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Intramuscular or gene gun-based injections of plasmid DNA 
expression vectors, i.e., DNA vaccines, induce corresponding 
protein expression in vivo and generate humoral and cellular 
immune responses against various infectious agents [1]. DNA 
vaccines are simple, inexpensive, and heat-stable, and can in-
duce protective immunity without using live organisms, repli-
cating vectors, or harmful adjuvants [2]. Significant progress 
has recently been made in the development of malaria DNA 
vaccines targeting the pre-erythrocytic and erythrocytic stage 
antigens. Circumsporozoite proteins (CSP), merozoite surface 
proteins (MSP), Duffy-binding protein (DBP), and apical mem-
brane antigens (AMA) have been used as antigens [2-4].

Apical membrane antigen 1 (AMA-1), previously known as 
Pf83 and Pk66 in Plasmodium falciparum, is a micronemal pro-
tein of apicomplexan parasites and is essential during the inva-
sion of malarial parasites into host cells [5]. There is a single 
gene for this antigen in all Plasmodium species [5]. AMA-1 is a 
good vaccine candidate because it can have profound parasite-
inhibitory effects in vitro and in animal models [5]. Several 
studies have examined the vaccine potential of AMA-1 against 
P. falciparum and other human-infecting malaria [6,7]. Howev-
er, relatively little has been studied on AMA-1 vaccines against 
Plasmodium vivax [8,9]. 

Since important issues were raised about P. vivax, including 
its global burden, drug resistance, severity of the disease, preva-
lence of relapse and recrudescence, and problems of coinfec-
tion with P. falciparum, there is a renewed interest in the devel-
opment of a P. vivax vaccine [10]. A modest number of P. vivax 
vaccine candidates, including CSP, MSP, and DBP, have been 
tested in pre-clinical trials in rodents [11], and several CSPs and 
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Abstract: Relatively little has been studied on the AMA-1 vaccine against Plasmodium vivax and on the plasmid DNA vac-
cine encoding P. vivax AMA-1 (PvAMA-1). In the present study, a plasmid DNA vaccine encoding AMA-1 of the reemerging 
Korean P. vivax has been constructed and a preliminary study was done on its cellular immunogenicity to recipient BALB/
c mice. The PvAMA-1 gene was cloned and expressed in the plasmid vector UBpcAMA-1, and a protein band of approx-
imately 56.8 kDa was obtained from the transfected COS7 cells. BALB/c mice were immunized intramuscularly or using a 
gene gun 4 times with the vaccine, and the proportions of splenic T-cell subsets were examined by fluorocytometry at week 
2 after the last injection. The spleen cells from intramuscularly injected mice revealed no significant changes in the pro-
portions of CD8+ T-cells and CD4+ T-cells. However, in mice immunized using a gene gun, significantly higher (P<0.05) 
proportions of CD8+ cells were observed compared to UB vector-injected control mice. The results indicated that cellular 
immunogenicity of the plasmid DNA vaccine encoding AMA-1 of the reemerging Korean P. vivax was weak when it was 
injected intramuscularly; however, a promising effect was observed using the gene gun injection technique. 
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an ookinete surface antigen (Pvs25) were assessed in phase I 
clinical trials [10]. Vaccination with P. vivax AMA-1 (PvAMA-1) 
was attempted in primates [8], and PvAMA-1 was shown to 
elicit differentiation of dendritic cells in naturally infected vivax 
malaria patients [9]. However, few studies have been reported 
on plasmid DNA vaccines encoding PvAMA-1 [3]. The present 
study aimed to construct a DNA plasmid vaccine encoding AMA-
1 of the reemerging P. vivax in the Republic of Korea (=Korea), 
and to preliminarily observe its cellular immunogenicity in re-
cipient BALB/c mice.

Six-week-old female BALB/c mice (Koatech, Pyeongtaek, 
Gyeonggi-do, Korea) were supplied with food and water steril-
ized by irradiation and autoclaving. All animal procedures 
were performed according to the approved protocols and in-
stitutional recommendations for the proper use and care of 
laboratory animals, Seoul National University College of Med-
icine. 

Blood samples were collected from 17 P. vivax patients (des-
ignated SKPV1 through SKPV17) diagnosed at the Department 
of Parasitology and Tropical Medicine, Seoul National Univer-
sity College of Medicine, Seoul, and Paju Medical Center, Paju, 
Gyeonggi-do (Province), Korea between 1995 and 2000, and 
frozen at -80˚C. The level of parasitemia ranged from 500 to 
6,200 parasites per μl blood. The genomic DNA of P. vivax was 
extracted using the QIAmp DNA Mini kit (Qiagen, Hilden, 
Germany). After ethanol precipitation, it was dissolved in dis-
tilled water and kept at -80˚C. After PCR amplification of AMA-
1, its nucleotide sequences were compared with those of the 
Salvador strain (Sal-1) (GenBank accession number; AF063138). 
The primer sets were based on the oligonucleotide sequences 
of PvAMA-1 [12]. One μl of genomic DNA and 20 pmol each 
of forward and reverse primers were added to the PCR premix 
(Bioneer, Seoul, Korea). The PCR products were amplified in 
35 cycles using a GeneAmp PCR System 9600 DNA thermal 
cycler (PE Applied Biosystems, Forster City, California, USA). 
The PCR conditions were as follows: denaturation at 95˚C for 
1 min, annealing at the indicated temperature for 1 min, and 
extension at 72˚C for 1 min. The DNA band visualized by ethid-
ium bromide staining after electrophoresis was extracted using 
the QIAEX II gel extraction kit (Qiagen).

The PCR products of AMA-1 were subcloned using the pCR2.1 
cloning vector of a TOPO Cloning Kit (Invitrogen, Carlsbad 
City, California, USA). Escherichia coli, strain JM109, was used 
as the host for transformation. When target fragments from 
positive clones were confirmed, the plasmid was prepared us-

ing the miniprep kit (Qiagen) and sequenced using a model 
ABI Prime 377 Automatic Sequencer (PE Applied Bio-systems). 
The gene UBpcDNA encoding the mutant ubiquitin, whose C-
terminal Gly residue was replaced by Ala (G74A), originated 
in the liver of BALB/c mice and was inserted into the Nhe I and 
Xho I sites of pcDNA 3.1(-) vector, which was supplied by the 
Department of Parasitology, Graduate School of Medical Sci-
ences, Kyushu University, Japan [13]. 

For construction of UBpcAMA-1, the miniprep products of 
the DNA-TA vector for AMA-1 were digested with Xho I and 
Apa I enzymes, and ligated to the 3’ of the gene encoding mu-
tant ubiquitin cDNA in the frame and inserted into the Apa I 
site of pcDNA3.1(-) attached C-terminal His tag (Fig. 1A). AMA-
1 protein expression in COS7 cells (Korea Cell Line Bank, Seoul, 
Korea) transfected with UBpcAMA-1 plasmid was confirmed 
by immunofluorescence stain (Fig. 1B) and western blot (Fig. 
1C). COS7 cells were cultured in DMEM medium supplement-
ed with 10% FBS (GIBCO BRL, Grand Island, New York, USA) 
in a 5% humidified CO2 incubator at 37˚C. At 24 hr after the 
transfection, 10 μM MG132, an inhibitor of proteasomes, was 
used and, at 48 hr, cells were harvested and lysed by the addi-
tion of 200 μl lysis buffer.

DNA vaccine injection was performed either intramuscular-
ly (10 μg vaccine in 100 μl saline) into the quadriceps muscle 
or with a gene gun into the epidermis [2]. Mice, 3-5 in each 
group, were anesthetized with sodium pentobarbital (75 mg/
kg) and vaccinated a total of 4 times at 2 week intervals. For 
gene gun injection, the expression plasmid was precipitated 
onto 1.6 mm diameter gold particles (12.5 mg particles in 100 
μl 0.05 M spermidine mixed with 100 μl of 100 μg plasmid), 
and the plasmid-gold particles were resuspended in 6 ml of 
ethanol and coated onto the inner surface of a tube. The plas-
mid DNA was delivered to the shaved abdominal skin of mice 
in 1 shot using the Helios Gene Gun (Bio-Rad, Hercules, Cali-
fornia, USA) at a helium pressure of 300 p.s.i. For comparison, 
groups of mice were immunized with 2 μg UB vector (control 
group), 2 μg UBpcAMA-1 (AMA-1 group), 1 μg UBpcAMA-1 
plus 1 μg UBpcIL-12 (AMA-1 + IL-12 group), or 2 μg UBpcIL-12 
(IL-12 group) per shot. 

Phenotype changes of splenocytes before and after vaccina-
tion were examined using flow cytometry at 2 weeks after the 
final boosting. Spleens were removed and gently crushed throu
gh a stainless steel mesh. After lysis of erythrocytes and washing 
for 10 min at 1,500 rpm, splenocytes were suspended in com-
plete RPMI 1640 media. For fluorescence-activated cell sorter 
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(FACS) analysis, cells were adjusted to 1×107 cells per ml, and 
100 μl (1×106 cells) of this cell suspension was stained with 
specific antibodies. To avoid non-specific binding, purified rat 
anti-mouse CD16/32 (Fcγ III/II receptor) mAb (eBioscience, 
San Diego, California, USA) was added before labeling with 
specific antibodies. For phenotype determination, the follow-
ing mAbs were used: fluorescein isothiocyanate-conjugated 
anti-mouse mAb against CD3+ T-cells (CD3e, clone 145-2C11) 
(eBioscience), Cy5-conjugated anti-mouse mAb against CD8+ 
T-cells (CD8a LY-2, clone 53-6.7) (eBioscience), and PE-conju-
gated anti-mouse mAb against CD4+ T-cells (CD4 L3T4, clone 
GK1.5) (eBioscience). Fluorescence was quantified using BD 
FACS Calibur Flow Cytometer (BD science, San Jose, New Jer-
sey, USA). 

Data were compared using the Mann-Whitney U test (SPSS 
Inc., Chicago, Illinois, USA) which is appropriate for testing 

small numbers of samples. A P-value of <0.05 was considered 
statistically significant. 

Little polymorphism was observed in PvAMA-1 gene among 
the 17 reemerging Korean isolates (data not shown). Also, the 
nucleotide sequence of SKPV1, one of the 17 isolates, showed 
over 99% homology with other previously reported Korean 
isolates (SK-G, SK-A, SKOR-67, SKOR-68) and over 98% ho-
mology with foreign strains, Sal-1 (El Salvador) and PH-84 (the 
Philippines) (data not shown). The amino acid sequence ho-
mology was over 97% with Sal-1, over 98% with SK-G, SKOR-
67, SKOR-68, and PH-84, and over 99% with SK-A.

The eukaryotic expression plasmid, UBpcAMA-1, was con-
structed as described in Fig. 1A. The mammalian expression 
vector, pcDNA 3.1(-), was inserted with AMA-1 and mutant 
ubiquitin genes, and thus the expression plasmid was generat-
ed by the ubiquitin-proteasome pathway in mammalian cells. 
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Fig. 1. Expression of UBpcAMA-1 in mammalian COS7 cells. (A) A map show
ing the construction of the plasmid using the mammalian expression vector 
pcDNA 3.1(-), including the AMA-1 insert. The plasmid miniprep products from 
DNA-ubiquitin fused vector pcDNA 3.1(-) were cut by enzyme digestion with 
Xho I and Apa I. The antigen was cloned into the pcDNA 3.1(-) vector, and 
the expression plasmid was constructed. The vector was inserted with the 
mutant ubiquitin gene, so that the expression plasmid was expected to be 
generated by the ubiquitin-proteasome pathway in mammalian cells. (B) COS-
7 cells transfected with UBpcAMA-1 using lipofectamine after immunofluore
scence staining. The AMA-1 antigen was successfully expressed in cultured 
COS-7 cells. (C) Western blot analysis of the protein expression of the plas-
mid DNA in transfected COS7 cells. The PvAMA-1 recombinant protein was 
approximately 56.8 kDa.
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The plasmid miniprep products from DNA-ubiquitin fused 
vector pcDNA 3.1(-) were cut by digestion with Xho I and Apa 

I enzymes. The DNA fragments of PCR products were subclon
ed into TA vectors and the genes encoding these antigens were 
sequenced. Then, the antigens were cloned into the pcDNA 
3.1(-) vector and the expression plasmids were constructed 
(Fig. 1A). Immunofluorescence staining revealed brilliant cy-
toplasmic expression of AMA-1 in COS7 cells transfected with 
UBpcAMA-1 plasmid (Fig. 1B). We also confirmed the expres-
sion of expected proteins by western blot analysis. The immu-
noblots showed a large protein band of about 56.8 kDa pres-
ent in COS7 cells transfected with UBpcAMA-1 (Fig. 1C). 

The spleens of intramuscularly or gene gun immunized mice 
enlarged notably compared with those of the unimmunized 
controls. In particular, the spleen weight of the gene gun in-
jected mice almost doubled that of the unimmunized controls 
(data not shown). FACS analysis of spleen cells harvested 2 
weeks after the final immunization with AMA-1 or AMA-1 plus 
IL-12 DNA vaccines showed notable differences in the propor-
tions of CD4+ and CD8+ T-lymphocytes between the intramus-
cular injection versus the gene gun (epidermis) injection (Fig. 
2). In mice immunized intramuscularly (n=5 for each group) 
with AMA-1 alone or AMA-1 plus IL-12 DNA vaccines, the pro

portions of T-cell subsets (17.9±0.47% or 15.5±0.79% for 
CD8+ T-cells and 27.6±0.84% or 27.7±0.72% for CD4+ T-
cells) did not show any significant changes (P>0.05), compared 
with control mice immunized only with UB vector (16.2±0.78% 
for CD8+ T-cells and 26.5±0.35% for CD4+ T-cells) (Fig. 2). By 
contrast, in mice injected with a gene gun (n=3 for each group), 
significantly higher proportions of CD8+ T-cells were found in 
those immunized with AMA-1, IL-12, or AMA-1 plus IL-12 
DNA vaccines (24.9±0.44%, 20.8±0.61, or 24.2±1.56%, re-
spectively), compared with control mice immunized only with 
UB vector (19.2±0.66%) (Fig. 2). However, even in mice in-
jected with a gene gun, the proportions of CD4+ T-cells did not 
change significantly in AMA-1 alone or AMA-1 plus IL-12 in-
jection groups (28.1±5.66% or 36.9±4.76%, respectively), 
compared with control mice immunized with UB vector (30.3±  
0.55%) (Fig. 2). 

In the reemerging vivax malaria in Korea, little polymorphism 
has been found in 18S rRNA [14] and AMA-1 [15,16] but a 
considerable degree of variation has been found on merozoite 
surface protein-3α [17]. Control programs have been in opera-
tion but no vaccine development has been reported. To our 
knowledge, this is the first report of a vaccine candidate target-
ing the reemerging vivax malaria in Korea.
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Fig. 2. Changes of CD8+ and CD4+ T-lymphocyte population in PvAMA-1 DNA vaccine-immunized mice by intramuscular (IM) or gene 
gun injection methods. Immunization was performed a total of 4 times at 2 weeks interval with PvAMA-1 DNA vaccine alone or in 
combination with IL-12 DNA vaccine (n=5 mice for IM and n=3 for gene gun injection). Splenocytes were harvested 2 weeks after 
the final immunization and changes of CD4+ and CD8+ T-lymphocyte proportions were determined by flow cytometric analysis. Sig-
nificant increases (P<0.05) of CD8+ T-cell populations were found in PvAMA-1 DNA vaccine alone and PvAMA-1 plus IL-12 DNA 
vaccine immunized groups compared with the controls injected with the gene gun.
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The AMA-1 of P. vivax and P. falciparum has 3 extracellular 
domains (designated domains I, II, and III in N- to C-terminal 
order) [18]. The AMA-1 of P. vivax can have significant nucleo-
tide sequence polymorphism at domain I, as seen in Myanmar 
isolates [19]. However, PvAMA-1 has little polymorphism at 
domain II, and has, therefore, been highlighted as a potential 
vaccine candidate [20]. The AMA-1 of the reemerging Korean P. 
vivax isolates has 2 genotypes and show little polymorphism 
[15,16]. The present study also revealed little genetic polymor-
phism in the PvAMA-1 of the reemerging Korean isolates. The 
sequence was over 98-99% homologous to the previously re-
ported Korean (SK-A, SK-G, SKOR-67, and SKOR-68) or foreign 
isolates (Sal-1, PH-84, CH-05A, CH-10A, PNG, and INDO) [15, 
16]. Therefore, we considered that PvAMA-1 DNA vaccine is a 
potential vaccine candidate for the reemerging Korean P. vivax. 

To confirm in vitro expression of AMA-1, we selected a eu-
karyotic expression system using COS7 mammalian cells for 
transfection with the plasmid vector UBpcAMA-1. Ubiquitin 
was used to fuse AMA-1 with the vector [13]. In this vector, mu
tant ubiquitin was expected to conduct antigen presentation to 
MHC class I molecules and to activate CD8+ T-cells [21]. In our 
study, ubiquitin-fused AMA-1 was successfully expressed after 
using a proteasome inhibitor, MG132, and confirmed as a 56.8 
kDa protein by western blotting. 

Despite the advantages of plasmid DNA vaccines, their ap-
plicability is generally limited by their poor immunogenicity 
and protective capacity [3]. One of the factors influencing the 
poor immunogenicity of DNA vaccines is a lowered efficacy of 
antigen expression [4]. Genes cloned from a pathogenic orga
nism may not be efficiently translated in a heterologous host 
expression system as a consequence of codon bias displayed 
between different species [4]. One potential approach to en-
hance the immunogenicity of plasmid DNA vaccines is to maxi
mize pathogenic protein expression by changing the codon 
usage of the gene of interest to reflect that of the gene of the 
transfected mammalian host cells [4,22,23]. In P. falciparum 
CSP, P. yoelii CSP, and P. yoelii hepatocyte erythrocyte protein 
(PyHEP17) DNA vaccine models, mammalian codon optimi-
zation enhanced expression of target proteins in vitro and an-
tibody responses in immunized mice. However, codon opti-
mization did not enhance T-cell responses or protective im-
munity [4]. The effect of codon optimization of DNA vaccines 
may vary depending on the antigen, pathogen, or host system, 
and should be tested on a case-by-case basis. In our study, we 
did not use codon optimization. 

An important result of our preliminary study was that im-
munogenicity of PvAMA-1 DNA vaccine differed between in-
tramuscular and gene gun immunization methods and that 
the gene gun immunization resulted in enhanced CD8+ T-cell 
responses of recipient mice. This result was in accordance with 
previous reports on a plasmid DNA vaccine encoding a cyto-
toxic T-lymphocyte epitope or ovalbumin (OVA) [24] and a 
DNA vaccine expressing a hemagglutinin antigen from an H5
N1 influenza virus [25]. The gene gun method resulted in more 
reliable and reproducible results than the intramuscular injec-
tion method for DNA vaccination in inducing effective and 
consistent immune responses in animal models [24,25]. The 
difference in reproducibility may be related to the difference in 
antigen presentation mechanisms between the 2 methods [23]. 
In the gene gun system, the plasmid DNA is injected into the 
epidermis where the most important antigen presenting cells 
are epidermal dendritic cells (Langerhans cells). In the muscle, 
myocytes do not work as primary antigen presenting cells [22]. 

We regret that the actual cell numbers of different T-cell phe-
notypes in the mouse spleen were not obtained in fluorocyto-
metric analyses. However, we observed that the spleens of im-
munized mice were enlarged, without exception, compared to 
the unimmunized controls. Therefore, it is for sure that the sig-
nificant increases of CD8+ T-cell proportions represent substan-
tial increases in the actual numbers of CD8+ T-cells in the im-
munized mice.

Conclusively, in our study, a plasmid DNA vaccine encoding 
AMA-1 of the reemerging Korean P. vivax has been successfully 
constructed and significantly higher (P<0.05) proportions of 
splenic CD8+ cells were observed in mice subcutaneously im-
munized using a gene gun compared to UB vector-injected non-
immunized controls. Further studies on the efficacy of the gene 
gun technique will be useful for the development of P. vivax 
DNA vaccines.
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