
research papers

Acta Cryst. (2018). D74, 117–124 https://doi.org/10.1107/S2059798317014462 117

Received 2 June 2017

Accepted 6 October 2017

Keywords: substructure determination; single-

wavelength anomalous scattering; phase

retrieval; charge flipping; relaxed averaged

alternating reflections; PRASA.

Substructure determination using phase-retrieval
techniques

Pavol Skubák*

Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands. *Correspondence

e-mail: p.skubak@chem.leidenuniv.nl

Thus far, the application of phase-retrieval methods in crystallography has

mainly been aimed at variants of charge flipping or structure-factor flipping. In

this work, the relaxed averaged alternating reflections (RAAR) algorithm is

applied to determine anomalously scattering substructures from single-

wavelength anomalous diffraction (SAD) data of macromolecules. The

algorithm has been implemented in a new program, PRASA, and has been

shown to significantly outperform charge flipping in determining anomalously

scattering substructures on a test sample of 169 SAD data sets with resolutions

up to 3.88 Å.

1. Introduction

Rapid progress in both instrumentation and computational

methods of macromolecular imaging has led to unprecedented

growth in the number of macromolecular structures solved:

the number of structures deposited in the Protein Data Bank

(PDB; Berman et al., 2000) has increased by an order of

magnitude in the new millennium, with the majority of these

PDB entries being solved by X-ray crystallography. Owing to

the rapidly growing number of known structures, molecular

replacement (MR), a technique to determine the structure

under study using similar previously determined folds, has

become the most frequently used technique to solve the phase

problem in macromolecular X-ray crystallography: over two

thirds of the X-ray crystallographic structures deposited in the

PDB were solved by MR or by a combination of MR with

experimental phasing techniques.

However, while MR is the apparent method of choice for

many structure determinations, experimental phases remain

essential in more complicated cases. Single-wavelength

anomalous diffraction (SAD; Hendrickson & Teeter, 1981;

Wang, 1985) is the primary method for experimental phasing,

thanks to its simplicity and to advances in SAD data collection

and software (as summarized by Rose & Wang, 2016).

Determination of the atomic positions of the anomalously

scattering substructure, composed of S, P, halogen, metal or Se

atoms, from the anomalous data is the crucial first step of the

method.

Most programs for SAD substructure determination, such

as SHELXD (Schneider & Sheldrick, 2002), SnB (Weeks &

Miller, 1999) and HySS (Grosse-Kunstleve & Adams, 2003),

are based on the ‘direct’ methods that were originally devel-

oped for the structure solution of small molecules and that

obtain phase estimates from relations between the intensities

and the phases of the reflections. Direct methods are typically

implemented within an iterative dual-space recycling (Weeks

et al., 1993) between the crystal space and reciprocal space,
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with prior information being used to modify the crystal space

density.

1.1. Phase-retrieval methods

From a more general point of view, the X-ray crystallo-

graphic phase problem belongs to the class of nonlinear and

nonconvex inverse problems, which have been studied inten-

sively for decades. Although no general solution is known, in

the special case of optical phase retrieval efficient algorithms

have been developed which have successfully been used for

reconstruction of the unknown phases in, for example, astro-

nomical imaging (see, for example, Dainty & Fienup, 1987) and

single-particle imaging (see, for example, Miao et al., 1998).

Almost three decades ago, Millane summarized the simi-

larities and differences between optical phase-retrieval

approaches and the traditional crystallographic approaches to

the phase problem, and suggested the application of phase-

retrieval techniques in crystallographic algorithms (Millane,

1989). Despite this, the use of phase-retrieval methods for ab

initio phasing only gained considerable interest in the crys-

tallographic community in 2004, when Oszlányi and Süto��
showed that charge flipping, one of the simplest phase-

retrieval methods, can phase many high-resolution X-ray

diffraction data sets (Oszlányi & Süto��, 2004); they subse-

quently further improved the performance of the charge-

flipping algorithm (Oszlányi & Süto��, 2008).

The implementation of the charge-flipping algorithm in the

program Superflip (Palatinus & Chapuis, 2007) showed that

charge flipping can provide added value to the traditional

direct methods used for X-ray crystallographic structure

solution of small molecules (van der Lee, 2009). Finally,

Dumas and van der Lee showed that charge flipping as

implemented in Superflip can also be used for substructure

determination from anomalous data (Dumas & van der Lee,

2008).

Similar to most current direct-methods implementations,

the phase-retrieval techniques perform iterative dual-space

recycling. However, unlike direct methods, which attempt to

estimate the phases in reciprocal space, the operations

performed by phase retrieval in either of the spaces alone

cannot, even in principle, solve the phase problem (Palatinus,

2013). Constraints based either on the data or on prior

information, that do not directly model or gain phase infor-

mation, are applied in both spaces.

In reciprocal space, the constraints are typically given by the

observed data. In crystal space, the prior information used

includes non-negativity, atomicity, continuity or knowledge

about the density in specific regions. The phase-retrieval

algorithms differ in the way that the constraints are applied in

both spaces, ranging from a simple projection of the constraint

to complex transformations improving the convergence

properties.

This paper reports a new adaptation of the charge-flipping

algorithm for the problem of substructure determination from

SAD data, which has been tested on a large set of SAD data

sets. Furthermore, it reports the adaptation of the relaxed

alternating averaged reflection algorithm (Luke, 2005) and its

testing on the same sample of SAD data sets and shows that it

outperforms the charge-flipping algorithm.

2. Methods

2.1. Phase-retrieval algorithms for substructure
determination

Phase-retrieval algorithms can generally be described as an

iterative density-modification technique in which the electron

density in cycle n + 1 is obtained by applying an operator � to

the current electron density �n:

�nþ1 ¼ ��n: ð1Þ

The operator � is composed of forward and inverse Fourier

transformation operators F and F�1, and crystal-space and

reciprocal-space modification operators �Di and �Mi,

respectively. In the simplest case, a single-crystal space

operator and a single reciprocal-space modification operator

are applied and the index i can be removed:

�nþ1 ¼ �DF�MF
�1�n: ð2Þ

The operators �D and �M incorporate the information

from the data and prior information in crystal and reciprocal

space, respectively. In the most intuitive approach, �D and �M

are constructed as direct projections of the constraints

provided by the data and prior information. For substructure

determination, the prior information of non-negativity and

atomicity of the electron density can be used as a prior space

information constraint in crystal space,

�Dð�xÞ ¼ PA
Dð�xÞ ¼

�x if �x � �
0 otherwise

n
; ð3Þ

where � � 0 imposes the non-negativity and a large value of �
only retains the large electron density with an increased

likelihood of corresponding to the atom peaks, thus imposing

a weak atomicity constraint for the mostly flat substructure

electron-density maps.

The reciprocal-space data projector can be be applied by

replacing the calculated structure-factor amplitudes with the

amplitudes derived from the observed data while keeping the

phases unchanged,

�MðFhÞ ¼ PMðFhÞ ¼

jFo
hj

jFhj
Fh if h 2 M

Fh otherwise

8<
: ; ð4Þ

where M is the set of reflection indices h for which intensities

have been measured and Fh
o denotes the structure-factor

amplitude for the reflection with Miller indices h obtained by

truncation of the observed intensities. In practice, the ampli-

tudes Fh
o are often replaced by normalized E values Eh

o.

Direct application of the projectors in a phase-retrieval

iteration

�nþ1 ¼ PA
DFPMF

�1�n ð5Þ

is known in crystallography as low-density elimination (LDE;

Shiono & Woolfson, 1992). This algorithm has primarily been
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used for phase improvement by the authors; however, they

also noted that it could be used for the ab initio solution of

simple structures. Oszlányi & Süto�� (2008) considered LDE to

be a useful method for the optimization of ab initio structures

of small molecules solved by charge flipping.

Generally, phase-retrieval methods directly applying data

and prior constraints as projections are more suitable for the

refinement of partial solutions than for solution from random

phases, owing to their small radius of convergence. The radius

of convergence can be improved by the incorporation of

perturbation, which is typically achieved by use of a reflector

operator R instead of the projector P,

R ¼ 2P� I; ð6Þ

where I is an identity operator. The crystal-space reflector

derived from the projector (4) then flips the low electron-

density values around 0:

RA
Dð�xÞ ¼ 2PA

Dð�xÞ � IDð�xÞ

¼
2�x � �x ¼ �x if �x � �

ð2� 0Þ � �x ¼ ��x otherwise

�
: ð7Þ

Charge flipping is a phase-retrieval algorithm using the

reflector RD
A and the projector PM (Oszlányi & Süto��, 2004):

�nþ1 ¼ RA
DFPMF

�1�n: ð8Þ

Further perturbation and thus a potentially larger radius of

convergence can be achieved by application of a reflector in

reciprocal space:

RMðFhÞ ¼ 2PMðFhÞ � IMðFhÞ

¼
2
jFo

hj

jFhj
Fh � Fh ¼

2jFo
hj � jFhj

jFhj
Fh if h 2 M

2Fh � Fh ¼ Fh otherwise

8<
: : ð9Þ

Unfortunately, simultaneous application of reflectors in both

crystal space and reciprocal space suffers from instability and

divergence. However, the scheme can be stabilized by ‘aver-

aging’ with the identity operator, leading to the alternate

averaging reflections (AAR) phase-retrieval method

(Bauschke et al., 2004; Oszlányi & Süto��, 2011):

�nþ1 ¼
1

2
ðRA

DFRMF
�1�n þ ID�nÞ: ð10Þ

However, the AAR algorithm still tends to diverge from the

solution (see, for example, Marchesini, 2007) for inconsistent

problems; that is, problems for which no solution that exactly

satisfies the applied constraints and data exists. Clearly, the

problem of substructure determination from weak anomalous

signals is strongly inconsistent owing to the tiny signal-to-noise

ratio of the data. Further stabilization and improvement of the

convergence properties, especially for inconsistent problems,

can be achieved by the addition of a relaxation term of a

crystal-space projection, with the terms weighted by a newly

introduced parameter �:

�nþ1 ¼
1

2
�ðRA

DFRMF
�1
þ IDÞ�n þ ð1� �ÞPD�n: ð11Þ

This is the iteration scheme of the relaxed averaged alter-

nating reflections (RAAR) algorithm (Luke, 2005). The

algorithm has been suggested as an interesting alternative to

established schemes by Palatinus (2013), but thus far it has not

been tested in a crystallographic context.

2.2. Implementation and testing

The RAAR algorithm (11) was adapted to the substructure-

determination problem in a new program for phase retrieval

of anomalously scattering atoms: PRASA. The program also

implements charge flipping (8), against which the RAAR

algorithm is compared in this paper. Thus, the implementation

is based on projector and reflector operators (3), (4), (7) and

(9) as defined in the previous section. Although other algo-

rithms and other projector operators were also tested within

the new program, none of them were found to be system-

atically better and thus they have not been included in the

implementation. The program was written in the C++

programming language and uses the CCP4 Clipper libraries

(Cowtan, 2003) for general crystallographic functionality, the

FFTW3 or FFTW2 libraries (Frigo & Johnson, 2005) for the

fast Fourier transform operations and OpenMP for paralleli-

zation.

To determine an unknown substructure, PRASA starts from

a map generated using the input substructure-factor ampli-

tudes and random phases. Tests showed that rather than

waiting for complete convergence of the phase-retrieval

iteration scheme, a solution was usually more rapidly obtained

by stopping after several hundred phase-retrieval iterations

and starting another trial from new random phases. Typically,

not all trials converge to the ‘correct’ solution, and the

Pearson correlation coefficient (CC) between the calculated

structure-factor amplitudes and the observed amplitudes is

used as a quick and effective solution-selection criterion. The

substructure is then obtained as the positions of peaks above

4.5� in the density map from the trial with the largest CC.

The correlation coefficient is not only used as a relative

measure to select the ‘best’ substructure from the different

trials but also as an absolute measure of success: the

substructure determination can be stopped if the correlation

coefficient value indicates that a solution has been found.

Currently, a value of 40 is used as a conservative default

threshold for early termination. However, for many data sets

with weaker anomalous signals a correct solution can be

obtained even if the correlation coefficient is much smaller.

Therefore, a quick phasing by REFMAC5 (Murshudov et al.,

2011) is performed for certain prospective solutions with CC >

10 and an early termination is also performed if CC� FOM�

SCC � 100 > 40, where FOM is the reciprocal-space figure of

merit after phasing and SCC is a score derived from a corre-

lation of the experimental density map with its local r.m.s. for

both hands, as calculated by the MAPRO utility from the

CCP4 crystallographic package (Winn et al., 2011).

Since the anomalous signal often extends to lower than the

overall data resolution, a high-resolution cutoff is typically

applied to the data before they are input to anomalous
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substructure-detection programs. Substructure determination

may be very sensitive to the high-resolution cutoff parameter:

especially for data sets with a weak anomalous signal, the

convergence to the solution may be hindered either by the

inclusion of high-resolution reflections with noise masking the

anomalous signal, or by their exclusion if, in contrast, their

anomalous signal prevails over the noise.

Although the anomalous resolution can by estimated from

CC1/2
anom (Karplus & Diederichs, 2012; Evans & Murshudov,

2013) or other statistics, it may still differ considerably from

the optimal high-resolution cutoff for obtaining the

substructure. Therefore, PRASA attempts to run phase-

retrieval trials at several different high-resolution cutoffs: by

default up to five cutoffs are used, spanning a range of up to

1 Å. The correlation coefficient is resolution-dependent and

tends to increase with an increasing high-resolution cutoff, as

illustrated by Fig. 1. Therefore, the ‘best’ substructure solution

for each resolution cutoff c is first determined using the usual

correlation coefficient calculated to the given resolution

cutoff, denoted as CCc. Afterwards, the ‘best’ substructures

s1, . . . , sN from the different cutoffs c1, . . . , cN are scored

using CCrange, an average of all correlation coefficients of the

solution over the tested range,

CCrangeðsiÞ ¼

PcN

j¼c1

CCjðsiÞ

N
: ð12Þ

Although PRASA has been written as a standalone

program with many command-line options, it has also been

integrated in the CRANK2 suite (Skubák & Pannu, 2013) for

macromolecular structure solution from experimental phases.

In this paper, the complete CRANK2 solution pipeline from

FA estimation to model building was performed on 169 SAD

data sets from 157 different macromolecular structures. The

test sample primarily consisted of the data sets used in Skubák

& Pannu (2013), which have been further extended with more

recent data sets. The sample provides a wide range in terms of

resolution, from 0.94 to 3.88 Å, and anomalous scatterers, such

as Se, S and halogen atoms and many different heavy metals.

Many of the data sets were originally solved by more complex

experiments in which the SAD data were combined with other

data sets (such as MAD, SIRAS and MR-SAD), and thus may

be difficult to solve by SAD only. The complete list of PDB

codes is provided in Appendix A.

The measured data provide amplitudes of structure factors

corresponding to the entire macromolecule. However, to

determine the substructure we need the amplitudes of struc-

ture factors corresponding to the substructure only: the FA

values. For the purpose of this work, the simplest estimation of

the FA values as the absolute value of Bijvoet differences,

FA = |F +
� F�| = �F, was used. The FA values were further

normalized to the EA values using the program ECALC (Ian

Tickle, unpublished work) from CCP4.

A simple EA exclusion scheme was implemented in

CRANK2 based on the ratios FA/F (with a threshold of 1) and

�(F +)/�(F�) (thresholds of 1/3 and 3). All of the EA values

from ECALC that passed the exclusion criteria were then

inputted to the PRASA program. Furthermore, a more

advanced FA estimation and exclusion by SHELXC (Shel-

drick, 2015) was also tested for the data sets where PRASA

did not succeed in finding the substructure from the EA values

prepared in the simple way described above. In the SHELXC–

PRASA pipeline, the FA factors are estimated and excluded by

SHELXC and the corresponding EA values converted by

ECALC are input to PRASA.

The charge-flipping parameter � was set to 1.3� and the

RAAR � parameter was set to 3.1�, where � is the standard

deviation of the electron-density map. However, for both

algorithms the � parameter was automatically decreased if the

Fourier space iterations of the first trials diverged. The

relaxation parameter � of the RAAR algorithm was fixed at

0.82. This value was chosen in initial testing on a set of training

data sets that were not included in the test sample.

Furthermore, for the data sets that succeeded with RAAR

but failed with charge flipping, a series of charge-flipping tests

with � varying between 1.0� and 1.4� with a step of 0.05� were

performed, with the automatic decrease of � disabled. All

other parameters and options were kept the same in the

charge-flipping and RAAR tests. A total of 2000 trials, with

200 Fourier iterations per trial, were run for each test.

For each data set, the substructure obtained from PRASA is

compared with the ‘final substructure’ using the program

SITCOM (Dall’Antonia & Schneider, 2006). If available, the

‘final substructure’ was obtained from the PDB-deposited

coordinates, otherwise the atomic coordinates obtained from

anomalous difference maps were used. For the purposes of

matching, the determined substructure is ordered by the

height of the density peaks of the atoms and the end of the

ordered list is cut off either at 20% of the height of the largest

peak or at the number of the deposited atoms plus one,
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Figure 1
An example of PRASA output using multiple resolution cutoffs. A
solution was obtained for three of the five tested cutoffs. Since a larger
resolution cutoff generally leads to a larger CC (the different colour
clusters are layered from the largest cutoff at the top to the smallest at the
bottom), CCrange is used to score the best solutions from different cutoffs.
The order in the legend corresponds to the order in which the jobs were
run by PRASA, starting in the middle of the range.



whichever leads to a smaller length of the list. The resulting

fraction of correctly determined substructure is used as a

measure of success of substructure determination.

Another measure of success is the ability to build the model

from the PRASA substructures: the fraction of the protein

model correctly built by CRANK2 is reported for all 169 data

sets. The default CRANK2 solution pipeline was used, with

REFMAC5 employed for the reciprocal-space processes of

phasing, phase combination in density modification and

phased refinement using the appropriate multivariate SAD

functions. The CCP4 programs Parrot (Cowtan, 2010) and

Buccaneer (Cowtan, 2006) are used by CRANK2 for real-

space density modification and model building, respectively,

within the ‘combined’ building algorithm (Skubák & Pannu,

2013). The input SAD data, the protein sequence and the

substructure atom type and its anomalous scattering coeffi-

cients were provided as input to all of the jobs. Furthermore,

the number of monomers in the asymmetric unit was input for

a few data sets where the correct number significantly differs

from the automatic CRANK2 estimation based on Matthews

coefficients.

The model-building performance is judged by the fraction

of the PDB-deposited model backbone that is ‘correctly built’.

A residue is considered to be correctly built if its C� position

is at a distance of at most 2 Å from a deposited model C� (‘C�-

deposited’) position and a neighbouring C� position is at a

distance of at most 2 Å from a neighbour of the C�-deposited

position.

3. Results and discussion

Fig. 2 shows the performance of PRASA in terms of

substructures determined and macromolecular models built

for the 169 SAD data sets. Owing to the ability of the

‘combined’ building algorithm to complete partial models,

almost all of the resulting models can be divided into two

distinct categories: either correctly built close to completion

(more than 75% of the backbone correctly traced) or not built

(less than 25% of the backbone correctly traced). As can be

seen from Fig. 2(b), three models fall outside these categories:

in two cases the limiting factor behind the partial (50 and 69%

complete) models was the low resolution of the data set (3.88

and 3.2 Å, respectively), while the remaining data set, which

was built to 59%, suffered from twinning. For the sake of

simplicity, the few partially built models will be considered as

correctly built in the following text.

Within this classification, the substructures determined

using the charge-flipping algorithm led to 130 correctly built

models and the RAAR algorithm enabled automatic building

of 142 models. There were no models that could be built only

by the pipeline using the charge-flipping algorithm; however,

12 models in the upper left corner of Fig. 2(b) could only be

built by the pipeline with the RAAR algorithm.

According to the SITCOM analysis, no correct models

could be built if less than 35% of the heavy atoms were

correctly determined by PRASA. However, a few incomplete

substructures, identified to around 40–50%, could either

already be completed by CRANK2 or sufficed for successful

phasing without completion. Thus, similarly to the binary

classification of model building, substructure determination

can be considered to be successful if more than 35% of the

heavy atoms were found and unsuccessful if a smaller or no

fraction was correctly identified. However, the class of data

sets with substructures determined is not identical to the class

of data sets with models built: for six data sets, the model could
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Figure 2
Fraction of (a) the substructure and (b) the protein backbone correctly
determined by the CRANK2 pipeline using the RAAR and charge-
flipping algorithms implemented in PRASA. Each light blue point in the
graph represents a single data set. Since a larger number of data sets can
share the same substructure-detection results, a colour gradient has been
added to indicate the number of data sets behind the same dot that share
the same substructure-detection results.



not be automatically built despite the substructure being

identified, owing to very poor experimental maps which could

not be sufficiently improved by density modification and

modelling.

Similarly to the model-building evaluation, 12 more sub-

structures could be determined using the RAAR algorithm

compared with the charge-flipping algorithm, as shown in the

upper left corner of Fig. 2(a). Since charge flipping is known to

be strongly dependent on the � parameter and its optimal

value may vary between data sets, a series of tests with �
varying between 1.0 and 1.4� with a step of 0.05� was

performed to find out whether charge flipping could succeed

with a different � parameter. Although � parameters of 1.25

and 1.35� indeed led to the heavy atoms being correctly

identified in two cases, charge flipping still failed for the

remaining ten data sets. Furthermore, the flip-mem variant of

charge flipping (Oszlányi & Süto��, 2008) with the � parameter

set to 0.6, 0.8 or 1.0 also did not lead to solution of these ten

data sets. Based on these results, we can conclude that RAAR

significantly outperformed charge flipping. As Fig. 3 demon-

strates, the majority of the ten data sets are characterized by a

lower anomalous signal. Thus, it appears that the RAAR

algorithm extends the limits towards data sets with weaker

anomalous signals.

The RAAR algorithm succeeded in obtaining the heavy-

atom substructure for a total of 148 SAD data sets and failed

for the remaining 21 data sets. However, it turned out that

another three substructures could be determined by either

RAAR or charge flipping if FA values from SHELXC were

used, proving the importance of FA input for the determina-

tion of anomalously scattering atoms. Furthermore, a further

three substructures could be determined if the number of

RAAR trials was also increased from the default 400 trials per

resolution cutoff to 10 000.

The heavy atoms for the remaining 15 data sets could not be

found by PRASA. No solutions were found for these data sets

in additional tests with 10 000 SHELXD trials per resolution

cutoff, run with the same resolution cutoffs and with the other

parameters set to the default for the SHELX pipeline imple-

mented in CCP4i2. Although it is possible that some

substructures could be still determined by further adjusting

the parameters, this provides an indication that the RAAR

algorithm is competitive with the ‘traditional’ state-of-the-art

substructure-determination algorithms. A thorough compar-

ison of the performance of the different approaches

performed by an independent expert would be required to

confirm this hypothesis.

Ad hoc attempts to find the substructure for the remaining

15 difficult data sets by adjustment of the � and � parameters

of the RAAR algorithm were not successful. However, a

systematic search through the (�, �) parameter space was not

performed. The ad hoc a posteriori tests further suggested that

values of � of between approximately 0.81 and 0.83 indeed

appeared to be optimal if the � parameter was set to values

around 3�. However, good results could be also obtained for

other combinations of these two parameters.

As Fig. 3 shows, the success of substructure determination

unsurprisingly depends on the strength of the anomalous

signal. Here, the anomalous signal is estimated from the

average peak height in the anomalous difference maps, phased

using the ‘best’ phases corresponding to the deposited PDB

models, at the positions of anomalous substructure atoms (see,

for example, Yang et al., 2003; Terwilliger et al., 2016). Using

the RAAR algorithm, all of the substructures were found with

a peak height larger than 12�, except for the 2prx data set,

which turned out to be surprisingly resilient to substructure-

determination attempts despite a large peak height of 19�,

possibly owing to twinning of the crystal. Furthermore, the

majority of substructures could still be found for anomalous

signals between 8 and 12�, with the chance of success

decreasing rapidly at around 8�. A similar conclusion was

drawn by Terwilliger et al. (2016) for substructure detection

using likelihood-based methods. It should be noted that these

findings only apply to detection of the entire substructure:

typically, if larger peaks of the substructure are found its

smaller peaks can also be correctly located, down to around

4–5�.

Furthermore, the testing showed that the number of

substructure atoms parameter is much less important for

RAAR than for current direct-space methods, where a precise

estimate is sometimes crucial in difficult substructure deter-

minations. In fact, all of the reported RAAR tests were

performed without inputting the expected number of heavy

atoms to be found. The reason for this behaviour is that this

parameter is not directly used by the recycling algorithm. If
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Figure 3
Classification of the results as a function of the anomalous signal and the
number of substructure atoms. The substructures determined by both the
RAAR and charge-flipping algorithms are shown in blue, unsolved
substructures are shown in red, substructures determined by RAAR but
not by charge flipping are shown in green, and the orange colour indicates
substructures for which both algorithms failed initially but that could be
solved by RAAR in an additional larger number of trials (adj. RAAR).



input, it can be still used to select only the specified number of

largest substructure peaks for scoring and substructure output.

An early termination of the RAAR substructure determi-

nation, before the maximal number of 2000 trials had been

run, was used for 89 data sets: in 59 cases an early stop was

triggered by reaching the CC� FOM � SCC threshold and in

the remaining 30 cases by reaching the CC threshold. In all of

these cases the solution was indeed correct and the protein

model was built. A large group of the remaining data sets also

provided large values of these estimators, albeit in the range

that was occasionally also provided by an incorrect or

incomplete substructure.

4. Conclusions

In the tests on 169 SAD data sets, it has been shown that the

RAAR algorithm, implemented in the new program PRASA

for substructure determination, outperforms the charge-

flipping algorithm as implemented in the same program. An

analysis of the anomalous signals of the data sets solved only

by RAAR indicates that the RAAR algorithm extends the

limits of charge flipping towards data sets with weaker

anomalous signals.

The strength of the anomalous signal remains the major

limiting factor of the method, with the probability of success

significantly decreasing at around 8�. No such limitation has

been found for the number of searched substructure atoms

within the scope of the test sample with at most 70 substruc-

ture atoms.

Substructure determination by PRASA has been integrated

into the CRANK2 pipeline for automated structure solution

from experimental phases and provides features such as the

automatic evaluation of multiple resolution cutoffs, early

termination on success and no requirement for an estimate of

the number of substructure atoms.

In the future, new phase-retrieval algorithms will be

explored to further increase the radius of convergence of the

method and to tackle data sets that have eluded current

substructure determination. Furthermore, the possibility of

the application of phase retrieval by PRASA to other

crystallographic problems, such as the phase optimization of

weakly phased maps, will be investigated.

APPENDIX A
Complete list of PDB codes

A total of 169 SAD data sets for the following 157 macro-

molecular structures were used: PDB entries 1c8u, 1djl, 1dpx,

1dtx, 1dw9, 1e3m, 1e42, 1e6i, 1fj2, 1fse, 1ga1, 1hf8, 1h29, 1i4u,

1lvy, 1lz8, 1m32, 1mso, 1ocy, 1of3, 1rgg, 1rju, 1vjn, 1vjr, 1vjz,

1vk4, 1vkm, 1vlm, 1vqr, 1z82, 1zy9, 1zyb, 2a3n, 2a6b, 2ahy,

2aml, 2avn, 2b78, 2b79, 2b8m, 2etd, 2etj, 2ets, 2etv, 2evr, 2f4p,

2fdn, 2fea, 2ffj, 2fg0, 2fg9, 2fna, 2fqp, 2fur, 2fzt, 2g42, 2g4h,

2g4j, 2g4k, 2g4l, 2g4m, 2g4n, 2g4o, 2g4p, 2g4q, 2g4r, 2g4s, 2g4t,

2g4u, 2g4v, 2g4w, 2g4x, 2g4y, 2g4z, 2g51, 2g52, 2g55, 2gc9, 2hba,

2ill, 2nlv, 2nuj, 2nwv, 2o08, 2o0h, 2o1q, 2o2x, 2o2z, 2o3l, 2o62,

2o7t, 2o8q, 2obp, 2oc5, 2od5, 2od6, 2oh3, 2okc, 2okf, 2ooj,

2opk, 2osd, 2otm, 2ozg, 2ozj, 2p10, 2p4o, 2p7h, 2p7i, 2p97,

2pg3, 2pg4, 2pgc, 2pim, 2pn1, 2ppv, 2pr7, 2prr, 2prv, 2prx,

2pv4, 2pw4, 2q2l, 2rkk, 2v0o, 3bpj, 3fki, 3gyv, 3k9g, 3km3, 3lmt,

3lmu, 3men, 3njb, 3o2e, 3oib, 3p96, 3s6l, 4us7, 4xvz, 4xxt, 4yf1,

5b82, 5gwd, 5ifg, 5irr, 5j4r, 5kjh, 5lg6, 5llw, 5loi, 5lsq, 5sus,

5suu, undeposited glucose isomerase and Ca-subtilisin data

sets from Dauter et al. (2002) and a novel undeposited data

set.
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