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The external noise paradigm and perceptual template
model (PTM) have successfully been applied to
characterize observer properties and mechanisms of
observer state changes (e.g. attention and perceptual
learning) in several research domains, focusing on
individual level analysis. In this study, we developed a
new hierarchical Bayesian perceptual template model
(HBPTM) to model the trial-by-trial data from all
individuals and conditions in a published spatial cuing
study within a single structure and compared its
performance to that of a Bayesian Inference Procedure
(BIP), which separately infers the posterior distributions
of the model parameters for each individual subject
without the hierarchical structure. The HBPTM allowed
us to compute the joint posterior distribution of the
hyperparameters and parameters at the population,
observer, and experiment levels and make statistical
inferences at all these levels. In addition, we ran a large
simulation study that varied the number of observers
and number of trials in each condition and
demonstrated the advantage of the HBPTM over the BIP
across all the simulated datasets. Although it is
developed in the context of spatial attention, the
HBPTM and its extensions can be used to model data
from the external noise paradigm in other domains and
enable predictions of human performance at both the
population and individual levels.

Introduction

Selective attention to a location in space or to
an object often significantly improves performance
accuracy or response times (Bashinski & Bacharach,
1980; Carrasco, 2011; Downing, 1988; Duncan, 1984;

Han, Dosher, & Lu, 2003; Itti, Rees, & Tsotsos, 2005;
Nissen, 1985; Posner, 1978; Posner, 1980; Shiffrin
& Czerwinski, 1988; Smith & Ratcliff, 2009; Smith,
Ratcliff, & Wolgang, 2004; Sperling & Dosher, 1986),
although this is not true under some circumstances
(Dosher & Lu, 2000b; Lu & Dosher, 2000; Shiu &
Pashler, 1994; Solomon, 2002). Theoretically, the
beneficial effects of selective attention have been
attributed to facilitation of sensory analysis (Cheal,
Lyon, & Gottlob, 1994; Corbetta, Miezin, Shulman,
& Petersen, 1991; Mangun, Hillyard, & Luck, 1993),
redistribution of limited resources or capacity (Bonnel
& Miller, 1994; Henderson, 1996; Henderson &
Macquistan, 1993; Palmer, Ames, & Lindsey, 1993;
Shiffrin, 1988), and/or elimination of irrelevant
stimuli (Enns & Di Lollo, 1997; Shiu & Pashler,
1994).

To reveal and identify mechanisms of attention
in perceptual tasks, we combined the external noise
paradigm (Barlow, 1956; Barlow, 1957; Carter &
Henning, 1971; Greis & Röhler, 1970; Harmon &
Julesz, 1973; Henning, Hertz, & Hinton, 1981; Parish &
Sperling, 1991; Pavel, Sperling, Riedl, & Vanderbeek,
1987; Pelli, 1981; Pelli & Blakemore, 1990; Pollehn
& Roehrig, 1970; Stromeyer & Julesz, 1972) with
attention manipulations and developed the perceptual
template model (PTM; Lu & Dosher, 1998). In this
paradigm, effects of attention are measured when
observers perform perceptual judgments on visual
stimuli embedded in varying amounts of external noise
in attended and unattended conditions. The threshold
versus external noise contrast (TvC) functions in
different attention conditions are then fit with the PTM
to identify the mechanism(s) of attention.
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Since its initial development, the external noise
paradigm and the PTM have not only been applied to
investigate mechanisms of attention (Baek, Dosher, &
Lu, 2021; Dosher & Lu, 2000a; Dosher & Lu, 2000b;
Dosher & Lu, 2013; Han et al., 2003; Hetley, Dosher,
& Lu, 2014; Ling, Liu, & Carrasco, 2006; Ling, Liu,
& Carrasco, 2009; Lu & Dosher, 1998; Lu & Dosher,
2000; Lu & Dosher, 2005; Lu, Lesmes, & Dosher, 2002;
Lu, Tse, Dosher, Lesmes, Posner, & Chu, 2009; Luzardo
& Yeshurun, 2021; Pratte, Ling, Swisher, & Tong, 2013),
but also applied to characterize observer inefficiencies
(Lu & Dosher, 1999; Lu & Dosher, 2008), mechanisms
of perceptual learning (Chung, Levi, & Tjan, 2005;
Dosher & Lu, 1998; Dosher & Lu, 1999; Dosher,
Liu, & Lu, 2005; Gold, Sekuler, & Bennett, 2004;
Lu, Chu, & Dosher, 2006; Lu, Chu, Dosher, & Lee,
2005a; Lu, Chu, Dosher, & Lee, 2005b; Lu & Dosher,
2004a; Lu & Dosher, 2009; Maehara & Goryo, 2007;
Solomon & Tyler, 2017; Streeter, 2011; Tjan, Chung,
& Levi, 2002; Xie & Yu, 2018), benefits of action
video game play (Bejjanki et al., 2014), visual working
memory (Chu, Dosher, Najima, & Lu, 2011; Dosher,
Liu, & Lu, 2005; Najima, Dosher, Chu, & Lu, 2011;
Park, Ichinose, Park, & Tadin, 2017), second-order
perception (Manahilov, Simpson, & Calvert, 2005),
pattern discrimination (Goris, Putzeys, Wagemans,
& Wichmann, 2013), sensory adaptation (Barbot,
Huxlin, Tadin, & Yoon, 2017; Dao, Lu, & Dosher,
2006), intra-saccadic suppression (Guez, Morris,
& Krekelberg, 2013; Watson & Krekelberg, 2011),
response times in perceptual decision making (Ludwig
& Davies, 2011), mechanisms of top-down feedback in
animal studies (Ding et al., 2022), perceptual effects of
acute alcohol intake (Zhang et al., 2022), development
and aging (Bower & Andersen, 2012; Bower, Watanabe,
& Andersen, 2013; DeLoss, Watanabe, & Andersen,
2014; Jeon, Maurer, & Lewis, 2012; Jeon, Maurer, &
Lewis, 2014), perceptual deficits in clinical conditions
(Chan, Lee, Cheung, & Chow, 2011; Park, Schauder,
Zhang, Bennetto, & Tadin, 2017; Wagner, Manahilov,
Loffler, Gordon, & Dutton, 2010; Webster, Dickinson,
Battista, McKendrick, & Badcock, 2012; Xu, Lu, Qiu,
& Zhou, 2006), and visual rehabilitation (Cavanaugh
et al., 2015; Huang, Lu, & Zhou, 2009; Opoku-Baah,
Hou, & Wallace, 2020; Yan et al., 2015). The PTM
has also been elaborated to model discrimination of
non-orthogonal targets (Jeon, Lu, & Dosher, 2009),
tuning of the perceptual template (Dosher, Liu, Blair, &
Lu, 2004; He et al., 2020; Hu et al., 2021; Lu & Dosher,
2001; Lu & Dosher, 2004b; Lu, Jeon, & Dosher, 2004),
binocular combination (Huang, Chen, Hou, & Lu,
2016; Zhang et al., 2021). It has also been extended from
a single-channel to a multichannel model for spatial
vision (Chen et al., 2014; Hou, Lu, & Huang, 2014).

The original PTM consists of four observer
parameters (template gain β, exponent of the nonlinear
transducer γ , standard deviation of the internal additive

noise Na, and proportional constant of multiplicative
noise Nm) and additional observer state-dependent
parameters associated with, for example, attention
(internal additive noise reduction Aa, external noise
exclusion Af , and multiplicative internal noise reduction
Am). So far, all existing applications of the PTM
have focused at the individual level. Typically, the
maximum likelihood or least-squares procedure is used
to fit variants of the PTM that consists of different
numbers of observer state-dependent parameters (e.g.
a single Aa, a single Af , or both Aa and Af) to each
individual observer’s TvC functions or psychometric
functions in multiple external noise conditions, and
a nested model comparison procedure is used to
identify the best fitting model and therefore the
associated mechanism(s) for the individual (Dosher &
Lu, 2000b; Lu & Dosher, 1998; Lu & Dosher, 2013).
Occasionally, bootstrap procedures are used to estimate
the variabilities of the best-fitting model parameters
(Lu & Dosher, 2013). Although they provide excellent
point estimates of the best fitting PTM parameters at
the individual level, and often the results in different
individuals are similar, these modeling procedures
treat data from each individual separately without
explicitly capitalizing on potential regularities of model
parameters across individuals. In addition, they are not
designed for statistical inference at the populational
level.

Building on the success of the original PTM as a
generative model of human performance, the goal of the
current study is to develop a new hierarchical Bayesian
perceptual template model (HBPTM) to model the
trial-by-trial data from all individuals and conditions in
an external noise experiment within a single hierarchical
structure. With hyperparameters and parameters at
multiple levels and conditional dependencies that
share information across levels, hierarchical Bayesian
models have been developed to compute the joint
posterior distribution of all the hyperparameters and
parameters, capture their statistical relationships,
and enable statistical inferences at multiple levels in
a wide range of applications (Ahn, Krawitz, Kim,
Busemeyer, & Brown, 2011; Kruschke, 2015; Lee, 2006;
Lee, 2011; Lee & Mumford, 2003; Merkle, Smithson,
& Verkuilen, 2011; Molloy et al., 2018; Molloy, Bahg,
Lu, & Turner, 2019; Rouder & Lu, 2005; Rouder, Sun,
Speckman, Lu, & Zhou, 2003), whereas the PTM
provides an excellent likelihood function that relates
model parameters to trial-by-trial performance. Here,
we developed an HBPTM by incorporating the PTM
into a hierarchical Bayesian model (HBM) framework
to model the data from a published spatial cuing study
of attention (Lu & Dosher, 2000), and compared the
performance of the HBPTM to that of a Bayesian
Inference Procedure (BIP), which separately infers
the posterior distributions of the model parameters
for each individual observer without the hierarchical
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structure of the population level hyperparameters. In
addition, we ran a large simulation study that varied the
number of simulated observers and number of trials
in each condition and demonstrated the advantage
of the HBPTM over the BIP across all the simulated
datasets.

Hierarchical Bayesian perceptual
template model

In this section, we first briefly describe the spatial
cuing study of attention (Lu & Dosher, 2000). We
then describe the PTM as the likelihood function that
relates parameters of each individual observer to their
trial-by-trial performance in the spatial cuing study and
a BIP which separately infers the posterior distributions
of the PTM parameters for each individual observer.
Next, we introduce the three-level HBPTM that
captures the hierarchical structure of the hierarchical
experimental design, model estimation procedure, and
alternative models.

The spatial cuing study

The spatial cuing study (Lu & Dosher, 2000)
consisted of two experiments. In both experiments,
the stimulus display consisted of four simultaneously
presented “T”-like pseudo-characters at four spatial
locations, each of which could occur in one of four
possible orientations (Figure 1a). Observers were

either precued or simultaneously cued with an arrow
in the center of the display (endogenous or central
cuing) or near the target location (exogenous or
peripheral cuing) to identify the orientation of the
“T”-like pseudo-character at one of the locations (up,
down, right, or left; Figures 1b, c). The cue-target
onset asynchrony (CTOA) was either 200 ms or 0
ms, respectively, for the attended and unattended
conditions. The pseudo-characters were embedded in
systematically varying amount of external noise. A total
of eight external noise levels, with contrast standard
deviations 0, 0.02, 0.04, 0.08, 0.12, 0.16, 0.24, and 0.32
were tested. The method of constant stimuli with nine
appropriately placed pseudo-character contrasts was
used to measure the psychometric functions for pseudo-
character identification at each external noise level
in both precuing and simultaneous cuing conditions
in both experiments. Three undergraduate and two
graduate students from the University of Southern
California with normal or corrected-to-normal vision
participated in the study. The undergraduate students
and one graduate student were paid subjects. One
graduate student volunteered for the study. All five
finished the endogenous (central) cuing experiment,
and three of them finished the exogenous (peripheral)
cuing experiment. The three observers who finished
both experiments were tested in all 288 experimental
conditions, and the two observers who only finished the
central cuing experiment were tested in 144 conditions,
with 40 trials in each combination of central/peripheral,
attended/unattended, external noise level, and signal
contrast condition (see Lu & Dosher, 2000, for details
about the stimuli, apparatus, and procedures).

Figure 1. Sample stimuli (a), and stimulus sequence and layout in the (b) central cuing and (c) peripheral cuing experiment in (Lu &
Dosher, 2000). Attention is manipulated by pre-cuing (CTOA = 200 ms) compared with simultaneous (CTOA = 0 ms) location cues.
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Figure 2. Three mechanisms of attention and their signature effects on threshold vs external noise contrast (TvC) functions.

Likelihood function

The likelihood function defines the probability of
the observed trial-by-trial data as a function of the
parameters in a model. In the PTM (Figures 2a, c, e),
signal discriminability d′ in condition (c, Next, cue),
where c is the pseudo-character signal contrast,
Next is the standard deviation of external noise
contrast, and cue is either pre or simultaneous,
is a function of six model parameters (Na, Nm,
β, γ , Aa, and Af) and two stimulus parameters

(c and Next; Dosher & Lu, 2000b; Lu & Dosher, 1998;
Lu & Dosher, 2000):
d ′(c,Next, cue,Na,Nm, β, γ ,Aa,Af ) =

(βc)γ√(
AfNext

)2γ + N2
m

[
(βc)2γ + (

AfNext
)2γ ]

+ (AaNa)2
,

(1)
where Na is the standard deviation of the internal
additive noise, Nm is the proportional constant of the
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multiplicative noise, β is the gain of the perceptual
template, γ is the exponent of the transducer, Aa
reflects internal additive noise reduction by attention,
Af reflects external noise exclusion by attention.1
Aa and Af depend on the cuing condition. The
probability of obtaining a correct response in a single
trial is:
pcorrect (c,Next, cue,Na, Nm, β, γ ,Aa,Af )

=
∫ +∞

−∞
g(x − d ′(c,Next, cue, Na, Nm, β, γ ,Aa,Af ))

× G3 (x) dx, (2)
where g(.) and G(.) are the probability density and
cumulative probability functions of a standard
Gaussian distribution. The probability of obtaining
M correct responses from a total of T trials in a single
condition is described by a binomial distribution B:
p(M|c,Next, cue,T,Na,Nm, β, γ ,Aa,Af )
= B(pcorrect (c,Next, cue,Nm, β, γ ,Aa,Af ),M,T ). (3a)

Figure 2 illustrates the signature performance effects
of several attention mechanisms on the TvC functions,
which graph contrast threshold as a function of the
contrast of external noise. These functions are useful in
illustrating the consequences of attention mechanisms.
Specifically, stimulus enhancement reduces contrast
thresholds in the region of zero or low external noise
(see Figures 2a, b), accounting for effects of attention in
the absence of external noise.Mathematically equivalent
to internal additive noise reduction, it corresponds to
claims of perceptual enhancement (Posner, Nissen, &
Ogden, 1978). External noise exclusion reduces contrast
thresholds in the region of high external noise (see
Figures 2c, d), where there is external noise to exclude,
by focusing perceptual analysis on the appropriate
time, spatial region, and/or content characteristics
of the signal stimulus (Dosher & Lu, 2000b; Shiu &
Pashler, 1994). Multiplicative internal noise reduction
reduces contrast thresholds throughout the entire
range of external noise levels (see Figures 2e, f). In
addition, measuring TvC functions at two or more
criterion performance levels along the psychometric
function resolves the individual contribution of each
mechanism in when multiple mechanisms are involved
(Dosher & Lu, 2000a; Lu & Dosher, 2000). In prior
applications of the PTM, only stimulus enhancement
and external noise exclusion have been observed, so
these two mechanisms of attention are examined in our
analysis.

In what follows, we use the notation θij to denote
the PTM parameters for individual i in the jth test,
which is the jth repetition of the whole experiment
with all the stimulus contrast, external noise, and cuing
conditions. Sijk, Tijk, and Mijk denote, respectively, the
stimulus parameters (c, Next, and cue), the numbers

Central cuing Peripheral cuing

200 ms 0 ms 200 ms 0 ms

Na θij(1) θij(1) θij(6) θij(6)
Nm θij(2) θij(2) θij(7) θij(7)
β θij(3) θij(3) θij(8) θij(8)
γ θij(4) θij(4) θij(4) θij(4)
Af θij(5) 1 θij(9) 1
Aa 1 1 θ ij(10) 1

Table 1. Correspondence of PTM and HBPTM parameters.

of total trials and correct responses for individual
i in the kth condition of the jth repetition, where
condition k denotes each combination of c, Next, and
cue. Table 1 shows a model structure with external
noise exclusion in central cuing and a combination of
external noise exclusion and internal noise reduction
in peripheral cuing, which agrees with the previous
analysis of the study (Lu & Dosher, 2000). Later, we
will consider additional models in which central cuing
causes both external noise exclusion and internal noise
reduction, and a model in which attention has no effect.
The system nonlinearity parameter γ of the PTM is
assumed to be equal in central and peripheral cuing,
consistent with many applications of the PTM (Dosher
& Lu, 2000a; Dosher & Lu, 2000b; Lu & Dosher, 2000).
(By convention, the Aa and Af parameters are set to
1 in simultaneous, or unattended, conditions, and in
both conditions if the respective attention mechanisms
are not effective. Aa and Af < 1 if attention improves
performance.)

We express the probability of obtaining Mijk correct
responses in Tijk trials as:

p(Mi jk|Si jk,Ti jk, θi j ) = B(pcorrect (Si jk, θi j ),Mi jk,Ti jk).
(3b)

The likelihood of obtaining the entire dataset for a
given set of parameters θ1: I, 1: J, is:

p(M1:I,1:J,1:K |S1:I,1:J,1:K ,T 1:I,1:J,1:K , θ1:I,1:J )

=
I∏

i=1

J∏
j=1

Ki∏
k=1

p(Mi jk|Si jk,Ti jk, θi j ). (4)

In this study, we set J = 1 because all the individuals
only repeated the experiment once and we want
to estimate the PTM parameters from the whole
experiment, k runs through all the (c, Next, and cuing)
combinations for each individual, with Ki = 288 for the
three observers who participated in both the central and
peripheral cuing experiments, and Ki = 144 for the two
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Figure 3. (a) The Bayesian Inference Procedure (BIP) that computes the posterior distribution of the PTM parameters for each
observer independently. (b) A three-level hierarchical Bayesian perceptual template model (HBPTM) of spatial attention in central
and peripheral cuing across multiple individuals, tests, and conditions. At the population level, μ and σ are the mean and standard
deviation hyperparameters of the population. At the individual level, ρi and δ are the mean and standard deviation hyperparameters
of individual i, and δ is the same across all the individuals. At the test level, θi,j are the PTM parameters of individual i in test j. Sijk, Tijk,
andMijk are the stimulus condition, and numbers of total and correct responses for individual i in the kth condition of the jth test. In
the main model, the parameters and hyperparameters are 10-dimensional.

observers who only participated in the central cuing
experiment.

Bayesian inference procedure

In the BIP (Figure 3a), we treat all the observers
independently in estimating PTM parameters for
each individual. We can apply Bayes rule to each
observer’s likelihood function in Equation 4 directly to
compute the posterior distributions of θij for each of
the observers in all the tests:

p (θi,1:J |M i,1:J,1:Kri,1,1:K ,Si,1:J,1:K ,T i,1:J,1:K )

=
∏J

j=1
∏Ki

k=1 p(Mi jk|Si jk,Ti jk, θi j )p0(θi j )

∫ ∏J
j=1

∏Ki
k=1 p(Mi jk|Si jk,Ti jk, θi j )p0(θi, j )dθi,1:J

, (5)

with uniform priors

p0
(
θi j

) = U (
θi j,min, θi j,max

)
, (6)

where the boundaries of the priors (Table 2) reflect prior
knowledge about theoretical and empirical boundaries

θij(1) θij(2) θij(3) θij(4) θij(5) θij(6) θij(7) θij(8) θij(9) θij(10)

Min 0 0 0 0 0 0 0 0 0 0
Max 1 1 10 3 2 1 1 10 2 2

Table 2. Boundaries of the θij distributions.

of the PTM parameters (Dosher & Lu, 2000a; Klein &
Levi, 2009; Lu & Dosher, 2008).

Three-level hierarchy

Whereas the BIP can separately infer the posterior
distributions of the PTM parameters for each
individual observer, we developed a three-level HBPTM
(Figure 3b) to capture the hierarchical structure of
the experimental design and jointly infer the posterior
distributions of the hyperparameters and parameters
of the model across all observers. Hyperparameters
η are used to characterize distributions of observer
properties (template gain, transducer nonlinearity,
internal additive and multiplicative noise, and effects
of attention) at the population level, hyperparameters
τ i are used to characterize them for individual observer
i, and parameters θi,j are used to characterize them
for individual observer i in the jth test (Table 3). These
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Central cuing Peripheral cuing

200 ms 0 ms 200 ms 0 ms

Na η(1)/τ i(1) η(1)/τ i(1) η(6)/τ i(6) η(6)/τ i(6)
Nm η(2)/τ i(2) η(2)/τ i(2) η(7)/τ i(7) η(7)/τ i(7)
β η(3)/τ i(3) η(3)/τ i(3) η(8)/τ i(8) η(8)/τ i(8)
γ η(4)/τ i(4) η(4)/τ i(4) η(4)/τ i(4) η(4)/τ i(4)
Af η(5)/τ i(5) 1 η(9)/τ i(9) 1
Aa 1 1 η(10)/τ i(10) 1

Table 3. Correspondence of PTM and HBPTM hyperparameters.

hyperparameters and parameters are related through
conditional probability: parameters θi,j at the test
level are conditioned on the hyperparameters at the
individual level, which are in turn conditioned on the
hyperparameters η at the population level:

p
(
θi j

) = p
(
θi j |τ i

)
p (τ i|η) p (η) , (7)

where p(η) is modeled as a mixture of 10-dimensional
truncated Gaussian distributions Nt with mean µ,
standard deviation σ (Table 4), which have distributions
p(µ) and p(σ):

p (η) = Nt (η, μ, σ ) p (μ) p (σ ) , (8)

p(τ i|η) is modeled as a mixture of 10-dimensional
truncated Gaussian distributions Nt with mean ρi
and standard deviation δ (see Table 4), which have
distributions p(ρi|η) and p(δ):

p (τ i|η) = Nt (τ i, ρi, δ) p (ρi|η) p (δ) , (9)

Combining Equations 4 to 7, the probability of
obtaining the entire dataset is:

η(1) η(2) η(3) η(4) η(5) η(6) η(7) η(8) η(9) η(10)
τ i(1) τ i(2) τ i(3) τ i(4) τ i(5) τ i(6) τ i(7) τ i(8) τ i(9) τ i(10)

Min 0 0 0 0 0 0 0 0 0 0
Max 1 1 10 3 2 1 1 10 2 2

Table 4. Boundaries of the η and τ i distributions.

μ0(1) μ0(2) μ0(3) μ0(4) μ0(5) μ0(6) μ0(7) μ0(8) μ0(9) μ0(10)

Min 0 0 0 0 0 0 0 0 0 0
Max 1 1 10 3 2 1 1 10 2 2

Table 5. Boundaries of the μ0 distributions.

p (M1:I,1:J,1:K |S1:I,1:J,1:K ,T 1:I,1:J,1:K , θ1:I,1:J, ρ1:I , μ, σ, δ)

=
I∏

i=1

J∏
j=1

Ki∏
k=1

p
(
Mi jk|Si jk,Ti jk, θi j

)
p
(
θi j |τ i

)

Nt (τ i, ρi, δ) p (ρi|η)Nt (η, μ, σ ) p (μ) p (σ ) p (δ) .
(10)

To compute the joint posterior distribution of all the
parameters and hyperparameters in the HBPTM, we
apply Bayes rule:

p (θ1:I,1:J , ρ1:I , μ, σ, δ|M1:I,1:J,1:Kr1:I,1,1:K ,S1:I,1:J,1:K ,T 1:I,1:J,1:K )

=
∏I

i=1
∏J

j=1
∏Ki

k=1 p
(
Mijk|Si jk,Ti jk, θi j

)
p
(
θi j |τi

)Nt (τ i, ρi, δ) p (ρi|η)Nt (η, μ, σ ) p0 (μ) p0 (σ ) p0 (δ)

∫ ∏I
i=1

∏J
j=1

∏Ki
k=1 p

(
Mijk|Si jk,Ti jk, θi j

)
p
(
θi j |τ i

)Nt (τ i, ρi, δ) p (ρi|η)Nt (η, μ, σ ) p0 (μ) p0 (σ ) p0 (δ) dθ1:I,1:Jdρ1:Idμdσdδ
,

(11)

with the following prior distributions of µ, σ, and δ.

p0 (μ) = U (
μ0,min, μ0,max

)
, (12a)

p0
(

1
σ(m)2

)
= � (5000, 3) , (12b)

p0
(

1
δ(m)2

)
= � (5000, 3) , (12c)

where U is a 10-dimensional uniform distribution with
μ0,min and μ0,max specified in Table 5, and �(5000, 3) is
a Gamma distribution with a shape parameter of 5000
and a rate parameter of 3. �(5000, 3) is used as the
prior for all the σ and δ in the model. The zero minima
in Tables 4 and 5 ensure that all PTM parameters are
positive. The maxima reflect prior knowledge about
theoretical boundaries in the PTM (Dosher & Lu,
2000a; Klein & Levi, 2009; Lu & Dosher, 2008).

Estimating the joint distribution

All analysis was conducted on a Dell computer with
Intel Xeon W-2145 @ 3.70 GHz CPU (8 cores and 16
threads) and 64 GB installed memory (RAM). The BIP
and HBPTM were implemented with JAGS (Plummer,
2003) in R (R Team, 2003).
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The HBPTM has a total of 110 hyperparameters
and parameters: 10 μ, 10 σ, 40 ρi, 10 δ, and 40 θi,j
(ρi and θi,j are 5 dimensional for observers 4 and 5
because they only participated in the central cuing
condition). We used the Markov Chain Monte Carlo
(MCMC) sampling algorithm in JAGS (Plummer, 2003)
to compute the joint posterior distribution of all the
hyperparameters and parameters in Equation 11. Three
independent MCMC chains were simulated. Each
MCMC generated 15,000 kept samples (thinning ratio
= 10) via a random walk process after 30,000 burn-in
and 100,000 adaptation steps. The same procedure was
used to compute the posterior distributions of all the
40 θi,j

′s in Equation 5 in the BIP. Convergence of each
parameter was evaluated with Gelman and Rubin’s
diagnostic rule (Gelman & Rubin, 1992).

Alternative models

In addition to the model with external noise
exclusion in central cuing and both internal additive
noise reduction and external noise exclusion in
peripheral cuing, we also fit an HBPTM with no
attention effect, which had a total of 91 hyperparameters
and parameters, and an HBPTM with internal additive
noise reduction and external noise exclusion in both
central and peripheral cuing, which had a total of 123
hyperparameters and parameters.

Bayesian predictive information criterion (BPIC;
Ando, 2007; Ando, 2011) was used to quantify the
goodness of fit to the trial-by-trial data. The BPIC
quantifies the likelihood of the data based on the joint
posterior distribution of the parameters of the model
and penalizes model complexity.

Results

Model convergence

The between- versus within-chain variance ratios
for all hyperparameters and parameters were smaller

than 1.01 for the BIP and all three HBPTM models,
indicating good convergence based on Gelman and
Rubin’s diagnostic rule (Gelman & Rubin, 1992).

Model selection

The HBPTM with external noise exclusion in central
cuing and both internal additive noise reduction
and external noise exclusion in peripheral cuing
was significantly better than the model assuming no
attention effect (BPIC = 42867.4 vs 43082.3), and
provided an equivalent fit to the data compared to
the model with internal additive noise reduction and
external noise exclusion in both central and peripheral
cuing (BPIC = 42860.5). The results are consistent
with the conclusions of the original study (Lu &
Dosher, 2000) and a related study of central cuing only
(Dosher & Lu, 2000b). We report the results from the
main model in subsequent sections.

Posterior distributions from the HBPTM

η Distributions
Figure 4 shows the marginal distributions of

hyperparameters η for the main model. The mean and
half width of the 95% credible interval (95% HWCI;
or half-width credible interval) of the distributions are
summarized in Table 6.

At the population level, the internal additive
noises, η(1) and η(6), were 0.0241 ± 0.0318 and
0.0264 ± 0.0346 in the endogenous and exogenous
cuing experiments; the proportional constants of
multiplicative noise, η(2) and η(7), were 0.3122 ±
0.0576 and 0.3292 ± 0.0633; the template gains, η(2)
and η(7), were 1.090 ± 0.061 and 1.023 ± 0.069; and
the exponent of the transducer function, η(4) was 2.580
± 0.130. Representing endogenous cuing effects on
external noise at the population level, η(5) had a mean
of 0.8613 and 95% HWCI of 0.0619, indicating that

Figure 4. Marginal distributions of the population-level hyperparameters η. See Table 3 for correspondence with PTM parameters.

η(1) η(2) η(3) η(4) η(5) η(6) η(7) η(8) η(9) η(10)

Mean 0.0241 0.3122 1.090 2.580 0.8613 0.0264 0.3292 1.023 0.8317 0.7627
HWCI 0.0318 0.0576 0.061 0.130 0.0619 0.0346 0.0633 0.069 0.0695 0.1130

Table 6. Mean and 95% HWCI of the η distributions.
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Figure 5. Marginal distributions of observer-level hyperparameters τ. Each row represents an observer. See Table 3 for
correspondence with PTM parameters.

i τ i(1) τ i(2) τ i(3) τ i(4) τ i(5) τ i(6) τ i(7) τ i(8) τ i(9) τ i(10)

1 Mean 0.0264 0.2979 1.115 2.588 0.8661 0.0271 0.3142 1.042 0.8323 0.7606
HWCI 0.0345 0.0617 0.068 0.133 0.0677 0.0352 0.0634 0.070 0.0712 0.1154

2 Mean 0.0263 0.3250 1.029 2.569 0.8726 0.0271 0.3655 0.9758 0.8359 0.7610
HWCI 0.0344 0.0621 0.067 0.136 0.0683 0.0353 0.0646 0.0712 0.0735 0.1168

3 Mean 0.0263 0.2957 1.103 2.593 0.8483 0.0270 0.3082 1.051 0.8268 0.7666
HWCI 0.0344 0.0616 0.067 0.134 0.0675 0.0351 0.0633 0.070 0.0709 0.1151

4 Mean 0.0265 0.3262 1.066 2.572 0.8638
HWCI 0.0345 0.0621 0.068 0.138 0.0685

5 Mean 0.0264 0.3164 1.135 2.579 0.8564
HWCI 0.0345 0.0616 0.067 0.136 0.0674

Table 7. Mean and 95% HWCI of the τ distributions.

endogenous cuing significantly excluded external noise.
Representing exogenous cuing effects on external noise
at the population level, η(9) had a mean of 0.8317 and
95% HWCI of 0.0695, indicating that exogenous cuing
also significantly excluded external noise. Representing
exogenous cuing effects on internal additive noise at
the population level, η(10) had a mean of 0.7627 and
HWCI of 0.1130, indicating that exogenous cuing
significantly reduced internal additive noise.

Although the pattern of results is quite consistent
with Lu and Dosher (2000), the HBPTM enabled us to
quantify the distributions of the observer properties
and make inferences of mechanisms of attention at the
population level.

τ Distributions
Figure 5 shows the marginal distributions of the

observer level hyperparameters τ. The mean and 95%
HWCI of the distributions are summarized in Table 7.

In general, the pattern of results at the observer
level was consistent with that at the population level.
Representing endogenous cuing effects on external
noise at the observer level, τ i(5) ranged from 0.8483 to
0.8726, with 95% HWCI between 0.0674 and 0.0685,
indicating that endogenous cuing significantly excluded
external noise across all observers. The average τ i(5)
across the five observers was 0.8614, with a 95% HWCI
of 0.0388. In comparison, the coefficient of external
noise exclusion in Lu and Dosher (2000) ranged from
0.8190 to 0.8872. Representing exogenous cuing effects
on external noise at the observer level, τ i(9) ranged
from 0.8268 to 0.8359, with 95% HWCI between
0.0709 and 0.0735, indicating that exogenous cuing
also significantly excluded external noise across all
observers. The average τ i(9) across the three observers
was 0.8316, with a 95% HWCI of 0.0508. Representing
exogenous cuing effects on internal additive noise
at the observer level, τ i(10) ranged from 0.7606 to
0.7666, with 95% HWCI between 0.1151 and 0.1168,
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Figure 6. Distributions of pairs of θ11(m) for observer 1.

θ11(1) θ11(2) θ11(3) θ11(4) θ11(5) θ11(6) θ11(7) θ11(8) θ11(9) θ11(10)

θ11(1) 1 −0.3398 0.4309 −0.9101 0.1049 0.8166 −0.3376 0.1424 −0.0456 0.0486
θ11(2) −0.3398 1 0.2204 0.364 −0.0443 −0.3195 0.132 −0.0518 0.0186 −0.0253
θ11(3) 0.4309 0.2204 1 −0.1947 0.5027 0.176 −0.0712 0.0416 −0.0114 0.0028
θ11(4) −0.9101 0.364 −0.1947 1 0.0345 −0.8834 0.369 −0.1505 0.0507 −0.0543
θ11(5) 0.1049 −0.0443 0.5027 0.0345 1 −0.0268 0.0106 0.0046 0.0039 −0.0046
θ11(6) 0.8166 −0.3195 0.176 −0.8834 −0.0268 1 −0.3441 0.4115 0.1365 −0.1559
θ11(7) −0.3376 0.132 −0.0712 0.369 0.0106 −0.3441 1 0.227 −0.0199 −0.0108
θ11(8) 0.1424 −0.0518 0.0416 −0.1505 0.0046 0.4115 0.227 1 0.5656 −0.0543
θ11(9) −0.0456 0.0186 −0.0114 0.0507 0.0039 0.1365 −0.0199 0.5656 1 −0.0909
θ11(10) 0.0486 −0.0253 0.0028 −0.0543 −0.0046 −0.1559 −0.0108 −0.0543 −0.0909 1

Table 8. Correlation coefficients between pairs of θ11(m) for observer 1.

indicating that exogenous cuing significantly reduced
internal additive noise across all observers. The average
τ i(10) across the three observers was 0.7627, with a
95% HWCI of 0.1020. In comparison, the coefficient
of external noise exclusion ranged from 0.8049 to
0.8348 and the coefficient of internal noise reduction
ranged from 0.7628 to 0.8575 in Lu and Dosher
(2000).

θ Distributions
Figure 6 shows posterior distributions of pairs

of θ11(m) for observer 1. Table 8 lists correlation
coefficients between pairs of θ11(m). Large negative
correlations were found between θ11(1) and θ11(4)
(−0.9101), and θ11(6) and θ11(4) (−0.8834), reflecting
tradeoffs between the magnitudes of internal additive
noise and the exponent of the transducer function in
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central and peripheral cuing, respectively. The large
positive correlations between θ11(1) and θ11(6) (0.8166)
reflected correlations of the magnitudes of internal
additive noise in central and peripheral cueing. Large
positive correlations between θ11(3) and θ11(5) (0.5027),
and θ11(8) and θ11(9) (0.5656) reflected correlations
between template gain and external noise exclusion.
Similar results were found for the other observers
(Supplementary Materials).

Comparing the performance of the HBPTM
and BIP

We computed the ratios of the mean and of the
95% HWCI of the posterior distributions for each
θij(m) from the HBPTM and BIP (i.e. the estimates
of the observer level parameters). Averaged across all
the observers and parameters, the ratio of the mean
of the posterior distributions was 0.96 ± 0.27 (mean
± SD), indicating that the expected values of the
posterior distributions of the parameters from the two
methods were essentially equivalent. Averaged across
all the observers and parameters, the ratio of the 95%
HWCI of the posterior distributions was 0.68 ± 0.22
(mean ± SD), indicating that the 95% HWCI from the
HBPTM was about 32% narrower than that from the
BIP. We systematically compared the HBPTM and BIP
solutions in the simulations described next.

Simulations

Methods

To evaluate the performance of the HBP relative to
the BIP, we conducted a large simulation study with
15 different sample sizes: five numbers of simulated
observers (3, 9, 18, 36, and 72) times three numbers
of trials (10, 20, and 40 trials) in each of the 288
experimental conditions in Lu and Dosher (2000): 2
(cue condition) × 2 (cue-target SOA) × 8 (external
noise levels) × 9 (stimulus contrast levels). A bootstrap
procedure was used to generate the simulated datasets.
In each of the 288 experimental conditions, the
probability of making a correct response was randomly
drawn from the probabilities of the three observers
who completed both the central and peripheral cuing
experiments in Lu and Dosher (2000). We then applied
the HBPTM and BIP to the data.

Results

We computed the ratios of the mean and of the 95%
HWCI of the posterior distributions for each of the

individual observer parameters θij(m) from the HBPTM
and BIP in each of the 15 sample sizes. Averaged
across all the observers and parameters, the ratio of the
mean of the posterior distributions was 1.001 ± 0.023
(mean ± SD), indicating that the expected values of the
posterior distributions of the parameters from the two
methods were equivalent. However, the 95% HWCI of
the posterior distributions from the BIP and HBPTM
were quite different.

The normalized average 95% HWCI of θij(m) from
the HBPTM and BIP in different numbers of trials
per experimental condition are shown as functions
of the number of simulated observers in log10 units
in Figure 7. Each 95% HWCI was normalized by the
average 95% HWCI of the posterior distribution of the
HBPTM solution in the 72 simulated observers and 40
trials per experimental condition dataset. As expected,
the average 95% HWCI from the BIP exhibited very
little variability as a function of the number of
simulated observers since each observer was modeled
separately, but decreased with the number of trials per
experimental condition across all the parameters. On the
other hand, the average 95% HWCI from the HBPTM
decreased with both the number of simulated observers
and the number of trials per experimental condition
across all the parameters. Across different numbers
of trials per experimental condition, the average 95%
HWCI approached its asymptotic level between about
10 to 40 simulated observers across the different PTM
parameters, suggesting that the HBPTM could benefit
from increasing the number of observers up to about
40. Interestingly, the spatial attention parameters, Af
for central cuing, and Af and Aa for peripheral cuing,
reached their asymptotic levels with 20 observers.

Figure 8 shows the ratio of the average 95%HWCI of
θij(m) from the HBPTM and BIP in different numbers
of trials per experimental condition as functions of the
number of simulated observers in log10 units. The early
zig in the blue curves in Figures 8b, g was due to the
variability of the 95% HWCI from the BIP. First, all the
ratios were less than zero, indicating that the average
95% HWCI from the HBPTM was always less than that
from the BIP across all the parameters and simulated
sample sizes. Second, across all the parameters and
number of simulated observers, the reduction of the
95% HWCI was 0.3453 log10 units (or 54.7%) when
the number of trials per experimental condition per
observer was 10, 0.2696 log10 units (or 46.3%) when
the number of trials per experimental condition per
observer was 20, and 0.2126 log10 units (or 38.7%)
when the number of trials per experimental condition
per observer was 40, indicating increased benefits of the
HBPTM when the number of trials per experimental
condition is smaller. Finally, across all the parameters
and numbers of trials per experimental condition per
observer, the benefit of HBPTM reached its asymptotic
level when the number of observers was about 40.
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Figure 7. Normalized average 95% HWCI of θij(m) from the HBPTM (solid curves) and BIP (dotted curves) for 10 (blue), 20 (green), and
40 (red) trials per experimental condition as functions of number of simulated observers, with the HWCI in log10 units. Each 95%
HWCI was normalized by the average 95% HWCI of the posterior distribution of the HBPTM solution in the 72 observers and 40 trials
per experimental condition dataset. HWCI’s for θij(m),m = 1, …, 10 are shown in panels (a) to (j), corresponding with PTM
parameters Na, Nm, β, γ , and Af for central cuing, and Na, Nm, β, Af, and Aa for peripheral cuing (γ is shared).

Figure 8. Ratio of the average 95% HWCI of θij(m) from the HBPTM and BIP in 10 (blue), 20 (green), and 40 (red) trials per
experimental condition as functions of number of simulated observers in log10 units. HWCI ratios for θij(m),m = 1, …, 10 are shown
in panels (a) to (j), corresponding with PTM parameters Na, Nm, β, γ , and Af for central cuing, and Na, Nm, β, Af, and Aa for peripheral
cuing (γ is shared).

In summary, the expected values of the posterior
distributions of the parameters from the HBPTM and
BIP were essentially the same. In hierarchical models,
the estimated parameters at the lower levels may shrink
toward the modes of the higher levels when there is
not sufficient data at the lower level (Kruschke, 2015;
Rouder & Lu, 2005; Rouder, Sun, Speckman, Lu, &
Zhou, 2003). The observation that the HBPTM did
not introduce any bias suggests that even 10 trials per
experimental condition per observer was sufficient. The
95% HWCI from the HBPTM was less than that from
the BIP across all the parameters and simulated sample
sizes. The fewer the number of trials per experimental
condition per observer, the greater the benefit of the

HBPTM. The benefit of the HBPTM saturated when
the number of observers was about 40.

Discussion

In this study, we developed a new HBPTM
by combining the HBM and PTM to model the
trial-by-trial data from all individuals and conditions
in a published spatial cuing study of attention (Lu &
Dosher, 2000) within a single hierarchical Bayesian
structure. Using the HBMPTM, we derived the joint
posterior distribution of the hyperparameters and
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parameters of the PTM at the populational, observer,
and experiment levels, and made several statistical
inferences at these levels. Specifically, the marginal
distributions at the populational and observer level
provided distributions of observer properties and make
inferences of mechanisms of attention at both levels,
and the marginal distributions at the test level revealed
important covariance of the PTM parameters within
each observer. Consistent with Lu and Dosher (2000),
inferences at both the populational and observer levels
concluded that endogenous attention significantly
excluded external noise, whereas exogenous attention
significantly excluded external noise and enhanced the
stimulus (reduced internal additive noise). Although
the pattern of results is consistent with Lu and
Dosher (2000), the HBPTM enabled us to quantify the
posterior distributions of the observer parameters and
make inferences about the mechanisms of attention at
the population level.

In addition, we compared the performance of the
HBPTM to that of a BIP which separately infers
the posterior distributions of the model parameters
for each individual observer without the hierarchical
structure and population level hyperparameters on
the experimental data and in a large simulation study.
We found that the expected values of the posterior
distributions of the observer parameters θij(m) from
the HBPTM and BIP were essentially the same, the
95% HWCI from the HBPTM was less than that from
the BIP in the analyses of the experimental data. This
pattern was also true in the simulation results, where
the benefit of the HBPTM in reducing the HWCIs
saturated when the number of observers was about 40.

In the current development of the HBPTM, we
modeled the variance but not the covariance of the
hyperparameters at the population and individual
levels and revealed important covariance of the
parameters at the test level. To double-check whether
this is reasonable, we computed the covariance of the
hyperparameters from their posterior distributions
derived from the current HBPTM and did not find any
significant covariances. The HBPTM can be extended
by replacing the variances σ and δ with covariances
(Zhao, Lesmes, Dorr, & Lu, 2021; Zhao, Lesmes, Hou,
& Lu, 2021).

Five observers participated in Lu and Dosher (2000).
Three of them were tested in all 288 experimental
conditions and two in 144 conditions, with 40
trials/condition. The dataset consisted of relatively few
well practiced observers, each with many external noise
and signal contrast conditions and trials. The HBPTM
model converged very well, with tight distributions
at the population, observer, and test levels, and no
significant covariances at the observer and population
levels. It is notable that the HBPTM benefitted the
HWCI of the posterior distributions of PTM model
parameters even in the experimental situation with a

relatively smaller number of subjects and larger number
of trials per condition per subject. Although the
hierarchical Bayesian framework may normatively be
seen as most useful for situations with more observers
and smaller sample sizes per condition per observer, it
nonetheless had potentially useful benefits even in the
classic individual observer design such as that analyzed
here (Lu & Dosher, 2000).

On the other hand, the relatively small number
of well-practiced observers may or may not be
representative of the general population of normal
adults. A larger study with a broader sample of
observers would almost surely be necessary to fully
utilize the HBPTM to estimate population level
distributions and covariances.

The observer models, including the PTM, specify
the functional relationship between external stimuli
and internal responses, as well as the decision process
in human behavior. They provide the theoretical basis
for generalizing the results of a particular experiment
to predict the performance of the observer in other
conditions and tasks based on the internal processes
and intrinsic limitations of the observer. Previous
observer model studies have been focused on detailed
characterization of small numbers of observers (or the
average over those observers), with large amount of
data for each observer in many external noise levels
and signal contrasts but small number of observer
states (attended versus unattended) and limited range
of visual stimuli (e.g. 4 pseudo characters presented
at the same eccentricity). Conclusions about the
generalizability of the results are based on highly
consistent results across all the observers. However, the
relatively small number of observers, observer states,
and range of visual stimuli limit the predictive aspects
of the framework. The HBPTM can be used to address
this limitation. We can design studies with relatively
large numbers of observers, observer states, and range
of visual stimuli, collect fewer trials from each observer
in a subset of the conditions (covering all the conditions
across observers and with overlapping conditions
between observers), and use the HBPTM to compute
the joint distribution at the population, observer, and
test levels. The marginal posterior hyperparameter
distributions in the not-observed conditions for an
observer can serve as a prior for the observer if new
data are to be collected in those conditions, greatly
improving the efficiency of the experiment. In addition,
this important development would enable us to make
predictions of human performance at the populational
level and performance predictions concerning new
observers or existing observers in the not-observed
conditions (Lu, Zhao, Lesmes, & Dorr, 2022).

Although it is developed in the context of an existing
spatial attention study, the HBPTM and its extensions
can be used as a framework to model data from the
external noise paradigm in other domains, including
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perceptual learning, visual working memory, aging,
visual deficits, and visual rehabilitation. The hierarchical
Bayesian (HB) framework can also be combined with
various elaborated PTMs and multichannel PTM to
model discrimination of non-orthogonal targets, tuning
of the perceptual template, and binocular combination.

Previously, we developed a Bayesian adaptive
procedure, qTvC, to measure TvC (threshold versus
[external noise] contrast) functions with high efficiency
(Lesmes, Jeon, Lu, & Dosher, 2006). Combining
HBPTM with the adaptive testing procedure in
qTvC can lead to hierarchical adaptive design
optimization (HADO) of TvC measurements (Kim,
Pitt, Lu, Steyvers, & Myung, 2014), making full use
of informative priors across observers and conditions
from the hierarchical model.

Keywords: perceptual template model (PTM),
hierarchical Bayesian perceptual template model
(HBPTM), spatial attention, stimulus enhancement,
external noise exclusion
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