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Abstract: Accurate inference of the relationship between non-coding RNAs (ncRNAs) and drug
resistance is essential for understanding the complicated mechanisms of drug actions and clinical
treatment. Traditional biological experiments are time-consuming, laborious, and minor in scale.
Although several databases provide relevant resources, computational method for predicting this
type of association has not yet been developed. In this paper, we leverage the verified association
data of ncRNA and drug resistance to construct a bipartite graph and then develop a linear resid-
ual graph convolution approach for predicting associations between non-coding RNA and drug
resistance (LRGCPND) without introducing or defining additional data. LRGCPND first aggregates
the potential features of neighboring nodes per graph convolutional layer. Next, we transform the
information between layers through a linear function. Eventually, LRGCPND unites the embedding
representations of each layer to complete the prediction. Results of comparison experiments demon-
strate that LRGCPND has more reliable performance than seven other state-of-the-art approaches
with an average AUC value of 0.8987. Case studies illustrate that LRGCPND is an effective tool for
inferring the associations between ncRNA and drug resistance.

Keywords: ncRNA; drug resistance; association prediction; graph convolution network; feature
propagation

1. Introduction

Non-coding RNAs (ncRNAs) play special roles in the development, differentiation,
and aging of cells. Numerous studies have shown that ncRNAs are widely involved
in human pathological activities. They act as biomarkers to provide new targets for
the treatment of diseases such as cancer [1]. Non-coding RNAs such as microRNAs
(miRNAs), circular RNAs (circRNAs), and long ncRNAs (lncRNAs) have aroused great
interest of researchers. miRNAs are short regulatory biomolecules that are involved in
the post-transcriptional regulation of gene expression [2]. Compared with linear miRNAs,
circRNAs [3] are more stable and may function as transporters or scaffolds [4]. They exert
essential biological functions by acting as microRNA or protein inhibitors (“sponges”),
regulating protein function, or being translated themselves [5]. lncRNA can play a role
in regulating cooperating proteins [6]. piRNA (Piwi-Interacting RNA) has been relatively
poorly studied compared to those three. piRNA can form a piRNA/PIWI complex with
PIWI proteins to affect gene expression and mainly function to suppress the activity of
transposons [7,8]. There are synergies among RNAs. For example, lncRNA can act as a
molecular sponge of miRNA to regulate the expression of its target gene [9–12].

According to a statistical cancer report released by the American Cancer Society [13],
it is estimated that there will be approximately 4950 new cancer cases and 1600 deaths due
to cancer every day in the United States. Unfortunately, the development of drug resistance
greatly increases the probability of recurrence and significantly reduces the cure rate. Drug
resistance has become a major obstacle to clinical treatment.
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With the development of sequencing technology, it has been reported that cancer
resistance to treatment is related to mutations of the cell’s genome [14,15]. The instability
of the genome may change the phenotype of the tumor and lead to drug resistance. Studies
have shown that some ncRNAs, such as miRNAs, can act as rheostats to regulate protein
output [16]. The abnormal expression of ncRNAs is not only associated with several
diseases but also may promote drug resistance of cancer cells [17,18]. circRNA acts as
a miRNA sponge and enhances the response of HCC (hepatocellular carcinoma) cells
to chemotherapy with cisplatin [19]. lncRNA enhanced drug resistance in AML (acute
myeloid leukemia) cells by inhibiting miR-186 [20]. Overexpression of miRNA-194 can
make HCC cells more sensitive to sorafenib [21]. Increasing evidence suggests that drug
resistance is affected by ncRNA. Exploring their interaction will provide new insights for
improving the therapeutic effect.

The relationship between ncRNAs and drug resistance has been gradually discovered,
and some databases already provide relevant data. The ncDR database [22] provides
135 compounds and 1050 ncRNAs. Additional information on compounds and ncRNAs,
such as ncRNA genomic contexts, had also been added. NoncoRNA [23] covers the basic
calculation of ncRNA, drugs, diseases, etc., and includes experimental detection techniques,
drug response, and other information. However, existing knowledge is minimal compared
to the unknown associations. Discovering possible relationships between ncRNAs and
drugs is beneficial for understanding related drug resistance mechanisms and accelerating
drug development. To some extent, the traditional biological experiments are difficult to be
carried out due to the factors such as difficult control and high time cost. Computational
methods are useful accelerators of this process, but very little work has been done in
this area.

In recent years, association prediction methods have been greatly developed in Bioin-
formatics. GCMDR [24] established a three-layer latent factor model to predict miRNA-
disease associations introducing features such as miRNA expression profile and drug
PubChem substructure fingerprints into the model. Zhu et al. [25] utilized the matrix com-
pletion method. SDLDA [26] introduced singular value decomposition and ILNCRNADIS-
FB [27] calculated the three-dimensional feature blocks to capture characteristics. In a
different way, SAEMDA [28] extracts features through semantic similarity. In terms of the
prediction of circRNA-disease associations, AE-RF algorithm [29] also integrates many
information sources to obtain the depth features. DMFCDA [30] constructed a circRNA-
disease matrix with explicit and implicit feedback to capture the non-linear features.
Deng et al. [31] constructed a heterogeneous information network (HIN) containing multi-
ple subnetworks. A great deal of research has focused on the microbe-disease association
prediction. The KATZHMDA [32] introduced the Gaussian kernel to perform a complete
and easy reconstruction of the microbe-disease relationship. The ABHMDA [33] is a strong
classifier based on the existing model to achieve better self-adaptability. Liu et al. [34] used
matrix decomposition based on neural networks to obtain nonlinear latent features to infer
disease-related microbes. The NTSHMDA [35] successfully reduced the prediction error by
assigning random walks according to different weights.

Although the above methods have achieved good results, some problems and short-
comings still hinder more comprehensive potential feature mining. The lack of relevant
biological data and information leads to noise in the calculated features, which reduces
prediction accuracy. Existing association predictions are more dependent on the existing
similarities in the database. When the number of ncRNAs and diseases increases, the exist-
ing calculation models are difficult to draw conclusions efficiently, so they are not suitable
for large-scale data sets. Therefore, these methods are not applicable when predicting the
relationship between multiple ncRNAs and drug resistance. Although more and more
ncRNA-drug resistance associations have been determined and existing databases provide
relevant data, the existing knowledge is still very limited compared with the unknown
potential associations. Here we propose an efficient approach based on a linear residual
graph convolutional network, LRGCPND, which only employs ncRNA and drug resis-
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tance validated interactions. Initially, LRGCPND constructs a bipartite graph through the
association network of ncRNA and drug resistance, where the edges represent the hidden
interaction factors between the two types of nodes. The unconnected edges may have
associations that are not obvious to identify. LRGCPND then fleetly aggregates the intrinsic
characteristics of neighbor nodes in the former layer and performs the linear transition.
After the specified number of iterations, it fuses the embeddings of previous convolutional
layers through residual learning to favorably explore the interactions between ncRNA
and drug resistance. LRGCPND achieves the best performance compared with the other
advanced computational methods. Case studies of two anti-cancer drugs demonstrate the
practical capability of LRGCPND. The flow chart of LRGCPND is shown in Figure 1.
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Figure 1. Flow chart of LRGCPND. E0 denotes the embedding matrix in layer 0. e0
n and e0

r denote the embedding of ncRNA
n and drug d in layer 0, respectively. LRGCPND contains three steps: aggregation, linear transition, and residual learning.
In the feature aggregation step, we use the spectral rule to aggregate the features of neighboring nodes. After that, the linear
transformation is adopted to speed up the forward propagation. Finally, we add a residual block to fuse the characteristics
of low-layer nodes directly, attaining higher-layer potential features.

2. Results and Discussion
2.1. Experimental Setup

To objectively and systematically evaluate the ability of LRGCPND and expedite
comparison with other methods, we perform k-fold cross-validation (k-fold CV) on the
collected dataset. All verified associations are randomly divided into k parts. Each part
is picked as positive samples with an equal quantity of unlabeled samples as negative
samples to form the testing set. Meanwhile, the equivalent operation is performed on the
remaining k− 1 parts to obtain the training set. This process ends after k iterations.

Even if there may be latent associations in the selected negative samples, since they
account for a tiny proportion in the entire unverified sample set, the influence is negligible.

2.2. Evaluation Criteria

To observe intuitively and comprehensively, we measure the performance of models
by widely adopted metrics, including AUC, AUPR, Accuracy (Acc.), Precision (P.), Recall
(R.), and F1 scores, which are defined by the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FN
(2)
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Recall =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

TP and FP represent the number of correct and incorrect classifications in the related
ncRNA-drug resistance pairs. In contrast, TN and FN represent the number of correct and
incorrect classifications in the unrelated pairs. By adjusting the threshold, we can plot
the receiver operating characteristic (ROC) curve and precision-recall (PR) curve and then
calculate the area under the curves to get AUC and AUPR, respectively.

2.3. Performance Evaluation for LRGCPND

To evaluate the identification ability of our model, we performed five-fold and ten-fold
CV on the dataset specified above. Table 1 lists the specific results in five-fold CV, and
Figure 2 displays the ROC curves. In five-fold CV, the average values of AUC, AUPR,
and Accuracy reach 0.8987, 0.9094, 0.8342, respectively. With the increasing size of the
training set, training of the model will achieve a more thorough level. So, in ten-fold CV,
the AUC increased to 0.9052. As seen from the above experimental results, LRGCPND can
accurately and effectively identify potential ncRNAs related to drug resistance.

Table 1. Prediction results of LRGCPND in five-fold CV.

No. AUC AUPR Acc. P. R. F1

1 0.9052 0.9149 0.8467 0.8410 0.8550 0.8479
2 0.8961 0.8949 0.8383 0.8473 0.8253 0.8362
3 0.8946 0.9068 0.8262 0.8395 0.8067 0.8227
4 0.8986 0.9116 0.8290 0.8254 0.8346 0.8299
5 0.8989 0.9186 0.8309 0.8315 0.8299 0.8307

Avg. 0.8987 0.9094 0.8342 0.8369 0.8303 0.8335
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Figure 2. Performance of LRGCPND in five-fold CV and ten-fold CV, respectively. (a) ROC curves
yielded by LRGCPND in five-fold CV. (b) ROC curves yielded by LRGCPND in ten-fold CV.

2.4. Effects of Parameters

For LRGCPND, there are two crucial parameters: the depth of propagation and the
dimension of embedding, which influence the prediction capability. For one thing, we
explored the impact of layer depth K, following the settings of other parameters constant.
When K ranges from 1 to 5, we performed five-fold CV. Table 2 lists the detailed data, and
Figure 3 is the trend chart of different indicators. Our model achieves the best performance
when K is equal to 4.
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Table 2. Prediction results of LRGCPND with different depth K.

K AUC AUPR Acc. P. R. F1

1 0.8961 0.9059 0.8268 0.8290 0.8236 0.8262
2 0.8946 0.9038 0.8273 0.8353 0.8158 0.8252
3 0.8942 0.9054 0.8303 0.8337 0.8255 0.8294
4 0.8987 0.9094 0.8342 0.8369 0.8303 0.8335
5 0.8855 0.8947 0.8203 0.8210 0.8195 0.8201
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For another thing, the embedding dimension S also has a critical role. When setting
the value of S to 8, 16, 32, 64, 128 sequentially, we conducted five-fold CV to measure the
impact on the prediction ability of our model. Table 3 shows the detailed statistics, and
Figure 4 indicates the trend of diverse metrics. From the results, we can conclude that when
S varies from 8 to 128, the performance first monotonically improves. That is because the
larger embedding dimension enhances the expressivity of LRGCPND to a certain extent.
When S is 32, it reaches the optimum. Then as S increases, it starts to produce adverse
effects on the performance.

Table 3. Prediction results of LRGCPND with different embedding size S.

S AUC AUPR Acc. P. R. F1

8 0.8906 0.8930 0.8167 0.7962 0.8515 0.8228
16 0.8915 0.8937 0.8234 0.8135 0.8396 0.8262
32 0.8987 0.9094 0.8342 0.8369 0.8303 0.8335
64 0.8874 0.8974 0.8275 0.8502 0.7950 0.8216
128 0.8801 0.9006 0.8184 0.8597 0.7612 0.8073
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In other experiments, we employ the optimal values obtained above as the default of
model parameters.

2.5. Comparison with Other Approaches

Since inferring ncRNA-drug resistance interactions is a relatively new area, no re-
searchers have proposed relevant solutions already. Nonetheless, reviewing other asso-
ciation prediction methods in bioinformatics still provides significant references for the
performance of our model. To further assess the effectiveness of LRGCPND, we compared
it with seven advanced approaches in directions of lncRNA-disease, circRNA-disease, and
microbe-disease.

For the sake of rigor, we need to point out that since AE-RF [29] and ABHMDA [33]
employ other similarity-based features besides the Gaussian interaction profile (GIP) kernel
similarity. Considering the scarcity of relevant biological resources and convenience, we
only calculated the GIP similarity for them in the experiments. Furthermore, the adjacency
matrix allocated at the beginning of training is different, so the topology information
of the interaction network needs to be re-extracted. We re-calculated the GIP similar-
ity matrices during each cross-validation process for similarity-based methods, AE-RF,
KATZHMDA [32], NTSHMDA [35], and ABHMDA. As plotted in Figure 5, it is evident
that LRGCPND leads others with the average AUC value of 0.8987, which is 5.84% higher
than the second-best method DMFMDA [34].

From statistics of various metrics listed in Table 4, except that the Recall value is
slightly lower than ABHMDA, our model yields the optimal identification ability. Its
AUPR, Accuracy, and F1 values achieve 0.9094, 0.8342, 0.8335, respectively. We also drew a
radar chart to intuitively and comprehensively measure the capabilities of diverse models
through various metrics, as shown in Figure 6. All six evaluation metrics range from 0.4
to 1.0. The farther the point from the center of the circle, the higher the value. It is also
apparent to conclude that LRGCPND advantages over other methods.



Int. J. Mol. Sci. 2021, 22, 10508 7 of 13Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 5. ROC curves of different methods on our dataset. 

From statistics of various metrics listed in Table 4, except that the Recall value is 
slightly lower than ABHMDA, our model yields the optimal identification ability. Its 
AUPR, Accuracy, and F1 values achieve 0.9094, 0.8342, 0.8335, respectively. We also drew 
a radar chart to intuitively and comprehensively measure the capabilities of diverse mod-
els through various metrics, as shown in Figure 6. All six evaluation metrics range from 
0.4 to 1.0. The farther the point from the center of the circle, the higher the value. It is also 
apparent to conclude that LRGCPND advantages over other methods. 

These experimental results sufficiently demonstrate that our model is reliable and 
promising in inferring candidate ncRNA-drug resistance pairs. 

 
Figure 6. Performance comparison using multiple metrics in five-fold CV. 

  

Figure 5. ROC curves of different methods on our dataset.

Table 4. Prediction results of different methods in five-fold CV.

Methods AUC AUPR Acc. P. R. F1

DMFCDA 0.8449 0.8649 0.7654 0.8062 0.7463 0.7499
SDLDA 0.8258 0.8663 0.7785 0.8330 0.6978 0.7588
DMFMDA 0.8491 0.8546 0.8264 0.8253 0.8288 0.8269
KATZMDA 0.7544 0.8048 0.7295 0.7921 0.6223 0.6964
NTSHMDA 0.7142 0.6391 0.6047 0.6518 0.4470 0.5289
AE-RF 0.8390 0.8535 0.7223 0.7853 0.6127 0.6881
ABHMDA 0.8428 0.8516 0.7565 0.7199 0.8413 0.7756
LRGCPND 0.8987 0.9094 0.8342 0.8369 0.8303 0.8335
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These experimental results sufficiently demonstrate that our model is reliable and
promising in inferring candidate ncRNA-drug resistance pairs.
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2.6. Case Studies

The discovery of unknown associations between ncRNA and drug resistance mat-
ters tremendously for practical application. Thus, we selected two drugs, Cisplatin and
Paclitaxel, and conducted case studies. Precisely, for a particular drug, to start with, we
removed the known associated ncRNAs. Then, the remaining ncRNAs were sorted in
descending order following the values predicted by LRGCPND. Lastly, we screened the
top 15 ncRNAs and searched for supporting evidence in published literature.

Cisplatin is a common chemotherapeutic drug used to treat numerous cancers, in-
cluding lung cancer, head and neck cancer, and ovarian cancer. Resistance frequently
causes reduced efficacy of Cisplatin in chemotherapy [36]. Paclitaxel is another widely
applied taxane medication. Chemoresistance to Paclitaxel makes its clinical application
problematic [37]. Tables 5 and 6 summarize the top 15 candidate ncRNAs of Cisplatin and
Paclitaxel, respectively. We can see that 10 and 7 of the former and the latter are confirmed
by existing evidence, indicating that our method has an excellent capability for predicting
novel associated ncRNAs for drugs in terms of resistance. It is noteworthy that other
unproven associations are likely to exist and deserve further relevant experiments.

Table 5. The top 15 miRNAs related to Cisplatin resistance predicted by LRGCPND.

Rank ncRNA Evidence (PMID)

1 miR-30a 28222434
2 miR-140 31288529
3 miR-361 33531993
4 miR-660 Unconfirmed
5 miR-151 Unconfirmed
6 miR-103 31372241
7 miR-212 Unconfirmed
8 miR-30c 29440633
9 miR-324 31778188
10 miR-1183 Unconfirmed
11 miR-497 26238185
12 miR-122 31152437
13 miR-625 Unconfirmed
14 miR-425 31632022
15 miR-342 32397872

Table 6. The top 15 miRNAs related to Paclitaxel resistance predicted by LRGCPND.

Rank ncRNA Evidence (PMID)

1 HOTAIR 32743678
2 miR-19b Unconfirmed
3 miR-26b 30899303
4 miR-10b Unconfirmed
5 miR-152 32913475
6 miR-20a Unconfirmed
7 miR-212 32774496
8 miR-339 28940895
9 miR-424 Unconfirmed
10 miR-103 Unconfirmed
11 miR-21-5p 31169019
12 miR-628 Unconfirmed
13 CRNDE 32581554
14 miR-151 Unconfirmed
15 miR-543 Unconfirmed
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3. Materials and Methods
3.1. Datasets

NoncoRNA: NoncoRNA [23] contains 5568 ncRNAs and 154 drugs in 134 cancers.
This is the first database that provides diverse ncRNAs and associations between ncRNAs
and drug resistance in cancers. We use the Feb 2020 version of the NoncoRNA database,
which is publicly released at http://www.ncdtcdb.cn:8080/NoncoRNA (accessed on 10
March 2021).

ncDR: Hitherto, one of the most frequently used databases is ncDR [22] in the
field of drug resistance-related non-coding RNA. Here, we adopt the data downloaded
from the June 2016 version of the ncDR database. The dataset contains 5864 associa-
tions between ncRNAs and drug resistance, including 877 miRNAs and 162 lncRNAs
from nearly 900 pieces of published literature. It now can be available on the website
http://www.jianglab.cn/ncDR (accessed on 10 March 2021).

We manually integrated a set of 2693 associations between ncRNAs and drug resis-
tance from NoncoRNA and ncDR datasets, including 625 ncRNAs and 121 drugs. Here we
choose the experimental data. Besides, we clean the dataset by removing the redundant
ones and associations in which a ncRNA only contains one drug resistance binding. The
dataset can be expressed as:

R = R+ ∪R− (5)

where R+ represents the positive dataset, which contains 2693 ncRNA-drug resistance asso-
ciations verified with wet experiment. R− represents the negative dataset, which contains a
total of 72,932 ncRNA-drug resistance associations without verified experimentally. Earlier
in Section 2.1, we have introduced the detail of sampling. Our dataset can be downloaded
on the website https://github.com/TroyePlus/LRGCPND (accessed on 30 July 2021).

3.2. Problem Description

In order to predict the relationship between ncRNA and drug resistance, for a given
set of m ncRNAs and n drugs, we use U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn}
respectively represent the collection of ncRNAs and drugs, and R ∈ Rm×n is the cor-
relation matrix. If ncRNA ui is related to drug resistance vj, then the entry Rij = 1,
otherwise Rij = 0. However, Rij = 0 does not mean that ncRNA ui has no association
with the drug vj. It may be that the relationship has not been found yet. In addition,
we use V+

i =
{

vj
∣∣vj ∈ V and Rij = 1

}
to represent the linked set of ncRNA ui found, and

V−i = V/V+
i to represent the non-linked set. D =

{(
ui, vj

)∣∣Rij = 1
}

is defined as the set
of all linked ncRNA and drug resistance pairs.

3.3. Graph Construction

We use a bipartite graph G(U, V, E) to express the associations between different
ncRNAs and drug resistance, where U, V are the previously defined ncRNA set and drug
set. Every edge e belonging to E represents a verified association between ncRNA u and
drug resistance v.

3.4. Graph Embedding

Matrix factorization is a common method of graph embedding. Matrix factorization
only uses the linear relationship between entities and can be applied to data that only
contains associations. However, the matrix factorization method cannot make full use of
data information, and its ability to extract high-order features is weak. In recent years,
graph-based models have become popular in the field of semi-supervised classification.
The network built by graphs combined with deep learning methods can be applied to
graph embedding to obtain vector representations of graphs or graph nodes [38]. Graph
convolutional neural network is often used in the field of association prediction in bio-
logical information. The design of graph convolutional neural network is inspired by
convolutional neural network, which is widely used in the field of computer vision. Its

http://www.ncdtcdb.cn:8080/NoncoRNA
http://www.jianglab.cn/ncDR
http://www.jianglab.cn/ncDR
https://github.com/TroyePlus/LRGCPND
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advantage is that it can extract the structural features of node neighborhoods and then
learn higher-order relationships. But obvious disadvantages are the over-smoothing prob-
lem and time-consuming calculation. In this work, the task of ncRNA-drug resistance
association is similar to the recommendation problem, where ncRNA corresponds to the
user, and the drug resistance is equivalent to the project. The verified association is equal to
the user’s viewing/shopping history. Therefore, the graph convolutional neural network
method, which is very popular in the recommendation task, can be applied to our problem.
Here, we solve the above problems with linear propagation and residual block based on
GCN. We first construct the adjacency matrix A of the bipartite graph G as follows:

A =

[
0 R

RT 0

]
(6)

Then use E to represent the embedding matrix of ncRNA and drug resistance. We
generate initial values from the normal distribution given standard deviation = 0.1 to fill
the initial embedding matrix with nn.initial.normal. Every epoch in training, LRGCPND
treats the embedding matrix as input:

E0 = E (7)

where E is calculated in each iteration and will be updated.

3.5. Feature Aggregation

There is no intra-domain edge in the bipartite graph, so the message passing and node
feature aggregation are only performed through the inter-domain edge for the convolution
of the bipartite graph. We use the spectral rule to aggregate feature of graph:

fagg(
∼
A, E)i =

∼
D
−0.5 ∼

Ai
∼
D
−0.5

E

=
N
∑

k=1

∼
D
−0.5

i,k
N
∑

j=1

∼
Ai,j

N
∑

l=1

∼
D
−0.5

j,l Ej

=
N
∑

j=1

∼
D
−0.5

i,i
∼
Ai,j

∼
D
−0.5

j,j Ej

(8)

where
∼
A = A + I, I is the identity matrix.

∼
D is the degree matrix of

∼
A. As is adopted

widely in GCN, spectral rule considers not only the degree of ith node, but also the degree
of the jth node when calculating the aggregation of the ith node.

3.6. Linear Transition

We remove the nonlinear transformation functions at the end of each layer. Despite
the linear propagation of LRGCPND, the “receptive field” of our model is the same as a
K-layer GCN. The k + 1 step embedding could be calculated as:

Ek+1 = fagg

( ∼
A, Ek

)
Wk (9)

where Wk represents the linear transformation, Ek is the k step embedding.
Due to the linear transformation, we can get the matrix form to model each ncRNA

n’s and drug-resistance r’s embedding:

[
Ek+1

]
n
= ek+1

n =

[
1
dn

ek
n + ∑

i∈Rn

1
di × dn

ek
i

]
Wk (10)

[
Ek+1

]
r
= ek+1

r =

[
1
dr

ek
r + ∑

j∈Rr

1
dr × dj

ek
n

]
Wk (11)



Int. J. Mol. Sci. 2021, 22, 10508 11 of 13

where d is the diagonal degree of ncRNA n(drug-resistance r) in G. Rn(Rr) represents the
neighbors of node n (r) in G.

3.7. Residual Block in LRGCPND

In a graph convolution network, there is an over-smoothing problem caused by
network stacking. The role of GCN is equivalent to low-pass filtering, making the input
signal smoother, which is an inherent advantage of the GCN model. However, after
multiple executions of GCN operations, the signals will tend to be the same, so the diversity
of node characteristics is lost, which is a fatal disadvantage for tasks related to node
classification. From the perspective of the spectral domain, analyzing the frequency
response function of GCN points out that if the smoothing operation is continuously
performed on a graph signal, the graph signal will eventually become equal everywhere,
ultimately losing the discrimination information between nodes. Here we adopt the
residual block [39] proposed by Kaiming He to establish identity mapping. The output of
our model can be described as:

ôk+1
nr = ôk

nr + ek+1
n · ek+1

r (12)

3.8. Model Optimization

BPR [40] is a sorting algorithm based on matrix decomposition. It is not a global
scoring optimization but a sorting optimization for each ncRNA’s related drug-resistance
preferences. It is a pairwise sorting algorithm. For each triple < n, i, j >, the model hopes
to make the ncRNA n’s difference between drug-resistance i and j more obvious.

minL
Θ

=
M

∑
a=1

∑
(i,j)∈Da

(
− ln

(
s
(
ôai − ôaj

)))
+ λ‖Θ1‖2 + λ‖Θ2‖2 (13)

where Θ1 =
[
E0
]
, Θ2 = [W], E is updated after the model backward propagation. λ

controls the strength of L2 regularization. Ra denotes the positive subset for a of drug set
V. Da = {(i, j)|i ∈ Ra ∧ j ∈ V − Ra} represents the pairs containing positive sample i and
negative sample j.

4. Conclusions

Drug resistance response has caused vital challenges to clinical treatment. Numerous
studies have indicated that ncRNA plays a pivotal role in the mechanisms of drug resistance.
Accurately identifying the ncRNA-drug resistance association pairs is conducive to drug
development and promotes clinical treatment. In this work, we propose LRGCPND, a
graph convolutional network computational framework for mining the latent associations
between ncRNA and drug resistance through linear transition and residual prediction. To
our best knowledge, this is the first computational prediction approach in this field. We
represent the relationship between ncRNA and drug resistance in a bipartite graph and
exploit limited information to learn complex latent factors for edge prediction. LRGCPND
first captures the neighborhood representations by aggregation. Then, it performs feature
transformation through linear operations. Finally, the embedding vectors of convolutional
layers are concatenated through residual blocks to achieve prediction.

Experimental results and case studies corroborate the effectiveness of our model, to
which several aspects may contribute. We utilize graph convolution to perform relatively
more adequate representation learning on the original association data with inadequate
information. Residual blocks enable the model to attain higher-layer potential character-
istics, and linear feature propagation keeps the model lightweight and flexible to extend
to datasets on a large scale. In conclusion, our model is promising and facilitates further
research in predicting novel associated ncRNAs for drug resistance. Our study helps
build a systematic map of ncRNA and drug resistance, provides more insights into drug
resistance, and aids in identifying effective therapeutic combinations.
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As with many computational prediction methods, LRGCPND also has its limitations.
First, LRGCNPND only utilizes ncRNA-drug resistance association data. The quality
and coverage of the association data would affect the performance. Second, LRGCPND
makes predictions with ncRNAs containing subtypes. Despite this provides insights from a
broader perspective, differences between subtypes would cause bias. In the future, we will
combine the attention mechanism and integrate multiple heterogeneous data to improve
the performance further.
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