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AbstrACt
Objectives Interest in linking patients with unmet social 
needs to area-level resources, such as food pantries 
and employment centres in one’s ZIP code, is growing. 
However, whether the presence of these resources is 
associated with better health outcomes is unclear. We 
sought to determine if area-level resources, defined as 
organisations that assist individuals with meeting health-
related social needs, are associated with lower levels of 
cardiometabolic risk factors.
Design Cross-sectional.
setting Data were collected in a primary care network in 
eastern Massachusetts in 2015.
Participants and primary and secondary outcome 
measures 123 355 participants were included. The primary 
outcome was body mass index (BMI). The secondary 
outcomes were systolic blood pressure (SBP), low-density 
lipoprotein (LDL) cholesterol and haemoglobin A1c (HbA1c). 
All participants were included in BMI analyses. Participants 
with hypertension were included in SBP analyses. Participants 
with an indication for cholesterol lowering were included in 
LDL analyses and participants with diabetes mellitus were 
included in HbA1c analyses. We used a random forest-based 
machine-learning algorithm to identify types of resources 
associated with study outcomes. We then tested the 
association of ZIP-level selected resource types (three for 
BMI, two each for SBP and HbA1c analyses and one for LDL 
analyses) with these outcomes, using multilevel models to 
account for individual-level, clinic-level and other area-level 
factors.
results Resources associated with lower BMI included 
more food resources (−0.08 kg/m2 per additional resource, 
95% CI −0.13 to −0.03 kg/m2), employment resources 
(−0.05 kg/m2, 95% CI −0.11 to −0.002 kg/m2) and nutrition 
resources (−0.07 kg/m2, 95% CI −0.13 to −0.01 kg/m2). No 
area resources were associated with differences in SBP, LDL 
or HbA1c.
Conclusions Access to specific local resources is 
associated with better BMI. Efforts to link patients to 
area resources, and to improve the resources landscape 
within communities, may help reduce BMI and improve 
population health.

Cardiometabolic disease remains the most 
common cause of morbidity and mortality 

in the USA.1 Though better control of 
cardiometabolic risk factors could substan-
tially reduce this morbidity and mortality, 
individuals with low socioeconomic status 
(SES) are less likely to achieve recommended 
goals.2 Among the reasons for this are 
patient-reported health-related social needs, 
including food insecurity, housing instability 
and lack of transportation. These health-re-
lated social needs have been associated with 
higher levels of important cardiometabolic 
risk factors including increased body mass 
index (BMI), systolic blood pressure (SBP), 
low-density lipoprotein (LDL) cholesterol 
and haemoglobin A1c (HbA1c), even after 
adjusting for factors like race/ethnicity, 
income and education.3–8 Proposed mecha-
nisms linking health-related social needs to 
cardiometabolic risk factors include reduced 
dietary quality, cost-related medication 
underuse, reduced cognitive ‘bandwidth’ to 
attend to health and disruptions in clinical 
care.9–11  

Healthcare systems are increasingly inter-
ested in working with community partners 
to help link their patients to local resources, 
such as food pantries or housing agencies, 
to help meet health-related social needs.12–16 
This approach is exemplified by the Account-
able Health Communities initiative from the 
Centres for Medicare & Medicaid Services, 
which involves screening for adverse social 

strengths and limitations of this study

 ► Extensive individual-level and area-level data.
 ► Innovative machine learning methods to overcome 
issues of collinearity and avoid multiple testing.

 ► Use hierarchical linear modelling to account for data 
structure.
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 ► No information on use of resources.
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circumstances and linking those who screen positive to 
community resources.17 However, there remain signif-
icant gaps in knowledge regarding such approaches. 
Critically, healthcare systems need to know which organ-
isations to partner with, and potentially what types of 
resources to invest in.18 The specific resources that best 
address a particular health-related need may not be 
straightforward. For example, a food pantry could help 
alleviate food insecurity, but so could employment.

To help address these issues, and inform further inter-
ventions, we sought to study associations between area 
resources and cardiometabolic risk factors in a large 
primary care network. Our goal was to understand which 
resource types were associated with improved levels of 
BMI, SBP, LDL and HbA1c, and to determine whether 
area resources had stronger associations with cardiometa-
bolic risk factors for conditions that are less amenable to 
clinical management.

MethODs
setting and study sample
Data for this study came from two primary sources: an 
asset mapping of community resources and electronic 
health records. The asset mapping came from the Help-
Steps database, a comprehensive asset mapping of area 
resources in eastern Massachusetts.19 The clinical records 
came from a primary care network in eastern Massachu-
setts, a network of 18 primary care practices, including 
hospital-based, academic and community health centre 
sites. All adult (age ≥18 years) primary care patients seen 
between 1 January 2012 and 31 December 2015 were 
included. Data were current on 31 December 2015. The 
most recent patient address was geocoded for the study. 
Patients without available addresses were excluded—
prior work has shown that only 0.15% of patients in this 
cohort could not be geocoded.20

The Partners Healthcare Human Research Committee 
approved this analysis, which entailed use of secondary 
data without patient contact (Protocol Number: 
2017P000964).

Patient and public involvement
The study research question was developed in reference 
to patient priorities regarding the incorporation of neigh-
bourhood factors that promote health into population 
health management. Patients were not involved in the 
design of the study or in recruitment. We plan to dissemi-
nate study results via open-access publication.

Area resources
HelpSteps ( www. helpsteps. com) is a web and mobile 
screening and referral system for social needs. Origi-
nally launched in 2010, the system uses a database of 
social services throughout the greater Boston area to 
connect families to appropriate services. The database is 
maintained in collaboration between Boston Children’s 
Hospital and the Mayor’s Health Line at the Boston Public 

Health Commission. Every agency is contacted at least 
once per year to maintain the accuracy of the data and 
to grow the database. HelpSteps contains information on 
area resources across 16 non-mutually exclusive domains: 
health, housing, food employment, violence, safety, 
substance abuse, mental health, education, parenting, 
nutrition, after school, sexual health, transportation, 
diabetes and care transitions. An example of organisa-
tions that would be in the food domain are food pantries. 
The employment domain would consist of job placement 
or job training services. And the nutrition domain would 
include organisations that provide food counselling. 
Agencies providing multiple resources could be included 
in more than one domain. Because individual-level data 
for this study came from 2015, we used information from 
HelpSteps that was current as of 2015. For this study, ‘area 
resources’ are defined as the number of organisations 
found in the HelpSteps database providing assistance for 
a given domain and within a given geographic area.

After geocoding the addresses for both individuals and 
the area resource organisation, we created counts, for 
each individual, of how many resources for each domain 
were within the same geographic area as they were. We did 
this at four geographic levels in roughly increasing order 
of size: census tract (using US Census 2010 boundaries), 
ZIP code tabulation area (which we refer to throughout 
this paper as ‘ZIP’ level, owing to common use of the 
term, again using US Census 2010 boundaries), ‘neigh-
bourhood’ (eg, Allston, Roxbury, a designation based on 
Boston city planning that may better capture actual move-
ment patterns) and county.

Clinical outcomes
To assess clinical outcomes, we calculated the mean of 
all values recorded in 2015 from individual’s electronic 
health record for the following measurements: BMI (in 
kg/m2), SBP (in mm Hg), LDL cholesterol (in mg/dL) 
and HbA1c (%). All values were obtained in the process 
of usual care.

Covariates
To account for possible confounding of the associa-
tion between area resources and health outcomes, we 
collected the following variables from the electronic 
health record: age (years), gender (male or female), 
race/ethnicity (non-Hispanic white, non-Hispanic black, 
Hispanic or Asian/other/multi), education (less than 
high school diploma, high school diploma [including 
General Educational Development certificate] or greater 
than high school diploma), insurance (commercial, 
Medicare, Medicaid [including dual-eligibles] and unin-
sured/self-pay), number of clinic visits in 2015, primary 
language (English vs other), connectedness to their 
primary care clinic using previously validated algorithm21 
and comorbidity (Charlson comorbidity score, and indi-
vidual indicators of depression, hypertension, coronary 
heart disease, osteoarthritis and diabetes). To account for 
area-level differences from factors other than resources, 

www.helpsteps.com
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we used data from the US Census’ American Commu-
nity Survey (5-year estimates 2010–2015) and the USDA’s 
Food Access Research Atlas: median household income, 
percent living in poverty, ‘food desert’ status (low income, 
low food access census tract at 1/2 mile in urban areas 
and 10 miles in rural areas), unemployment rate, propor-
tion of the area population living in group quarters (eg, 
those living in a nursing facility unlikely to be exposed to 
area-level conditions), vehicle access and housing segre-
gation.22 23

statistical analysis
In this study, we wanted to evaluate the relationship 
between many resources types and cardiometabolic risk 
factors. A secondary goal of our study was to help under-
stand the relationship that specific geographic levels and 
resource types had with clinical outcomes. Because the 
nested structure of our data violate the statistical inde-
pendence assumption that underlies parametric, regres-
sion-based variable selection approaches (such as forward, 
backward or stepwise selection), and to avoid multiple 
hypothesis testing that may lead to the identification of 
spurious associations, we employed a non-parametric 
machine learning technique called variable selecting 
using random forest (VSURF) to screen through vari-
ables in the derivation set.24 25 This was done using a deri-
vation data set, which consisted of a random partition of 
the entire data set. Finally, we used multilevel modelling 
in the test set (not used in the derivation stage) to test a 
small number of candidate variables identified by VSURF 
as being most important to explaining variations in the 
derivation set. VSRUF is described in more detail in tech-
nical online supplementary appendix and efigure 1 .

Multilevel modelling
In the test data set, we fit multilevel linear mixed models 
to test the association between variables identified in the 
VSURF step and the outcome of interest. The BMI model 
included all study participants. The SBP model included 
those with a diagnosis of hypertension. The LDL model 
included those with common diagnoses (hypertension, 
diabetes, coronary heart disease, cerebrovascular disease, 
congestive heart failure) where LDL lowering is most 
beneficial. The HbA1c models included those with a diag-
nosis of diabetes. The models used fixed effects to adjust 
for age, gender, race/ethnicity, education, insurance, 
number of clinic visits, language, clinic connectedness, 
comorbidity and census tract level median household 
income, poverty rates, ‘food desert’ status, unemploy-
ment, numbers living in group quarters, vehicle access 
and segregation. To account for clustering within prac-
tices, we included a practice-level random effects term. 
To account for area-level clustering, we used a ZIP-level 
random effects term. These were fit as crossed effects 
models (ie, we did not nest practices within ZIP codes) to 
allow for the fact that patients are often seen in practices 
outside of their ZIP code of residence.

Falsification tests
To reduce the possibility that observed associations due 
to other unmeasured characteristics of the area, rather 
than the specific area resource tested, we also conducted 
falsification analyses. To do this, we used the same model-
ling approach as above, but tested for the association 
between area afterschool resources for children and 
the outcome of interest. Our reasoning was that, since 
there was unlikely to be any direct effect of afterschool 
resources for children on adult BMI, any observed asso-
ciation would reflect unmeasured area characteristics not 
appropriately adjusted for in our model (such as high 
levels of civic engagement or community organisation, or 
other beneficial resources).

Variations in clinical management
To help explore whether variations in the intensity of 
clinical management could explain whether commu-
nity resources were associated with health outcomes, we 
also used the above modelling approach to test whether 
area resources were associated with SBP in those without 
a diagnosis of hypertension. The primary care network 
in the study has a quality improvement programme that 
emphasises the importance of SBP, LDL and HbA1c 
control in appropriate clinical populations. Since BMI 
(in any population) and SBP control in those without 
a diagnosis of hypertension are not included in these 
programmes, we reasoned that area resources may be 
more important when clinicians are not intensively 
attempting to impact an outcome. We focused on BMI 
and SBP among those without hypertension for this 
because BMI and SBP are routinely measured at all prac-
tice visits for all patients.

Because of its mechanistically plausible relationship 
with BMI, we used the association between ZIP-level 
food resources and BMI as the primary outcome, with 
secondary analyses being the associations between other 
VSURF selected area resources and clinical outcomes.

Robustness checks
In addition to the main analyses, we conducted a series 
of robustness checks that examined whether different 
specifications of resources in the area (eg, resources 
per capita or resources per capita living in poverty) or 
different functional forms (eg, including polynomial 
terms or using splines) would alter the observed asso-
ciations between area-level resources and outcomes. 
We also conducted analyses restricted to those with 
indicators of lower SES (high school diploma or lower 
educational attainment, living in a ZIP where >15% of 
individuals are in poverty) to ensure the results were 
applicable to those most likely to use the resources 
studied.

A p value of <0.05 was taken to indicate statistical signifi-
cance. Analyses were conducted in SAS V.9.4 (Cary, North 
Carolina, USA), Stata 14 (College Station, Texas, USA) 
and R V.3.3.4 (Vienna, Austria).

https://dx.doi.org/10.1136/bmjopen-2018-025281
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results
Overall, 123 355 participants were included in the study. 
All participants were eligible for BMI analyses. Based on 
inclusion criteria, 43 509 were included in the hyperten-
sion analyses, 46 940 were included in the LDL analyses 
and 13 127 were included in the diabetes analyses. Demo-
graphic characteristics of the overall sample are presented 
in table 1. Demographic characteristics of the samples 
used in the hypertension, LDL cholesterol and diabetes 
analyses are presented in online supplementary eTables 
1–3. Overall, the mean age was 52.4 (SD 16.9) years, the 
sample was 41.5% men, 82.1% non-Hispanic white, 5.8% 
non-Hispanic black and 6.5% Hispanic. The median 
number of years participants followed in our network was 
9 (IQR 3, 10), and the median number change of address 
per year followed was 0.1 (IQR 0.1, 0.25), suggesting 
that participants resided at their current address for the 
majority of their time in our network.

In general, individuals living in areas with more 
resources had lower educational attainment and higher 
rates of Medicaid insurance coverage (online supplemen-
tary eTable 4). Maps depicting the distribution of the 
resources are presented in figure 1 and online supple-
mentary eFigures 2–3.

The mean BMI in the sample was 27.8 (SD 6.2) kg/m2. 
In the hypertension analyses, the mean BP was 131.6 (SD 
15.8) mm Hg. In the LDL analyses, the mean LDL was 
102.9 (SD 39.8) mg/dL, and in the diabetes analyses the 
mean HbA1c was 7.1 (SD 1.5)%.

Among geographic levels assessed, all resources 
selected were at the ZIP level (table 2). For the BMI anal-
yses, the selected resources were ZIP-level food resources, 
ZIP-level employment resources and ZIP-level nutri-
tion resources. For hypertension analyses, the selected 
resources were ZIP housing and ZIP nutrition resources. 
For LDL analyses, the only selected resource was ZIP 
nutrition resources. For diabetes analyses, the selected 
resources were ZIP mental health and ZIP substance use 
resources.

For the BMI analyses, we tested the association 
between selected resources and BMI, adjusting for the 
factors described in the statistical analysis section, and 
accounting for clustering at the clinic and ZIP level 
with multilevel linear mixed models. We found that 
resources associated with lower BMI included more 
food resources (−0.08 kg/m2 per additional resource, 
95% CI −0.13 to −0.03 kg/m2, p=0.001), employment 
resources (−0.05 kg/m2, 95% CI −0.11 to −0.002 kg/
m2, p=0.04) and nutrition resources (−0.07 kg/m2, 
95% CI −0.13 to −0.01 kg/m2, p=0.02) (full models for 
these and all robustness checks in online supplemen-
tary eappendix table 5-16). Table 3 compares mean 
BMI and obesity prevalence at selected numbers of 
resources, adjusted for the other factors in the model. 
For example, the mean BMI in neighbourhoods with 
the median (0) number of food resources was 27.8 kg/
m2, while the mean BMI in neighbourhoods in the 
75th percentile (three resources) was 27.5 kg/m2 and 

the 90th percentile (eight resources) was 27.1 kg/m2. 
Falsification tests found the expected lack of association 
between afterschool resources and BMI (p=0.67).

Table 1 Demographics of study sample

n=123 355

Mean (SD) or n (%)

Age 52.42 (16.89)

Male 51 665 (41.9)

Race/ethnicity

  Asian/Multi/Other 6880 (5.6)

  Non-Hispanic black 7203 (5.8)

  Hispanic 8039 (6.5)

  Non-Hispanic white 101 233 (82.1)

Education

  College or > 56 302 (45.6)

  High school diploma 36 572 (29.6)

  Less than high school diploma 18 051 (14.6)

  Unknown/Declined 12 430 (10.1)

Insurance

  Private 75 787 (61.4)

  Medicare and Medicaid 8602 (7.0)

  Medicaid 20 934 (17.0)

  Medicare 17 911 (14.5)

  Self-pay 121 (0.1)

English is primary anguage 112 720 (91.4)

History of hypertension 43 509 (35.3)

History of coronary heart disease 9275 (7.5)

History of diabetes mellitus 13 127 (10.6)

History of depression 10 300 (8.3)

History of osteoarthritis 23 707 (19.2)

Charlson comorbidity score 1.72 (2.23)

Clinic visits 6.57 (5.77)

Clinic connectedness

  Connected to specific physician 80 345 (65.1)

  Connected to specific practice 34 018 (27.6)

  Other 8992 (7.3)

Lives in urban area 91 095 (96.4)

ZIP-level unemployment rate, % 4.71 (1.60)

ZIP-level median household Income, 
$

82 309.16 (31758.79)

ZIP-level poverty rate, % 8.70 (6.72)

ZIP-level segregation* 69.51 (21.05)

Body mass index, kg/m2 27.84 (6.24)

Systolic blood pressure, mm Hg 124.36 (14.96)

LDL cholesterol, mg/dL 110.83 (39.95)

Haemoglobin A1c, % 5.94 (1.22)

*Segregation index is a dissimilarity measure of the extent to 
which groups other than non-Hispanic whites are distributed like 
non-Hispanic whites. 0 represents complete integration and 100 
represents complete segregation.
LDL, low-density lipoprotein.

https://dx.doi.org/10.1136/bmjopen-2018-025281
https://dx.doi.org/10.1136/bmjopen-2018-025281
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https://dx.doi.org/10.1136/bmjopen-2018-025281
https://dx.doi.org/10.1136/bmjopen-2018-025281
https://dx.doi.org/10.1136/bmjopen-2018-025281
https://dx.doi.org/10.1136/bmjopen-2018-025281
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Robustness checks found that our results did not 
vary substantially with other specifications of area-level 
resources (online supplementary eTables 5–7).

In the hypertension analyses, neither housing 
resources (−0.05 mm Hg per additional resource, 
95% CI −0.16 to 0.06 mm Hg, p=0.41) nor nutrition 
resources (0.01 mm Hg, 95% CI −0.13 to 0.16 mm Hg, 
p=0.87) were associated with SBP after adjustment for 
individual-level and area-level characteristics. In LDL 
analyses, nutrition resources (0.10 mg/dL per addi-
tional resource, 95% CI −0.36 to 0.55 mg/dL, p=0.67) 
were not associated with LDL cholesterol in adjusted 
models. In diabetes analyses, neither substance abuse 
resources (−0.003% per additional resource, 95% CI 

−0.03% to 0.02%, p=0.86) nor mental health resources 
were associated with HbA1c (−0.003%, 95% CI −0.03% 
to 0.02%, p=0.76).

In analyses looking at SBP among those without a 
diagnosis of hypertension (ie, those with no reason for 
clinical management of blood pressure), food resources 
were associated with lower SBP in linear mixed models 
adjusted for the same factors as above (−0.08 mm Hg 
per additional resource, 95% CI −0.15 to −0.01 mm Hg, 
p=0.03). Mean SBP was approximately 1 mm Hg lower 
at the 95th percentile (118.9 mm Hg) of food resources 
compared with the 50th percentile (119.8 mm Hg).

Full models for all analyses are presented in online 
supplementary eTables 8–16.

Figure 1 Food resource density by ZIP.

Table 2 Distribution of the number of resources in the selected resource categories

Resource* Minimum
25th 
percentile

50th 
percentile

75th 
percentile

90th 
percentile

95th 
percentile Maximum

BMI Analyses

Food 0 0 0 3 8 11 27

Employment 0 0 0 4 13 18 33

Nutrition 0 0 0 3 6 12 21

Hypertension analyses

Housing 0 0 0 2 8 8 23

Nutrition 0 0 0 3 6 12 21

LDL analyses

Nutrition 0 0 0 3 6 12 21

Diabetes analyses

Mental health 0 0 0 2 5 6 21

Substance use 
resources

0 0 1 2 5 6 23

*All resources assessed at ZIP level; table represents counts of each resource type.
BMI, body mass index; LDL, low-density lipoprotein.

https://dx.doi.org/10.1136/bmjopen-2018-025281
https://dx.doi.org/10.1136/bmjopen-2018-025281
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DisCussiOn
This study assessed the relationship among area 
resources and cardiometabolic risk factors. We found 
that increasing numbers of food, employment and nutri-
tion resources was associated with lower BMI and lower 
SBP among those without hypertension. The magnitude 
of the difference was meaningful at the population level, 
as the 0.7 kg/m2 difference in BMI between individuals in 
a well-resourced versus poorly resourced ZIP is similar to 
the 0.6 increase kg/m2 in BMI in the overall US popula-
tion from 2006 to 2016.26

Conversely, we found that area resources were not 
associated with SBP among those with hypertension, 
LDL cholesterol among those with an indication for 
LDL lowering or haemoglobin A1c among those with 
diabetes. This suggests that the relationship between area 
resources and cardiometabolic risk factors may vary based 
on whether these factors are targets of intensive clinical 
management.

This study enhances our knowledge regarding the 
association of area-level factors and cardiometabolic risk 
factors. Prior studies have consistently found that adverse 
area-level factors, such as poverty, are associated with 
increased cardiometabolic risk, even when adjusting for 
individual-level factors, such as income.2 27–29 However, we 

did not know whether the presence of area resources that 
might plausibly support health, such as food and nutri-
tion resources, would be associated with lower cardiomet-
abolic risk.

The positive and negative associations between commu-
nity resources and cardiometabolic risk factors may have 
important public health implications. The association 
between increased area resources and lower BMI suggests 
that efforts to help link patients to community resources, 
and to help improve the resources landscape within 
communities, may be a successful strategy for improving 
population health, particularly for risk factors such as BMI 
where clinical management may not be prioritised.13 14 30 
This is reinforced by the finding that SBP, among those 
without hypertension, is lower in those living in areas with 
more resources. Since SBP does not come under clinical 
management for those without hypertension, this finding 
supports the potential for area resources to impact popu-
lation health, and is consistent with guidelines that recom-
mend lifestyle, rather than pharmacological, approaches 
to prehypertension treatment.31 Future work in this area 
should investigate whether interventions that link individ-
uals to area resources show clinical benefits.

Our finding should be interpreted in light of several 
limitations. We did not have access to data regarding use 
of the resources. This means that we do not know whether 
individuals made use of the resources in their community. 
In light of this, the association between ZIP-level resources 
and outcomes could be viewed analogously to an ‘encour-
agement design’ intervention. This means that the asso-
ciation estimated in this study is likely different than the 
association that would be estimated if analysing those who 
were known to use the resource. That association is clearly 
of policy interest, and should be examined in future 
work. While we adjusted for several individual-level and 
area-level SES indicators in order to capture the multidi-
mensional nature of SES and, thus, reduce confounding, 
it is possible that residual confounding, owing to unmea-
sured characteristics, exists, which would tend to reduce 
the observed associations between area resources and 
outcomes. Additional unmeasured covariates that could 
affect the observed associations include local culture, and 
the quality of the resources available. Devising method-
ology to determine the quality of the services provided 
to help meet health-related social needs is pressing, and 
will be an important direction for future investigation. 
Next, our study was cross-sectional, and thus we cannot 
establish time ordering between the exposure and the 
cardiometabolic outcomes. However, we think it is less 
likely that lower BMI would drive individuals into areas 
with more resources than vice versa, as areas with higher 
resources tended to have other adverse features, such as 
lower income and higher poverty, which are likely more 
salient considerations for those choosing where to live. 
Finally, because of the relatively high residential stability 
within this primary care population, we only examined 
the association between current area of residence and 
the study outcomes. However, for those who do move, 

Table 3 Estimated BMI, in kg/m2, by resource level

ZIP-level food resources

  50th percentile 27.78

  75th percentile 27.53

  90th percentile 27.11

  95th percentile 26.85

ZIP-level employment resources

  50th percentile 27.78

  75th percentile 27.56

  90th percentile 27.07

  95th percentile 26.80

ZIP-level nutrition resources

  50th percentile 27.75

  75th percentile 27.54

  90th percentile 27.32

  95th percentile 26.89

Estimates created using least-squares means from fitted multilevel 
models. The models used fixed effects to adjust for age, gender, 
race/ethnicity, education, insurance, number of clinic visits, 
language, clinic connectedness, comorbidity and census tract level 
median household income, poverty rates, ‘food desert’ status, 
unemployment, numbers living in group quarters, vehicle access 
and segregation. To account for clustering within practices, we 
included a practice-level random effects term. To account for area-
level clustering, we used a ZIP-level random effects term. These 
were fit as crossed effects models (ie, we did not nest practices 
within ZIP codes) to allow for the fact that patients are often seen 
in practices outside of their ZIP code of residence.
BMI, body mass index.
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this could lead to misclassification, which would tend to 
bias results to the null. These limitations are balanced by 
several strengths. We had access to a detailed mapping of 
area resources, along with detailed individual-level health 
information. Further, in addition to the multilevel frame-
work we used, the use of falsification tests demonstrated 
that unadjusted area-level factors are not likely to explain 
the observed results.

In summary, ZIP-level food, employment and nutrition 
resources were associated with BMI differences that were 
clinically meaningfully and statistically significant. Further, 
the association between area resources and cardiometa-
bolic risk factors differed based on the specific risk factor. 
Investing in area resources and linkage programmes may 
be an important way to help reduce cardiometabolic risk 
for vulnerable individuals, especially for situations not 
under intensive clinical management.
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