduced delay for self-reacting events is <240 µs.

Figure 6. Self-delays probabilities.

Figure 5. Hardware loop representation.

The hardware loop connects two GPIOs from the RPi in a manner that the proper Testbed
device fires an interrupt on itself. Two Node.js threads are run, so that they do not interfere
with one another:

1. tx.js: this process toggles a GPIO digital state, which is connected to another GPIO of
the RPi, firing the interrupt; it stores the timestamp of the toggling process as well in
microseconds;

2. rx.js: this process reacts to both rising and falling edge interrupts on the GPIO and
stores the timestamp of the event in microseconds.

With this, we get two arrays of equally referenced timestamps: one corresponding
to interruption command timestamps, the other corresponding to interruption reaction
timestamps. The difference between them is the delay in charge of the Testbed device
reacting to owned events. We set the tx.js script to fire an interrupt every 10 ms—100 per
second. We let the test run for 24 h, thus firing more than eight million interruption events.

The average delay was 214.85 µs, with a standard deviation of 96.99 µs. The delays
are depicted in Figure 6, along with the corresponding cumulative distribution function.
As can be seen, 90% of the time, the introduced delay for self-reacting events is <240 µs.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 23

Figure 5. Hardware loop representation.

The hardware loop connects two GPIOs from the RPi in a manner that the proper
Testbed device fires an interrupt on itself. Two Node.js threads are run, so that they do
not interfere with one another:
1. tx.js: this process toggles a GPIO digital state, which is connected to another GPIO of

the RPi, firing the interrupt; it stores the timestamp of the toggling process as well in
microseconds;

2. rx.js: this process reacts to both rising and falling edge interrupts on the GPIO and
stores the timestamp of the event in microseconds.
With this, we get two arrays of equally referenced timestamps: one corresponding to

interruption command timestamps, the other corresponding to interruption reaction
timestamps. The difference between them is the delay in charge of the Testbed device
reacting to owned events. We set the tx.js script to fire an interrupt every 10 ms—100 per
second. We let the test run for 24 h, thus firing more than eight million interruption events.

The average delay was 214.85 µs, with a standard deviation of 96.99 µs. The delays
are depicted in Figure 6, along with the corresponding cumulative distribution function.
As can be seen, 90% of the time, the introduced delay for self-reacting events is <240 µs.

Figure 6. Self-delays probabilities.

Figure 6. Self-delays probabilities.

3.4. Testbed’s Error Range Validation

With the characterisation made in Sections 2.2 and 2.3, we have all the temporal
variabilities of our device, with which we can estimate its error margin:

Sensors 2022, 22, 4159 12 of 23

• External interrupts: the response to external interrupts seems to be very accurate and
precise, with 90 % of drifting within 12 µs. Since we are working with latencies on the
order of tens of milliseconds, we can consider this influence negligible (~0.1%).

• Internal clock: the internal clock presents an error in the order of hundreds of mi-
croseconds (240 µs), with 90% confidence values between 160 µs and 370 µs.

• Self-delay: the self-delay, which is probably the most important factor in our system
since we are using the same Testbed to command external devices and measure time,
has an average value around 215 µs, with a 90% confidence delay <240 µs and no
values less than 160 µs.

With these matters, one can realise that the influences are always cumulative, meaning
that the latencies measured by our Testbed will always be longer than actual latencies.
Considering this, we can claim that the real latency of a message will be as in Equation (1):

γ = ϕ− δ, δ ∈ [320, 610] µs (1)

where:

• γ is the actual latency;
• ϕ is the measured latency;
• δ is the introduced metering error, which is, according to our characterisation, a value

in the range of 320 µs and 610 µs.

Thus, we can focus the result a little more, as in Equation (2):

γ (ms) = ϕ (ms)− δ′ − 0.32, δ′ ∈ [0, 0.29] (2)

Hence, the error of our system can be said to be less than 290 µs, which means a
relative error around 3% for latencies on the order of tens of milliseconds, i.e., that of most
IoT wireless technologies. This error gets reduced as the wireless IoT latency increases,
being around 1.5% for 20 ms, 0.6% for 50 ms, 0.3% for 100 ms, and negligible from 1 s and
on—see Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 23

3.4. Testbed’s Error Range Validation
With the characterisation made in Sections 2.2–2.4, we have all the temporal variabil-

ities of our device, with which we can estimate its error margin:
• External interrupts: the response to external interrupts seems to be very accurate and

precise, with 90 % of drifting within 12 µs. Since we are working with latencies on
the order of tens of milliseconds, we can consider this influence negligible (~0.1%).

• Internal clock: the internal clock presents an error in the order of hundreds of micro-
seconds (240 µs), with 90% confidence values between 160 µs and 370 µs.

• Self-delay: the self-delay, which is probably the most important factor in our system
since we are using the same Testbed to command external devices and measure time,
has an average value around 215 µs, with a 90% confidence delay <240 µs and no
values less than 160 µs.
With these matters, one can realise that the influences are always cumulative, mean-

ing that the latencies measured by our Testbed will always be longer than actual latencies.
Considering this, we can claim that the real latency of a message will be as in Equation
(1):

𝛾𝛾 = 𝜑𝜑 − 𝛿𝛿, 𝛿𝛿 ∈ [320, 610] 𝜇𝜇𝜇𝜇 (1)

where:
• γ is the actual latency;
• φ is the measured latency;
• δ is the introduced metering error, which is, according to our characterisation, a value

in the range of 320 µs and 610 µs.
Thus, we can focus the result a little more, as in Equation (2):

𝛾𝛾 (𝑚𝑚𝜇𝜇) = 𝜑𝜑 (𝑚𝑚𝜇𝜇) − 𝛿𝛿′ − 0.32, 𝛿𝛿′ ∈ [0, 0.29] (2)

Hence, the error of our system can be said to be less than 290 µs, which means a
relative error around 3% for latencies on the order of tens of milliseconds, i.e., that of most
IoT wireless technologies. This error gets reduced as the wireless IoT latency increases,
being around 1.5% for 20 ms, 0.6% for 50 ms, 0.3% for 100 ms, and negligible from 1 s and
on—see Figure 7.

Figure 7. Testbed’s relative error with respect to the latency value.

Figure 7. Testbed’s relative error with respect to the latency value.

4. Measurements and Results

In this Section, we show example results for the measurements our Testbed can
perform, proving its ability to perform communication reliability measurements with no
regard to the wireless technology under test or the hardware platform used as IoT device.
In Section 4.1, the Testbed’s measuring parameters are presented; in Section 4.2 we analyse
the performance of the following technologies, with expected latency in brackets [12]:
6LoWPAN (~20 ms), LoRaWAN (~300 ms), Sigfox (~4 s), Zigbee (~40 ms), Wi-Fi (~30 ms),

Sensors 2022, 22, 4159 13 of 23

BLE (~30 ms) and NB-IoT (~2 s); following is a discussion about the results obtained in
Section 4.3.

4.1. Parameters: Latency, Error, Stability

The three parameters that we evaluate in this work are: latency, error rate and stability.
The following data is presented for each matter:

• Latency: minimum, average, maximum;
• Error rate: message loss count (Γ), relative error rate (E);
• Stability: standard deviation of latency (Λ), messages out of average latency ± 10%—

outliers, both in absolute count (Π) and relative (K)—and a factor indicating a quality
of stability (Ω) defined as in Equation (3) and Figure 8.

Ω = [(1− E)× (1−K)]2, Ω, E, K ∈ [0, 1] (3)

Sensors 2022, 22, x FOR PEER REVIEW 13 of 23

4. Measurements and Results
In this Section, we show example results for the measurements our Testbed can per-

form, proving its ability to perform communication reliability measurements with no re-
gard to the wireless technology under test or the hardware platform used as IoT device.
In Section 4.1, the Testbed’s measuring parameters are presented; in Section 4.2 we ana-
lyse the performance of the following technologies, with expected latency in brackets [12]:
6LoWPAN (~20 ms), LoRaWAN (~300 ms), Sigfox (~4 s), Zigbee (~40 ms), Wi-Fi (~30 ms),
BLE (~30 ms) and NB-IoT (~2 s); following is a discussion about the results obtained in
Section 4.3.

4.1. Parameters: Latency, Error, Stability
The three parameters that we evaluate in this work are: latency, error rate and stabil-

ity. The following data is presented for each matter:
• Latency: minimum, average, maximum;
• Error rate: message loss count (Γ), relative error rate (Ε);
• Stability: standard deviation of latency (Λ), messages out of average latency ± 10%—

outliers, both in absolute count (Π) and relative (Κ)—and a factor indicating a quality
of stability (Ω) defined as in Equation (3) and Figure 8.

Ω = [(1 − Ε) × (1 − Κ)]2, Ω,Ε,Κ ∈ [0, 1] (3)

Figure 8. 3D plot of the stability function.

The stability function (Ω) serves as a rapid measurement of how accountable, reliable
and congruent a designated technology in its performance is. It accounts for the variability
of the latency and the number of losses. As can be seen, it rapidly decreases with any of
the factors involved, as any small variation in the expected behaviour of the wireless pro-
tocol could eventually lead to fatal phenomena in critical applications—provided that
strong temporal stability or message integrity is needed [32–35].

4.2. Real Tests
We performed tests for every wireless technology under characterisation to confirm

the versatility of the Testbed device. In Table 4, we show the summary of results for tests
with a period of transmissions (PT, seconds) and a message limit (ML, number) as follows:
• 6LoWPAN: ML 10,000; PT 1
• LoRaWAN: ML 10,000; PT 1

Figure 8. 3D plot of the stability function.

The stability function (Ω) serves as a rapid measurement of how accountable, reliable
and congruent a designated technology in its performance is. It accounts for the variability
of the latency and the number of losses. As can be seen, it rapidly decreases with any of the
factors involved, as any small variation in the expected behaviour of the wireless protocol
could eventually lead to fatal phenomena in critical applications—provided that strong
temporal stability or message integrity is needed [32–35].

4.2. Real Tests

We performed tests for every wireless technology under characterisation to confirm
the versatility of the Testbed device. In Table 4, we show the summary of results for tests
with a period of transmissions (PT, seconds) and a message limit (ML, number) as follows:

• 6LoWPAN: ML 10,000; PT 1
• LoRaWAN: ML 10,000; PT 1
• Sigfox: ML 100; PT 15
• Zigbee: ML 10,000; PT 1
• Wi-Fi: ML 10,000; PT 1
• BLE: ML 500; PT 10
• NB-IoT: ML 5000; PT 5

Sensors 2022, 22, 4159 14 of 23

Table 4. Results summary.

Measurement 6LoWPAN LoRaWAN Sigfox Zigbee Wi-Fi BLE NB-IoT

Latency (ms)
Min. 19.522 282.40 3467.1 34.174 25.294 13.382 329.29
Avg. 22.116 296.96 3695.2 48.298 32.300 26.974 1797.3
Max. 356.14 334.81 5651.0 95.295 178.10 125.40 10,275

Error
Γ 2 66 0 0 0 0 0
E 0.02% 0.66% 0% 0% 0% 0% 0%

Stability

Λ (ms) 9.883 5.419 290.4 5.242 9.502 13.68 1352
Π 386 2 4 2307 3197 480 4052
K 3.86% 0.02% 4% 23.1% 31.9% 96.0% 81.0%
Ω 0.924 0.993 0.922 0.592 0.463 0.002 0.036

These results function as a reference for every wireless technology in the scope, and
the number of messages is representative so as to determine losses and stability—not for
Sigfox due to its own limitations, but the results were consistent every time we repeated
the test. It also confirms the universal aim of the Testbed developed.

In Appendix B, the reader can see cropped plots for the results depicted in Table 4
as a visual reference of the latency behaviour. In these plots, one thousand messages are
usually depicted—except for Sigfox (100) and BLE (500)—with a light blue area indicating
the non-outlying zone for stability calculation and an orange horizontal line representing
the average latency.

4.3. Results Discussion

The results obtained within this work comply with those related in the literature
and the protocol spec sheets: tens of milliseconds for 6LoWPAN, Zigbee, Wi-Fi and BLE;
hundreds of milliseconds for LoRaWAN; some seconds for Sigfox and NB-IoT.

NB-IoT is the rarest scenario, since it is supposed to be a managed network with
a strong infrastructure, and even quality of service (QoS). However, it presents a hard
oscillatory behaviour with strong latency peaks, some of which even reach more than ten
seconds—although this fact complies with the 3GPP Release-13 target of ≤10 s latency for
99% of messages [36].

Furthermore, we must consider that specifically in the case of NB-IoT, data travels
through a backend of which we do not have any influence or knowledge. This backend
(Pycom Pybytes) could be disturbing measurements and therefore be responsible for the
incongruent, appealing peaks. The IoT device used as a transmitter device could also
be misbehaving and altering the results. Nonetheless, this does not seem much of an
option as this behaviour did not happen with Sigfox, which also relies on a public network
and proprietary backend to work and for which we used the same development board as
transmitter device (Pycom FiPy).

The selected devices always play some role in the final observed latencies as well as
the specific topology actually deployed and even the software implemented. However, we
can claim that the Testbed achieved its universal purpose, as we can measure latencies for
a wide variety of wireless technologies and hardware platforms with truthful, consistent
results. Furthermore, we demonstrated a proper accuracy for the Testbed with an error in
the range of just 0–290 µs.

The selection of one technology over another would depend on the application re-
quirements. On the one hand, thanks to the stability definition, we can have an overview of
the uniformity in latency and error rate. On the other hand, with the latency measurement
we get to know the immediacy in response to an event.

Generally, if the data are too sensitive (error and stability) and immediacy (latency)
is not a strong requirement, one may choose Sigfox or LoRaWAN. If more immediacy is
required, Zigbee and 6LoWPAN happen to be the perfect choice. Provided we need a high
immediacy but stability is not a crucial factor, Wi-Fi tends to be an option.

Sensors 2022, 22, 4159 15 of 23

In spite of that, if the use case had other specific key requirements, superseding latency,
error rate and stability, those must be the decisive ones. For instance, if cost and low energy
consumption play a key role, BLE would be the choice, but NB-IoT would be the preferred
option for applications deployed in a wide area with hundreds or thousands of sensors.

It is noticeable that Zigbee, Wi-Fi and BLE present no losses. We point this to the
following facts:

• Zigbee: we used the whole Zigbee stack, which handles losses itself.
• Wi-Fi: we used HTTP, which works over Transmission Control Protocol (TCP) and

therefore handles losses as well.
• BLE: as stated in Section 2.2 hereof, we advertised every message twice, so the chance

for the message getting lost is negligible.

Yet, it was no surprise that Sigfox and NB-IoT provided no losses. In the case of Sigfox
it is due to the robustness of Sigfox’s ultra-narrow band (UNB) modulation and the fact that
every message is sent three times in three different carriers [37,38]—with the counterpart
of slowness. In the case of NB-IoT, it uses a proprietary band with restricted access and
QoS, and NB-IoT has its target in handling more than 50,000 devices per sector [36], which
is very far from actuality at the moment of doing this work.

5. Conclusions

In this work, we presented a universal Testbed to characterise IoT wireless technologies
in three crucial factors: latency, error rate and stability. The Testbed was characterised in
Section 3, where we demonstrated its ability to measure time-sensitive matters—such as
latency—with an error of 3%: <290 µs for typical IoT latencies around tens of milliseconds.
For the wireless IoT technologies characterised in this work as exemplification, the results
obtained fell in the expected range, which also helps validate the Testbed’s performance.

The main advantages of this Testbed device are:

• Technology-agnostic: it has been designed to characterise any IoT wireless technology,
with independence of the communication architecture and the protocols used;

• Cost, time, and resource efficient: it is based on the affordable Raspberry Pi board, and
it can work on any Linux machine with a Node.js runtime;

• Portable and easy to deploy: the Testbed design allows its transportation and set up in
any location;

• Replicable and scalable: based on standard HW and SW tools, it is easy to replicate,
adapt and improve to measure other timing parameters.

Future Sights

To enhance the work in this matter, more technologies should be evaluated to keep the
universal track of the Testbed device, such as Thread—based on 6LoWPAN and part of the
future Matter [39] or GPRS—which are still widely used nowadays in machine-to-machine
(M2M) communications.

Furthermore, the different IoT protocols should be more equated in terms of open
systems interconnection (OSI) layers—although the OSI model (see Figure 9) may not be
truly accurate for all of these IoT wireless technologies and some terminology might change,
it serves as a reference [40–46]. In the tests performed within this work, we evaluated the
following technologies at different layers:

• Applications: Zigbee, NB-IoT, Wi-Fi (HTTP);
• Transport: Sigfox, 6LoWPAN (UDP);
• Network: LoRaWAN;
• Data Link: BLE (advertisements, two repetitions per message).

Sensors 2022, 22, 4159 16 of 23

Sensors 2022, 22, x FOR PEER REVIEW 16 of 23

• Applications: Zigbee, NB-IoT, Wi-Fi (HTTP);
• Transport: Sigfox, 6LoWPAN (UDP);
• Network: LoRaWAN;
• Data Link: BLE (advertisements, two repetitions per message).

Figure 9. OSI model layer reference related to the specific layers we used with each wireless tech-
nology, showing its primary function, and data meaning and contents.

As one can see, different layers were used in different technologies, and some of them
already implement recovery mechanisms or error mitigations. Moreover, there are limita-
tions regarding some technologies in the use of certain layers:
• Zigbee, Sigfox, LoRaWAN: due to their own nature and definition, those layers are

the ones to use between the end device and the receiver on the RF link;
• BLE: the equipment used in this work (Pycom FiPy), only supported BLE advertise-

ments when doing these tests—other manufacturers may provide support for upper
layers;

• NB-IoT: at the moment of this work, we could only use Pybytes’ abstraction layer to
send and receive NB-IoT messages; so, we are considering this the top layer.
Nonetheless, using the aforementioned layers is significative for IoT wireless tech-

nologies characterisation, as they are those of the most used layers in each technology.
Yet, for 6LoWPAN, we could implement constrained application protocol (CoAP) or
MQTT on the application layer to perform these tests as well because they are the most
used top-layer-protocols for this technology. Into the bargain, even high-level, novel, IoT-
targeted enhancements for future-proving existing wireless technologies could be tested,
such as that in [47], in which Chen et al. present a Wi-Fi modification specifically designed
to accommodate the large amount of data and nodes the IoT brings, or that in [48], in
which Magsi et al. propose an adaptive data transmission framework for healthcare ap-
plications.

Additionally, it could be useful to implement a graphical web interface to display
results and command tests apart from the command-line interface we have so far, and
implementing some sort of logarithmic function—or other function of interest—to the pe-
riod between messages could be helpful to perform stress tests, as the period would shrink
continuously until an error threshold was reached.

Author Contributions: Conceptualization, methodology, validation, E.S. and G.d.C.; software, E.S.
and L.M.; hardware, laboratory work, formal analysis, resources, visualization, data curation, E.S.;
investigation, E.S., L.M. and G.C.; writing—original draft preparation, E.S.; writing—review and
editing, supervision, G.d.C.; project administration, funding acquisition, A.S. All authors have read
and agreed to the published version of the manuscript.

Figure 9. OSI model layer reference related to the specific layers we used with each wireless technol-
ogy, showing its primary function, and data meaning and contents.

As one can see, different layers were used in different technologies, and some of
them already implement recovery mechanisms or error mitigations. Moreover, there are
limitations regarding some technologies in the use of certain layers:

• Zigbee, Sigfox, LoRaWAN: due to their own nature and definition, those layers are the
ones to use between the end device and the receiver on the RF link;

• BLE: the equipment used in this work (Pycom FiPy), only supported BLE adver-
tisements when doing these tests—other manufacturers may provide support for
upper layers;

• NB-IoT: at the moment of this work, we could only use Pybytes’ abstraction layer to
send and receive NB-IoT messages; so, we are considering this the top layer.

Nonetheless, using the aforementioned layers is significative for IoT wireless tech-
nologies characterisation, as they are those of the most used layers in each technology. Yet,
for 6LoWPAN, we could implement constrained application protocol (CoAP) or MQTT
on the application layer to perform these tests as well because they are the most used top-
layer-protocols for this technology. Into the bargain, even high-level, novel, IoT-targeted
enhancements for future-proving existing wireless technologies could be tested, such as
that in [47], in which Chen et al. present a Wi-Fi modification specifically designed to
accommodate the large amount of data and nodes the IoT brings, or that in [48], in which
Magsi et al. propose an adaptive data transmission framework for healthcare applications.

Additionally, it could be useful to implement a graphical web interface to display
results and command tests apart from the command-line interface we have so far, and
implementing some sort of logarithmic function—or other function of interest—to the
period between messages could be helpful to perform stress tests, as the period would
shrink continuously until an error threshold was reached.

Author Contributions: Conceptualization, methodology, validation, E.S. and G.d.C.; software, E.S.
and L.M.; hardware, laboratory work, formal analysis, resources, visualization, data curation, E.S.;
investigation, E.S., L.M. and G.C.; writing—original draft preparation, E.S.; writing—review and
editing, supervision, G.d.C.; project administration, funding acquisition, A.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is part of the CHIST-ERA research project “ABIDI: Context-aware and Veracious
Big Data Analytics for Industrial IoT”, funded by the State Research Agency (AEI) of Ministerio de
Ciencia e Innovación (MICINN) of Spain, grant number PCI2019-103762; and the research project
“TECH-IoT: Tecnologías IoT para Interoperabilidad en Industria con Servicios de Uso Intensivo de
Datos y Funciones de Control”, funded by the AEI-MICINN of Spain, grant number EIN2019-103263.

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 4159 17 of 23

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

This appendix contains an additional diagram for Section 2—Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 23

Funding: This work is part of the CHIST-ERA research project “ABIDI: Context-aware and Vera-
cious Big Data Analytics for Industrial IoT”, funded by the State Research Agency (AEI) of Minis-
terio de Ciencia e Innovación (MICINN) of Spain, grant number PCI2019-103762; and the research
project “TECH-IoT: Tecnologías IoT para Interoperabilidad en Industria con Servicios de Uso Inten-
sivo de Datos y Funciones de Control”, funded by the AEI-MICINN of Spain, grant number
EIN2019-103263.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results.

Appendix A
This appendix contains an additional diagram for Section 2—Figure 1.

Figure A1. Detailed message paths for the wireless technologies characterised in this work, depict-
ing the devices and interfaces used in each step. Note that other configurations—provided they
comply with the standard—could be used, but these are the ones actually deployed in the laboratory
for characterisation and Testbed validation. We also wanted to implement the most local approach
possible in order to have more control over the message path.

Figure A1. Detailed message paths for the wireless technologies characterised in this work, depicting
the devices and interfaces used in each step. Note that other configurations—provided they comply
with the standard—could be used, but these are the ones actually deployed in the laboratory for
characterisation and Testbed validation. We also wanted to implement the most local approach
possible in order to have more control over the message path.

Sensors 2022, 22, 4159 18 of 23

Appendix B

This appendix contains plots for the latency measurements presented in Table 4.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 23

Appendix B
This appendix contains plots for the latency measurements presented in Table 4.

Figure A2. Latency plot for 6LoWPAN.

Figure A3. Latency plot for LoRaWAN.

Figure A2. Latency plot for 6LoWPAN.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 23

Appendix B
This appendix contains plots for the latency measurements presented in Table 4.

Figure A2. Latency plot for 6LoWPAN.

Figure A3. Latency plot for LoRaWAN. Figure A3. Latency plot for LoRaWAN.

Sensors 2022, 22, 4159 19 of 23Sensors 2022, 22, x FOR PEER REVIEW 19 of 23

Figure A4. Latency plot for Sigfox.

Figure A5. Latency plot for Zibgee.

Figure A4. Latency plot for Sigfox.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 23

Figure A4. Latency plot for Sigfox.

Figure A5. Latency plot for Zibgee. Figure A5. Latency plot for Zibgee.

Sensors 2022, 22, 4159 20 of 23Sensors 2022, 22, x FOR PEER REVIEW 20 of 23

Figure A6. Latency plot for Wi-Fi.

Figure A7. Latency plot for BLE.

Figure A6. Latency plot for Wi-Fi.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 23

Figure A6. Latency plot for Wi-Fi.

Figure A7. Latency plot for BLE. Figure A7. Latency plot for BLE.

Sensors 2022, 22, 4159 21 of 23Sensors 2022, 22, x FOR PEER REVIEW 21 of 23

Figure A8. Latency plot for NB-IoT.

References
1. Wegner, P. Global IoT Spending to Grow 24% in 2021, Led by Investments in IoT Software and IoT Security. Available online:

https://iot-analytics.com/2021-global-iot-spending-grow-24-percent/ (accessed on 14 April 2022).
2. Evans, D. The Internet of Things. How the Next Evolution of the Internet Is Changing Everything. Available online:

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed on 14 April 2022).
3. Maayan, G.D. The IoT Rundown For 2020: Stats, Risks, and Solutions. Available online:

https://securitytoday.com/Articles/2020/01/13/The-IoT-Rundown-for-2020.aspx (accessed on 14 April 2022).
4. Newman, D. Return on IoT: Dealing with the IoT Skills Gap. Available online:

https://www.forbes.com/sites/danielnewman/2019/07/30/return-on-iot-dealing-with-the-iot-skills-gap/?sh=5f453ccb7091
(accessed on 20 May 2022).

5. Fotrune Business Insights Global IoT Market to be Worth USD 1463.19 Billion by 2027 at 24.9% CAGR; Demand for Real-Time
Insights to Spur Growth. Available online: https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0/en/Global-
IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-Growth-says-
Fortune-Business-Insights.html (accessed on 14 April 2022).

6. Farrell, S. (Ed.) Low-Power Wide Area Network (LPWAN) Overview. Available online: https://tools.ietf.org/pdf/rfc8376.pdf
(accessed on 20 May 2022).

7. Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN Technologies: Emerging Application Characteristics, Requirements, and
Design Considerations. Future Internet 2020, 12, 46. https://doi.org/10.3390/fi12030046.

8. Internet of Business Bluetooth and ZigBee to Dominate Wireless IoT Connectivity. Available online:
https://internetofbusiness.com/iot-driving-wireless-connectivity/ (accessed on 20 May 2022).

9. Pasqua, E. 5 Things to Know About the LPWAN Market in 2021. Available online: https://iot-analytics.com/5-things-to-know-
lpwan-market/ (accessed on 20 May 2022).

10. IoT Analytics State of IoT 2021: Number of Connected IoT Devices Growing 9% to 12.3 Billion Globally, Cellular IoT Now
Surpassing 2 Billion. Available online: https://iot-analytics.com/number-connected-iot-devices/ (accessed on 20 May 2022).

11. Saavedra, E.; Mascaraque, L.; Calderon, G.; del Campo, G.; Santamaria, A. The Smart Meter Challenge: Feasibility of
Autonomous Indoor IoT Devices Depending on Its Energy Harvesting Source and IoT Wireless Technology. Sensors 2021, 21,
7433. https://doi.org/10.3390/s21227433.

12. del Campo, G.; Gomez, I.; Cañada, G.; Piovano, L.; Santamaria, A. Guidelines and criteria for selecting the optimal low-power
wide-area network technology. In LPWAN Technologies for IoT and M2M Applications; Elsevier: Amsterdam, The Netherlands,
2020; pp. 281–305, ISBN 978-0-12-818880-4.

Figure A8. Latency plot for NB-IoT.

References
1. Wegner, P. Global IoT Spending to Grow 24% in 2021, Led by Investments in IoT Software and IoT Security. Available online:

https://iot-analytics.com/2021-global-iot-spending-grow-24-percent/ (accessed on 14 April 2022).
2. Evans, D. The Internet of Things. How the Next Evolution of the Internet Is Changing Everything. Available online: https:

//www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (accessed on 14 April 2022).
3. Maayan, G.D. The IoT Rundown For 2020: Stats, Risks, and Solutions. Available online: https://securitytoday.com/Articles/20

20/01/13/The-IoT-Rundown-for-2020.aspx (accessed on 14 April 2022).
4. Newman, D. Return on IoT: Dealing with the IoT Skills Gap. Available online: https://www.forbes.com/sites/danielnewman/

2019/07/30/return-on-iot-dealing-with-the-iot-skills-gap/?sh=5f453ccb7091 (accessed on 20 May 2022).
5. Fotrune Business Insights Global IoT Market to be Worth USD 1463.19 Billion by 2027 at 24.9% CAGR; Demand for Real-Time

Insights to Spur Growth. Available online: https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0
/en/Global-IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-
Growth-says-Fortune-Business-Insights.html (accessed on 14 April 2022).

6. Farrell, S. (Ed.) Low-Power Wide Area Network (LPWAN) Overview. Available online: https://tools.ietf.org/pdf/rfc8376.pdf
(accessed on 20 May 2022).

7. Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design
Considerations. Future Internet 2020, 12, 46. [CrossRef]

8. Internet of Business Bluetooth and ZigBee to Dominate Wireless IoT Connectivity. Available online: https://internetofbusiness.
com/iot-driving-wireless-connectivity/ (accessed on 20 May 2022).

9. Pasqua, E. 5 Things to Know About the LPWAN Market in 2021. Available online: https://iot-analytics.com/5-things-to-know-
lpwan-market/ (accessed on 20 May 2022).

10. IoT Analytics State of IoT 2021: Number of Connected IoT Devices Growing 9% to 12.3 Billion Globally, Cellular IoT Now
Surpassing 2 Billion. Available online: https://iot-analytics.com/number-connected-iot-devices/ (accessed on 20 May 2022).

11. Saavedra, E.; Mascaraque, L.; Calderon, G.; del Campo, G.; Santamaria, A. The Smart Meter Challenge: Feasibility of Autonomous
Indoor IoT Devices Depending on Its Energy Harvesting Source and IoT Wireless Technology. Sensors 2021, 21, 7433. [CrossRef]
[PubMed]

12. del Campo, G.; Gomez, I.; Cañada, G.; Piovano, L.; Santamaria, A. Guidelines and criteria for selecting the optimal low-power
wide-area network technology. In LPWAN Technologies for IoT and M2M Applications; Elsevier: Amsterdam, The Netherlands, 2020;
pp. 281–305, ISBN 978-0-12-818880-4.

13. Hedi, I.; Speh, I.; Sarabok, A. IoT network protocols comparison for the purpose of IoT constrained networks. In Proceedings
of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 501–505. [CrossRef]

https://iot-analytics.com/2021-global-iot-spending-grow-24-percent/
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://securitytoday.com/Articles/2020/01/13/The-IoT-Rundown-for-2020.aspx
https://securitytoday.com/Articles/2020/01/13/The-IoT-Rundown-for-2020.aspx
https://www.forbes.com/sites/danielnewman/2019/07/30/return-on-iot-dealing-with-the-iot-skills-gap/?sh=5f453ccb7091
https://www.forbes.com/sites/danielnewman/2019/07/30/return-on-iot-dealing-with-the-iot-skills-gap/?sh=5f453ccb7091
https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0/en/Global-IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-Growth-says-Fortune-Business-Insights.html
https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0/en/Global-IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-Growth-says-Fortune-Business-Insights.html
https://www.globenewswire.com/en/news-release/2021/04/08/2206579/0/en/Global-IoT-Market-to-be-Worth-USD-1-463-19-Billion-by-2027-at-24-9-CAGR-Demand-for-Real-time-Insights-to-Spur-Growth-says-Fortune-Business-Insights.html
https://tools.ietf.org/pdf/rfc8376.pdf
http://doi.org/10.3390/fi12030046
https://internetofbusiness.com/iot-driving-wireless-connectivity/
https://internetofbusiness.com/iot-driving-wireless-connectivity/
https://iot-analytics.com/5-things-to-know-lpwan-market/
https://iot-analytics.com/5-things-to-know-lpwan-market/
https://iot-analytics.com/number-connected-iot-devices/
http://doi.org/10.3390/s21227433
http://www.ncbi.nlm.nih.gov/pubmed/34833509
http://doi.org/10.23919/MIPRO.2017.7973477

Sensors 2022, 22, 4159 22 of 23

14. Moraes, T.; Nogueira, B.; Lira, V.; Tavares, E. Performance Comparison of IoT Communication Protocols. In Proceedings of
the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 3249–3254.
[CrossRef]

15. Al-Kashoash, H.A.A.; Kemp, A.H. Comparison of 6LoWPAN and LPWAN for the Internet of Things. Aust. J. Electr. Electron. Eng.
2016, 13, 268–274. [CrossRef]

16. Anand, P.; Singh, Y.; Selwal, A.; Singh, P.K.; Felseghi, R.A.; Raboaca, M.S. IoVT: Internet of Vulnerable Things? Threat Architecture,
Attack Surfaces, and Vulnerabilities in Internet of Things and Its Applications towards Smart Grids. Energies 2020, 13, 4813.
[CrossRef]

17. Malhotra, P.; Singh, Y.; Anand, P.; Bangotra, D.K.; Singh, P.K.; Hong, W.-C. Internet of Things: Evolution, Concerns and Security
Challenges. Sensors 2021, 21, 1809. [CrossRef]

18. Pereira, C.; Pinto, A.; Ferreira, D.; Aguiar, A. Experimental Characterization of Mobile IoT Application Latency. IEEE Internet
Things J. 2017, 4, 1082–1094. [CrossRef]

19. Mroue, H.; Nasser, A.; Hamrioui, S.; Parrein, B.; Motta-Cruz, E.; Rouyer, G. MAC layer-based evaluation of IoT technologies: LoRa,
SigFox and NB-IoT. In Proceedings of the 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM),
Jounieh, Lebanon, 18–20 April 2018; pp. 1–5. [CrossRef]

20. Sinha, R.S.; Wei, Y.; Hwang, S.-H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [CrossRef]
21. Alsukayti, I.S. A Multidimensional Internet of Things Testbed System: Development and Evaluation. Wirel. Commun. Mob.

Comput. 2020, 2020, 1–17. [CrossRef]
22. Schulz, P.; Matthe, M.; Klessig, H.; Simsek, M.; Fettweis, G.; Ansari, J.; Ashraf, S.A.; Almeroth, B.; Voigt, J.; Riedel, I.; et al. Latency

Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture. IEEE Commun. Mag.
2017, 55, 70–78. [CrossRef]

23. Ma, Z.; Xiao, M.; Xiao, Y.; Pang, Z.; Poor, H.V.; Vucetic, B. High-Reliability and Low-Latency Wireless Communication for Internet
of Things: Challenges, Fundamentals, and Enabling Technologies. IEEE Internet Things J. 2019, 6, 7946–7970. [CrossRef]

24. Atutxa, A.; Franco, D.; Sasiain, J.; Astorga, J.; Jacob, E. Achieving Low Latency Communications in Smart Industrial Networks
with Programmable Data Planes. Sensors 2021, 21, 5199. [CrossRef] [PubMed]

25. Hossain, M.; Noor, S.; Karim, Y.; Hasan, R. IoTbed: A Generic Architecture for Testbed as a Service for Internet of Things-Based
Systems. In Proceedings of the 2017 IEEE International Congress on Internet of Things (ICIOT), Honolulu, HI, USA, 25–30 June
2017; pp. 42–49. [CrossRef]

26. Rana, B.; Singh, Y.; Singh, P.K. A systematic survey on internet of things: Energy efficiency and interoperability perspective. Trans.
Emerg. Telecommun. Technol. 2021, 32, e4166. [CrossRef]

27. Deutsche Telekom IoT NB-IoT, LoRaWAN, Sigfox: An Up-to-Date Comparison. Available online: https://iot.telekom.com/
resource/blob/data/492968/e396f72b831b0602724ef71056af5045/mobile-iot-network-comparison-nb-iot-lorawan-sigfox.pdf
(accessed on 20 October 2021).

28. Madsen, M.; Tip, F.; Lhoták, O. Static analysis of event-driven Node.js JavaScript applications. ACM SIGPLAN Not. 2015, 50,
505–519. [CrossRef]

29. Reisizadeh, A.; Pedarsani, R. Latency analysis of coded computation schemes over wireless networks. In Proceedings of the 2017
55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 3–6 October 2017;
pp. 1256–1263. [CrossRef]

30. Chen, P.W.-C.; Sastry, S.S. Latency and Connectivity Analysis Tools for Wireless Mesh Networks. Available online: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-87.html (accessed on 20 May 2022).

31. Ageev, A.; Macii, D.; Petri, D. Experimental Characterization of Communication Latencies in Wireless Sensor Networks. Available
online: https://www.imeko.org/publications/tc4-2008/IMEKO-TC4-2008-170.pdf (accessed on 20 May 2022).

32. Soltani, S.; Misra, K.; Radha, H. On link-layer reliability and stability for wireless communication. In Proceedings of the 14th
ACM International Conference on Mobile Computing and Networking-MobiCom’08, San Francisco, CA, USA, 14–19 September
2008; ACM Press: San Francisco, CA, USA, 2008; p. 327. [CrossRef]

33. Hong, S.; Chun, Y. Efficiency and stability in a model of wireless communication networks. Soc. Choice Welf. 2010, 34, 441–454.
[CrossRef]

34. Thomas, S.R.; Tucker, R.L.; Kelly, W.R. Critical Communications Variables. J. Constr. Eng. Manag. 1998, 124, 58–66. [CrossRef]
35. Liberal, F.; Ramos, M.; Fajardo, J.O.; Goia, N.; Bizkarguenaga, A.; Mesogiti, I.; Theodoropoulou, E.; Lyberopoulos, G.; Koumaras,

H.; Sun, L.; et al. User Requirements for Future Wideband Critical Communications; Glyndwr University: Wrexham, UK, 2013;
pp. 341–348.

36. Ratasuk, R.; Vejlgaard, B.; Mangalvedhe, N.; Ghosh, A. NB-IoT system for M2M communication. In Proceedings of the 2016 IEEE
Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–5. [CrossRef]

37. Saavedra, E.; del Campo, G.; Santamaria, A. Smart Metering for Challenging Scenarios: A Low-Cost, Self-Powered and Non-
Intrusive IoT Device. Sensors 2020, 20, 7133. [CrossRef]

38. Lavric, A.; Petrariu, A.I.; Popa, V. SigFox Communication Protocol: The New Era of IoT? In Proceedings of the 2019 International
Conference on Sensing and Instrumentation in IoT Era (ISSI), Lisbon, Portugal, 29–30 August 2019; pp. 1–4. [CrossRef]

39. Unwala, I.; Taqvi, Z.; Lu, J. Thread: An IoT Protocol. In Proceedings of the 2018 IEEE Green Technologies Conference (GreenTech),
Austin, TX, USA, 4–6 April 2018; pp. 161–167. [CrossRef]

http://doi.org/10.1109/SMC.2019.8914552
http://doi.org/10.1080/1448837X.2017.1409920
http://doi.org/10.3390/en13184813
http://doi.org/10.3390/s21051809
http://doi.org/10.1109/JIOT.2017.2689682
http://doi.org/10.1109/MENACOMM.2018.8371016
http://doi.org/10.1016/j.icte.2017.03.004
http://doi.org/10.1155/2020/8849433
http://doi.org/10.1109/MCOM.2017.1600435CM
http://doi.org/10.1109/JIOT.2019.2907245
http://doi.org/10.3390/s21155199
http://www.ncbi.nlm.nih.gov/pubmed/34372438
http://doi.org/10.1109/IEEE.ICIOT.2017.14
http://doi.org/10.1002/ett.4166
https://iot.telekom.com/resource/blob/data/492968/e396f72b831b0602724ef71056af5045/mobile-iot-network-comparison-nb-iot-lorawan-sigfox.pdf
https://iot.telekom.com/resource/blob/data/492968/e396f72b831b0602724ef71056af5045/mobile-iot-network-comparison-nb-iot-lorawan-sigfox.pdf
http://doi.org/10.1145/2858965.2814272
http://doi.org/10.1109/ALLERTON.2017.8262881
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-87.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-87.html
https://www.imeko.org/publications/tc4-2008/IMEKO-TC4-2008-170.pdf
http://doi.org/10.1145/1409944.1409982
http://doi.org/10.1007/s00355-009-0409-1
http://doi.org/10.1061/(ASCE)0733-9364(1998)124:1(58)
http://doi.org/10.1109/WCNC.2016.7564708
http://doi.org/10.3390/s20247133
http://doi.org/10.1109/ISSI47111.2019.9043727
http://doi.org/10.1109/GreenTech.2018.00037

Sensors 2022, 22, 4159 23 of 23

40. Alani, M.M. OSI Model. In Guide to OSI and TCP/IP Models; SpringerBriefs in Computer Science; Springer International Publishing:
Cham, Switzerland, 2014; pp. 5–17, ISBN 978-3-319-05151-2.

41. Ramya, C.M.; Shanmugaraj, M.; Prabakaran, R. Study on ZigBee technology. In Proceedings of the 2011 3rd International
Conference on Electronics Computer Technology, Kanyakumari, India, 8–10 April 2011; pp. 297–301. [CrossRef]

42. Oliveira, L.; Rodrigues, J.; Kozlov, S.; Rabêlo, R.; Albuquerque, V. MAC Layer Protocols for Internet of Things: A Survey. Future
Internet 2019, 11, 16. [CrossRef]

43. Ertürk, M.A.; Aydın, M.A.; Büyükakkaşlar, M.T.; Evirgen, H. A Survey on LoRaWAN Architecture, Protocol and Technologies.
Future Internet 2019, 11, 216. [CrossRef]

44. Ayoub, W.; Samhat, A.E.; Nouvel, F.; Mroue, M.; Prevotet, J.-C. Internet of Mobile Things: Overview of LoRaWAN, DASH7, and
NB-IoT in LPWANs Standards and Supported Mobility. IEEE Commun. Surv. Tutor. 2019, 21, 1561–1581. [CrossRef]

45. Jha, R.K.; Puja; Kour, H.; Kumar, M.; Jain, S. Layer based security in Narrow Band Internet of Things (NB-IoT). Comput. Netw.
2021, 185, 107592. [CrossRef]

46. Salva-Garcia, P.; Alcaraz-Calero, J.M.; Wang, Q.; Bernabe, J.B.; Skarmeta, A. 5G NB-IoT: Efficient Network Traffic Filtering for
Multitenant IoT Cellular Networks. Secur. Commun. Netw. 2018, 2018, 1–21. [CrossRef]

47. Chen, C.; Li, J.; Balasubramaniam, V.; Wu, Y.; Zhang, Y.; Wan, S. Contention Resolution in Wi-Fi 6-Enabled Internet of Things
Based on Deep Learning. IEEE Internet Things J. 2021, 8, 5309–5320. [CrossRef]

48. Magsi, H.; Sodhro, A.H.; Al-Rakhami, M.S.; Zahid, N.; Pirbhulal, S.; Wang, L. A Novel Adaptive Battery-Aware Algorithm for
Data Transmission in IoT-Based Healthcare Applications. Electronics 2021, 10, 367. [CrossRef]

http://doi.org/10.1109/ICECTECH.2011.5942102
http://doi.org/10.3390/fi11010016
http://doi.org/10.3390/fi11100216
http://doi.org/10.1109/COMST.2018.2877382
http://doi.org/10.1016/j.comnet.2020.107592
http://doi.org/10.1155/2018/9291506
http://doi.org/10.1109/JIOT.2020.3037774
http://doi.org/10.3390/electronics10040367

	Introduction
	Universal Testbed
	Latency and Laboratory Workaround
	Considerations Regarding Different Wireless Technologies
	The Testbed’s Interface
	Start Test (Route: POST /start/{idtech}/period/{period}/limit/{limit})
	Print Current Results (Route: GET /print)
	Stop Test (Route: PUT/stop)
	Callback (Route: POST /callback)

	The Testbed’s Temporal Characterisation
	The Testbed’s Reaction to External Interrupts
	Temporal Stability of the Internal Clock
	Self-Delay
	Testbed’s Error Range Validation

	Measurements and Results
	Parameters: Latency, Error, Stability
	Real Tests
	Results Discussion

	Conclusions
	Appendix A
	Appendix B
	References

