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Innate lymphoid cells: More
than just immune cells
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Since their discovery, innate lymphoid cells (ILCs) have been described as the

innate counterpart of the T cells. Indeed, ILCs and T cells share many features

including their common progenitors, transcriptional regulation, and effector

cytokine secretion. Several studies have shown complementary and redundant

roles for ILCs and T cells, leaving open questions regarding why these cells

would have been evolutionarily conserved. It has become apparent in the last

decade that ILCs, and rare immune cells more generally, that reside in non-

lymphoid tissue have non-canonical functions for immune cells that contribute

to tissue homeostasis and function. Viewed through this lens, ILCs would not

be just the innate counterpart of T cells, but instead act as a link between

sensory cells that monitor any changes in the environment that are not

necessarily pathogenic and instruct effector cells that act to maintain body

homeostasis. As these non-canonical functions of immune cells are operating

in absence of pathogenic signals, it opens great avenues of research for

immunologists that they now need to identify the physiological cues that

regulate these cells and how the process confers a finer level of control and

a greater flexibility that enables the organism to adapt to changing

environmental conditions. In the review, we highlight how ILCs participate in

the physiologic function of the tissue in which they reside and how

physiological cues, in particular neural inputs control their homeostatic activity.
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Introduction

Non-cytotoxic ILCs were discovered in early 2010’s and have been considered as

innate counterpart of T lymphocytes, constituting an early source of cytokines during

infection while the adaptive response can be mounted and eradicate the pathogens.

However, ILCs possess singular features that make them stand out of the immune

landscape. Firstly, they are relatively rare in lymphoid tissues and in the circulation but

reside in non-lymphoid organs and particularly in mucosal surfaces (1). Secondly, ILCs

can develop in absence of recombination-activating genes, Rag-1 and Rag-2, and
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therefore do not express the antigen receptors characteristic of T

and B lymphocytes. They are recognized as part of innate

immunity but are not devoid of memory responses (2–5).

Finally, while other innate immune cells rely on pattern-

recognition receptors (PRRs) to initiate their activation, the

role of PRR such as Toll-like receptors (TLR) in ILCs remains

unclear (6, 7). ILCs are equipped with a plethora of receptors

that can sense host-derived signals such as dietary metabolites,

microbial products, hormones, neuropeptides, and cytokines.

Although, ILCs are involved in the immune protection against

pathogens and noxious stimuli, accumulating evidence also

shows that the constitutive activities of ILCs contribute to

maintaining homeostasis of organs where they reside.

The homeostatic processes that maintain the physiological

functions of each tissue involves three main components, a

sensor, a control center, and an effector. The sensors detect

information from the changing environment, the control center

processes the information and transmit appropriate responses to

the effector. In this hierarchy, ILCs function within the control

center to modulate the activity of effector cells by integrating

host-derived signals. In contrast to pathogenic cues that will

skew the immune responses depending on the pathogens, these

physiologic modulators balance the type 1, 2 and 3 response

depending on the tissue. A lot of work has been done to elucidate

the wide range of mediators that ILCs can sense and produce;

however, the extent of the regulatory network in which ILCs are

involved remains underappreciated. ILCs can secrete not only

cytokines but also hormones, neurotransmitters, or growth

factors. In turn, ILCs are also equipped to sense these

mediators and can therefore create a bidirectional

communication with other sensory and effector cells in the

environment. Probably the most dynamic and reciprocal

communication is the neural immune interactions that have

been described in mucosal tissues. The nervous and immune

system share so many functional and molecular properties that it

is tempting to consider the neuroimmune system as whole.

Indeed, they are both widespread throughout the organism,

composed of a large diversity of cells, and rely on an intense

network of communication. Immunologists are now

appreciating that both systems share similar messengers as

neurons can sense and secrete cytokines such as IL1-b (8), IL-

6 (9), TNF-a (10), or TGF-b (11) which can modulate cognitive

functions (12). Sensory and effector capacity of both systems is

critical to monitor environmental changes and instruct

adequate responses.

In this review, we highlight how ILCs participate in the tissue

functions and integrate nonpathogenic signals to maintain

homeostasis. The latest studies on the homeostatic functions

of ILCs contribute to the understanding of their evolutionary

conservation. If early studies have shown functional redundancy

between ILCs and adaptive lymphocytes during pathogen

infection, it becomes apparent that their uniqueness shines in

physiology. The organism uses ILCs to modulate type 1, 2 and 3
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responses in sterile condition to adapt tissue physiology to non-

pathogenic perturbation of the homeostasis, such as fasting, cold

exposure or chronic stress. These perturbations require types of

responses that cannot be driven by antigen-specific T cells.

This concept could represent an important step in our

understanding of how sterile inflammation can emerge and

ultimately lead to chronic inflammation and disease.
The innate lymphoid cell family

ILCs have been divided into five subsets. Group 1 ILCs

(ILC1s) include two subsets of T-bet expressing ILCs composed

of NK cells and type 1 ILCs. They participate to type 1 immune

responses by producing IFN-g. NK cells are considered as

cytotoxic ILCs and circulate in the blood or lymphatic system

to wipe out tumor cells or viral invaders, with the aid of different

surface activating or inhibitory receptors and potent

cytotoxicity. In contrast, ILC1s are resident in tissues like liver,

adipose tissues, intestines, and salivary gland and can be

activated by soluble cytokines such as IL-15, IL-12, and IL-18.

ILC1s exert rapid and first-line responses to protect host from

the infection of viruses and intracellular bacteria at the initial site

of invasion through producing effector cytokines (13).

Group 2 ILCs (ILC2s) are characterized by the expression of

GATA-binding protein 3 (GATA3) and are resident in mucosal

tissues such as the lungs, gastrointestinal tract, tonsil, and skin

(14). They are early effectors in type 2 immune responses,

releasing cytokines like IL-5, IL-13, IL-4, and epidermal

growth factor family member amphiregulin to fight against

helminths and regulate tissue repair (14).

Group 3 ILCs (ILC3s) are defined by RORgt expression,

similar to Th17 cells. Based on surface markers, ILC3s are

divided into NKp46+ ILC3 and NKp46– ILC3 and produce

effector cytokines including IL-22, IL-17, GM-CSF, IFN-g,
TNF-a as well as growth factor HB-EGF (heparin-binding

epidermal growth factor–like growth factor) (15, 16). ILC3s

are abundant at intestinal mucosa, skin, lungs, and mesenteric

lymph nodes, generating rapid immune responses against

extracellular microbes and regulating tissue homeostasis (17).

The final ILC subset is the lymphoid tissue-inducer cells that are

also dependent on RORgt and are derived from a fetal liver

progenitor. They are critical to orchestrate secondary lymphoid

organogenesis during embryogenesis (18, 19).
Metabolic and thermal homeostasis:
Adipose tissue

Adipose tissues, composed of white adipose tissue (WAT),

beige adipose tissue, and brown adipose tissue, serve as an

energy reservoir and mediate energy expenditure by regulating
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lipolysis, insulin sensitivity and thermogenesis. Adipose tissue

ILCs, especially ILC1 and ILC2, have emerged as key immune

cells in both physiological and obese conditions.

The metabolic homeostasis and insulin sensitivity depend on

the balance between type 1 and type 2 immune response. During

metabolic disorder and insulin resistance, the type 1

inflammation is increased with the expansion of inflammatory

macrophages (M1) while type 2 and anti-inflammatory

macrophages (M2) are inhibited. M2 macrophages are

essential to support the anti-inflammatory microenvironment

in the adipose tissue and maintain metabolic fitness. ILC1 and

NK cells which promote type 1 inflammation are reported to

induce local inflammation of adipose tissues during obesity (20).

At steady state, adipose NK cells and ILC1 show a natural

cytotoxicity against adipose macrophages which limit their

expansion. Upon high-fat diet (HFD) feeding, the cytotoxicity

of NK cells and ILC1 is reduced which contributes to the

accumulation of M1 macrophages (21). HFD also induces the

production of IL-12 which stimulates the proliferation and the

activation of NK cells and ILC1 in adipose tissue (20) (Figure 1).

NK cells and ILC1 from HFD mice produce IFN-g which

promotes M1 macrophage polarization and leads to insulin

resistance (20). The proportion of IFN-g+ NK cells and ILC1 is

increased in omental adipose of obese individuals and is even
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higher in obese patients developing type 2 diabetes. Adipose

IFN-g+ NK cells correlate with elevated blood glucose levels,

while adipose tissue ILC1s are positively associated with body

mass index and insulin resistance (22, 23). Insulin resistance and

diabetes are directly linked to tissue fibrosis that is induced by

M1 macrophages in response to transforming growth factor b-1
(TGF-b1) signaling (22). ILC1 from obese and obese diabetic

patients produce higher IFN-g and induce the expression of

fibrosis-related genes in macrophages (23). Interestingly, mice

under HFD show increased adipose fibrosis and more severe

glycemic intolerance after the transfer of adipose ILC1 from

previously HFD-fed mice compared to those that did not (23).

Therefore, ILC1s participate to metabolic fitness through the

constitutive cytotoxicity toward adipose macrophages and

control of the M1 and M2 balance. HFD disturbs ILC1

function, which skews adipose tissue towards a pathogenic

accumulation of pro-inflammatory macrophages and

promotion of tissue fibrosis (Figure 1).

A type 2 immune response is important in maintaining

homeostasis of lean adipose tissues and regulating

thermogenesis. ILC2s are central player in type 2 immunity as

a source of IL-5 that supports eosinophil expansion and survival,

which in turn induces alternative activated macrophages M2 (24,

25) (Figure 1). ILC2s also modulate non-immune compartments
FIGURE 1

ILCs in the adipose tissue. ILC1s and ILC2s regulate the balance between M1 and M2 macrophages in the adipose tissue. External stimuli such as
high-fat diet (HFD) or cold exposure modulate the activity of the ILC which impacts the M1/M2 ratio in the tissue. ILC1 promotes M1
macrophage polarization through the production of TNF-a and IFN-g, which increases not only lipid storage but also inflammation and adipose
fibrosis. ILC2s are activated by IL-33 and regulated by the sympathetic nervous system (SNS) in response to cold exposure. Consequently, IL-5
and IL-13 production by ILC2s is enhanced, which promotes eosinophil recruitment and M2 macrophage polarization, respectively. This type 2
response promotes the beiging of adipose tissues and thermogenesis.
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and contribute with eosinophil-derived IL-4, to support the

expansion and lineage commitment into beige adipocytes from

adipocyte precursors (26).

ILC2s also regulate core body temperature in response to

cold challenge by inducing adaptive thermogenesis through

beiging of white adipose tissue (24, 25). Beige adipose tissue is

critical for the healthy function of adipose tissues through the

droplet formation and fatty acid uptake and thermal heat (27).

IL-5 and MetEnk (Methionine-enkephalin) peptides

endogenously produced by ILC2 increase the expression of

thermogenic gene UCP1 (uncoupling protein-1) in beige

adipocytes and thermogenesis in WAT (24, 28). With aging,

thermogenesis becomes less efficient and recently Goldberg et al.

demonstrated that ILC2 were gradually lost with aging in the

adipose tissue (29, 30). Interestingly, the proportion of ILC2 was

retained in old mice when they were maintained on calorie-

restricted diet, consistent with several studies that observed that

ILC2s in WAT decline in obese human and mice (24, 31, 32).

The decline of ILC2s correlates with a loss of eosinophils in the

adipose tissue and an impaired thermogenic response after cold

challenge in aging mice that failed to induce UCP1. Adoptive

transfer of ILC2s from young adult mice protected old mice

from cold challenge indicating that aged ILC2s are intrinsically

defective (29). The roles of ILC2 in thermoregulation have also

been illustrated in the skin where the TRPM8+ neurons which

sense environmental cold stimuli, activate the skin ILC2s via IL-

18 signaling, resulting in upregulated expression of UCP1 in

dermal cells and increased thermogenesis (28).

Sympathetic nerves also control ILC2 function during

homeostasis and in response to stress. Cold exposure induces

the secretion of catecholamines (33), which can be sensed by

ILC2s which express b-adrenergic receptors (34). Chemical

sympathectomy by 6-hydroxydopamine (6-OHDA) leads to a

reduction of the ILC2s and eosinophils in the adipose tissue,

which is correlated with a significant decrease of UCP1 (35).

Sympathetic innervation also controls IL-5 and IL-13 expression

by ILC2s through the secretion of GDNF (glial-derived

neurotrophic factor) by mesenchymal stromal cells (36).

Disruption of the neuroimmune interaction led to increased

susceptibility to obesity and insulin resistance (36). These effects

of the SNS on the ILC2 function could also contribute to explain

the weight gain observed with the use of b-blockers.
The balance between the type 1 and 2 response is critical for

the metabolic homeostasis. The constitutive activity of the ILC2

has been shown to be pivotal. Understanding how the basal

activity of these cells is regulated by host derived mediators is

important to better appreciate the link between environmental

changes and their consequences on the ILC activity in the

adipose tissue. The study of the neuroimmune interactions in

the adipose tissue could also lead to several opportunities to

repurpose the wide array of neuromodulators currently used in

medical therapy for novel and previously unanticipated

indications to treat obesity and metabolic disorders.
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Tissue repair and regeneration:
The lungs

Regulation eosinophil migration

The anti-inflammatory properties of type 2 immune

responses observed in adipose tissue are also important for

maintaining lung homeostasis. At steady state, ILC2 is the

predominant subset resident in the lungs. ILC2s appear in the

lungs early from perinatal stage to rapidly expand after birth and

are located in collagen-rich areas near medium-sized blood

vessels (37, 38). ILC2s contribute to lung quiescence in

homeostasis by fostering macrophage polarization towards a

M2 phenotype as they are the unique source of IL-13 at steady

state in the lungs (39). First breathing in the alveolar space and

abrupt change in pressure rapidly increase IL-33 expression in

lungs, inducing the expansion of ILC2s and their production of

IL-13 promotes M2 polarization (39, 40) (Figure 2). ILC2s also

constitutively express IL-5 which has been shown to regulate the

eosinophils homeostasis (38) while the absence of ILC2 leads to a

drastic loss of circulating eosinophils (41).

The lungs are innervated with peripheral sensory neurons

which are derived from vagal and spinal sensory nerves. Most

sensory neurons express nociceptors, initiating reactions like

cough and bronchoconstriction after sensing different types of

airway stimuli. The vasoactive intestinal peptide (VIP) has been

shown to stimulate IL-5 production in pulmonary and intestinal

ILC2s (38). IL-5 secretion by lung and gut ILC2s shows a strong

circadian rhythm with a nadir during nighttime in rodents

correlating with their feeding behavior (42). Food intake

stimulates the secretion of VIP that is sensed by VIPR2 on

ILC2 which creates oscillating production of IL-5 which

synchronized the eosinophils numbers with metabolic cycling

(38). IL-5 in turn directly acts on nociceptors to trigger the

secretion of VIP which subsequently induces more IL-5

production via VIP-VIPR2 signaling pathway. The positive

neuro-immune loop amplifies type 2 inflammation mediated

by ILC2s (43). The homeostatic role of eosinophils is unclear,

however recent studies have report new physiological functions

for these cells in metabolic control and lipid absorption (44, 45),

control of inflammation (46, 47) and gut motility (45). It is

therefore important to understand how ILCs integrate

environmental cues to modulate the eosinophils functions at

steady state.
Neural protection of tissue injury

To maintain the tissue homeostasis, it is critical to control

inflammation and promote tissue repair. The failure to initiate

tissue regeneration results in chronic inflammation and fibrosis.

In addition to critical type 2 effector functions, ILC2s play
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important roles in direct and indirect promotion of wound

healing and tissue repair. During type 2 inflammation like

Nippostrongylus brasiliensis (helminth) infection or asthma,

ILC2s co-express IL-5 and IL-13, inducing stroma production

of eotaxin (chemokine) and eosinophil accumulation (38, 48).

Neural interactions with ILC2 in the tissue have been identified

to inhibit ILC2 inflammatory functions and protect from tissue

damage. The lungs are innervated with both parasympathetic

and sympathetic nervous systems which play essential roles in

regulating respiratory functions and pulmonary homeostasis.
Parasympathetic and sympathetic
nervous systems

The parasympathetic nervous system (PNS) delivers

cho l inerg ic contrac t i l e innerva t ion and media tes
Frontiers in Immunology 05
bronchoconstriction in the lung through the secretion of

acetylcholine (ACh). ACh induces the cholinergic signals in

target cells via two types of receptors, the nicotinic ACh

receptors (nAChRs) and the muscarinic ACh receptors

(mAChRs). ILC3s are an additional source of acetylcholine in

allergic airway inflammation (49). Lung ILC2s constitutively

express a7nAChR which can be upregulated by IL-25 or IL-33

(50). Stimulation of the a7nAChR with a specific agonist

attenuates GATA3 expression, proliferation and the

production of IL-5 and IL-13 by ILC2s. Therefore, the

engagement of a7nAChR inhibits airway inflammation

induced by IL-33 or Alternaria Alternata infection and

restores lung functions (51). Genetic deletion of Chrna7 which

encodes a7nAChR increases the number of ILC2s in the lung

and worsens allergic reactions, suggesting an inhibitory effect of

ACh-a7nAChR signaling on ILC2 responses (52). Cholinergic

regulation of ILC2 is bidirectional as ILC2s express choline
FIGURE 2

ILC2 in the in lungs. ILC2 activity is rapidly induced by the first breath which promotes IL-33 secretion in the lungs. IL-33 acts on ILC2s to
induce their production of both IL-5 and IL-13 that regulate the homeostasis of eosinophils and M2 macrophages. IL-33 also promotes ILC2
activity through the secretion of calcitonin gene‐related peptide (CGRP) produced by pulmonary neuroendocrine cells (PNECs). IL-5 derived
from ILC2s, which are stimulated by VIP, further promotes vasoactive intestinal peptide (VIP) production by pulmonary c-fibers, creating a
positive feedback loop. The parasympathetic nervous system (PNS) and SNS mainly act as negative feedback loop in response to inflammatory
signals and prevent tissue damage.
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acetyltransferase (ChAT) and can therefore produce ACh. While

some ILC2s constitutively produce ACh, it is strongly

upregulated during parasitic infection and allergic reaction (53,

54). Specific deletion of ChAT in ILC2s limits their proliferation

and capacity to produce IL-5 and IL-13, leading to impaired

immunity against Nippostrongylus brasiliensis infection.

Interestingly, the expression of ChAT is maintained over three

weeks after helminth eradication, suggesting that this sustained

expression could mediate the tissue repair function of ILC2 (54).

The apparent opposite effect of ACh on the ILC2 function could

be attributed to the different receptors that they express. ILC2

express both muscarinic and nicotinic receptors, but their

expression is modulated by inflammatory signals such as IL-25

or IL-33. Hence, depending on the receptor engaged, it is

possible that the cholinergic signaling fosters the pro-

inflammatory functions of the ILC2 early in the infection but

has negative regulation during the resolution phase.

The sympathetic nervous system (SNS) innervating the

lungs which stimulates bronchodilation and mucus production

also appears to negatively modulate ILC2 during inflammation

and prevent tissue damage. Human and murine lung ILC2s

express high levels of b2AR. ILC2s lacking b2AR excessively

proliferate and produce type 2 cytokines in the lungs following

helminth infection, suggesting a regulatory role of sympathetic

pathway in type 2 inflammation (34).
CGRP (calcitonin gene‐related peptide)

Most of the afferent nerve fibers innervating the respiratory

tract are thin unmyelinated fibers, called C-fibers (55), that are

quiescent in healthy lungs but can be activated by inflammation.

These sensory fibers express nociceptors transient receptor

potential (TRP) channels TRPV1 and prostaglandin E2

receptor (56) which results in increased secretion of

neuropeptides like VIP, substance P and calcitonin gene-

related peptide (CGRP). Activation of bronchopulmonary C-

fibers with capsaicin, a selective TRPV1 agonist, increases

allergic airway inflammation, while nociceptor silencing

reduces inflammation (43). A bidirectional communication has

been described between these nociceptors and ILC2. In response

to inflammation, IL-5 secreted by ILC2 directly activates

pulmonary C-fibers that will produce VIP. VIP increases ILC2

activation and induces Th2 recruitment, leading to excessive

lung inflammation (43).

Pulmonary C-fibers and pulmonary neuroendocrine cells

(PNECs) express CGRP which also regulates ILC2s in the lungs.

Under steady condition, lung ILC2s express CGRP receptor

subunits Ramp1 and Calcrl, and nearly 20% of pulmonary

ST2+ILC2s can produce CGRP (57, 58). Therefore, CGRP can

regulate ILC2 activity in a paracrine or autocrine manner. ILC2s

are found near PNEC in airway branch points (59). As a key

second messenger of CGRP, cyclic AMP mediates the effects of
Frontiers in Immunology 06
CGRP on IL-33-activated ILC2. Cell-permeable dibutyryl-cAMP

stimulation similarly inhibited ILC2 proliferation and enhanced

IL-5 production induced by IL-33 (57, 58, 60). Upon

inflammation, PNECs secrete CGRP which stimulates IL-5

production by ILC2s. Conversely, deletion of the CGRP

receptor on ILC2s reduces the type 2 immune responses to

allergens (59). Interestingly, incubation of ILC2 with CGRP in

vitro could rapidly promote their expression of IL-5 and

amphiregulin within 6 hours. However, after 3 days of culture

in presence of IL-33, the production of IL-5 and IL-13 are

inhibited while there is still increased amphiregulin (57). In this

study, CGRP inhibits eosinophilia and hypersensitivity through

suppressing ILC2 proliferation and secretion of IL-5 and IL-13

following in vivo administration of IL-33 (57). This indicates

that CGRP, as was the case for ACh, can have different

modulatory effects depending on the time and activation status

of ILC2s. It is also possible that neuropeptides target different

ILC2 subsets depending on their expression of neuroreceptors.

Indeed, inflammatory ILC2s that are found in the lung and

intestine characterized by their high expression of KLRG1 (61)

are less responsive to CGRP than lung resident natural (ST2+)

ILC2 (57).
Exchange with environment and
maintenance of barrier integrity:
The intestine

As one of the largest barriers confronting the external

environment, the gut is exposed to a diverse and symbiotic

microbiome, different microbial pathogens, and diets, and is also

home to host immune cells, hormones, and neuronal complexes

(62). From lumen to mesentery, the intestine is structurally

composed of epithelium, lamina propria, submucosa,

muscularis, and serosa. In homeostatic conditions, intestinal

immune cells respond to non-pathogenic stimuli including

metabolites, microbial peptides, hormones, and neuropeptides.

These molecules regulate the activity of immune cells which in

turn modulate neurons and epithelial cells to maintain intestinal

function and barrier integrity.

Gut epithelium mainly contains T cells, while different types

of immune cells involving macrophages, dendritic cells, ILCs,

granulocytes, T cells, and B cells dwell in the lamina propria (63).

Of these immune cells, resident ILCs appear to act as a central

sensor integrating various signals to sustain mucosal

homeostasis (64, 65).
Intestinal ILCs

ILC3s reside in small intestine and colon lamina propria and

are the main constitutive source of IL-22 (66). IL-1b and IL-23
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from myeloid cells activate ILC3s which increase their secretion

of IL-22, IL-17, and GM-CSF (67). IL-22 is a critical modulator

for intestinal mucosa through binding to IL-22 receptors on

intestinal epithelial cells (68). At steady state, IL-22 limits

commensal bacteria from entry into the gut by eliciting the

synthesis of antimicrobial peptides (AMPs) involving RegIIIb,
RegIIIg, S100A, and S100B (69–71) (Figure 3). IL-22 also

promotes epithelial expression of fucosyltransferase 2 (Fut2)

and fucosylation, which contributes to the resistance and

tolerance to pathogenic bacteria (72, 73). Fut2+ Paneth cells

also contribute to antimicrobial defenses by secreting a-defensin
from granules (74). N-glycosylation mediated by IL-22

encourages the expansion of commensal bacteria that compete

with Clostridioides difficile for the dietary niche (75). During

pathogen infection, IL-22 also drives physical expulsion of

helminths by driving mucin production and goblet cell

hyperplasia or bacteria by increasing claudin-2-mediated tight
Frontiers in Immunology 07
junction permeability and consequent diarrhea (76–78).

However, uncontrolled IL-22 production by ILC3 can be

deleterious for the host, contributing to dysbiosis and

promoting pathogen expansion (79). Indeed, Salmonella

Typhimurium exploits ILC3 to produce IL-22 to cause host

dysbiosis, thus facilitating its colonization through competition

with the gut commensal microbiota (80). To restrain bacteria

growth, ILC3 number is limited by pyroprosis which reduces the

IL-22 levels, representing a potential host defense mechanism

(80). ILC3s not only regulate gut microbial homeostasis through

epithelial cells but also present antigens to induce Rorgt+ Treg

cell differentiation, and produce IL-2 to support their

maintenance in the gastrointestinal tract, thus contributing to

the maintenance of specific tolerance against the microbiota

(81–83).

In addition to keeping microbiota symbiosis, ILC3 also

contributes to the maintenance of intestinal barrier integrity
FIGURE 3

Neuro-ILCs interaction in intestinal tract and peritoneal tissue. Intense communications between ILCs and nerves have been described in the
gut. Constitutive expression of IL-25 by Tuft cells regulates ILC2 numbers and IL-13 expression. IL-13 in turn fosters Tuft cell differentiation and
induces mucus production by goblet cells. Activation of ILC2s by IL-25 is inhibited by CGRP produced by ChAT+ enteric neurons. These
neurons can also express NMU which activates ILC2s during inflammation. ILC3s are the main producers of IL-22 at steady state which
regulates the anti-microbial production by Paneth cells and the proliferation of intestinal stem cells. Heparin-binding epidermal growth factor–
like growth factor (HB-EGF) produced by ILC3 protects intestinal epithelial cells from TNF-induced cell death. IL-22 production is enhanced by
enteric nervous system (ENS)-derived VIP in response to cholecystokinin (CCK) secreted by enteroendocrine cells that are activated by food
intake. ILC3s also respond to glial-derived neurotrophic factor (GDNF) produced by enteric glial cells. Peritoneal ILC3s are regulated by the PNS
through the neurotransmitter acetylcholine (ACh). Specifically, ACh promotes the production of protectin conjugates in tissue regeneration 1
(PCTR1) by peritoneal ILC3s, enhancing tissue resolution after inflammation.
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and promote tissue repair. IL-22 activates and preserves the

proliferation of Lgr5+intestinal stem cells (ISCs) after tissue

damage to sustain epithelial regeneration (84, 85). HB-EGF,

predominantly secreted by ILC3, protects intestinal epithelial

cells from TNF-induced cell deaths and experimental colitis

(86). Contradictory findings suggest that IL-22 has either pro- or

anti- carcinogenic effects during epithelial regeneration. Effective

DNA damage recovery following genotoxic stress can be

initiated by IL-22, whereas this cytokine potentially promotes

tumor development during epithelial recovery stage (87, 88).

After tissue injury, ILC3s can also directly sense cellular damage

resulted from neutrophi l apoptosis which releases

lysophosphatidylserine. This danger signal activates GPR34

and triggers IL-22 production by ILC3 (89). Deletion of Gpr34

expression in ILC3s impair IL-22 production and tissue repair

after gut and skin injury (89).

ILC2s also participate to intestinal homeostasis through the

constitutive expression of IL-5 and IL-13. Approximatively 20%

of the ILC2s express IL-13 at steady state, and this expression is

driven by Tuft cell derived IL-25. The homeostatic role of IL-13

in the gut is unclear, however, it has been shown to control the

balance between the type 2 and type 3 immune responses in the

skin (90). In absence of IL-25, the number of ILC2s and Tuft

cells is reduced, suggesting a reciprocal dependency between

these cells at steady state. The Tuft cell-ILC2 circuit can be

activated by microbial metabolites. Tuft cells sense succinate

synthesized from fermentation of dietary fibers by pathobiont

Tritrichomonas through its receptor GPR91, thus inducing IL-25

secretion (91). Upon N. brasiliensis infection, this feed-forward

loop is amplified as IL-13 principally produced by ILC2s during

anti-helminth response in turn promotes Tuft cell and goblet cell

hyperplasia (92). The “weep-and sweep” effects follow with

goblet cell hyperplasia, leading to helminth elimination by

massive mucus (weep) production and smooth muscle

contraction (sweep) (93). ILC2s also contribute to tissular

regeneration after inflammation in the gut with the production

of amphiregulin. The alarmin IL-33 derived from damaged

epithelial cells stimulates ILC2s to produce the amphiregulin

which binds to epidermal growth factor receptor (EGFR) on

epithelial cells. The IL-33-amphiregulin-EGFR signaling in

epithelium-ILC2 loop promotes epithelial cell proliferation and

protects gut from tissue injury and inflammation following DSS-

induced colitis (94).
Diet-mediated control of
gut homeostasis

Intestinal ILCs are directly in contact with dietary and

microbial metabolites that modulate their functions. Vitamin

A and its metabolites and AHR (Aryl Hydrocarbon Receptor)

ligands favor ILC3 functions, whereas vitamin D3 and AHR
Frontiers in Immunology 08
ligands impair ILC3 and ILC2 functions, respectively (95, 96).

Cumulative work also highlights the importance of microbiota-

derived short chain fatty acids (SCFAs) in modulating ILC

functions. SCFAs are metabolites manufactured from bacterial

fermentation of dietary fibers. High-fiber diets positively

regulate small intestine and colonic ILC3 proliferation, IL-22

secretion, and anti- C. rodentium immunity, which is mediated

by metabolite-sensing receptors Ffar2 and Ffar3 (97–99). It

appears that different SCFAs, including acetate, butyrate, and

propionate, would preferentially bind to distinctive SCFA-

sensing receptors. For example, butyrate supports intestinal

ILC3 functions in Ffar3-dependent and Ffar2-independent

manner (97). While SCFAs promote ILC3 expansion and

functions, long-chain fatty acids (LCFAs) like palmitic acids

are identified to inhibit IL-22 production by ILC3 in vitro (100).

More research needs to be conducted to elucidate the underlying

mechanisms. Furthermore, prostaglandin E2 (PGE2), a lipid

derivate, fosters the secretion of IL-22 and HB-EGF via targeting

its receptors EP4 and EP2, respectively (86, 101). The regulation

of the gut homeostasis by dietary cues is extremely complex as a

change in the diet can impact not only the immune cells but also

Tuft cells, microfold cells or enteroendocrine cells that can

indirectly modulate the immune response. Developing new

tools to specifically target different metabolic pathways in ILCs

will be needed to address the direct regulation of these cells by

dietary metabolites and microbial derived metabolites.
Neuronal relay of gut homeostasis

The maintenance of gut homeostasis heavily relies on

neuroimmune interactions, and ILCs appear to be a center of

these communications, acting as a controller unit that will

instruct effector cells to generate appropriate responses. In

addition to the SNS and PNS which originate from the central

nervous system, the gastrointestinal tract also possesses its own

intrinsic enteric nerve system (ENS) innervating the whole gut.

The sympathetic neurons inhibit bowel functions, while

parasympathetic neurons activate gut digestion, mobility, and

secretion (62). Labeling of cholinergic and adrenergic nerves

revealed that each neuronal population spatially occupied

distinct layers of the gut. The cholinergic nerves are more

abundant in myenteric plexus while the adrenergic nerves

dominate in submucosa plexus (102). The ENS composed of

both sensory and motor neurons, use neuropeptides such as VIP

or neuromedin U (NMU), substance P or CGRP, to modulate

the peristaltic motor, absorptive, and secretory functions of the

gastrointestinal tract (103). ILCs are anatomically in close

proximity to intestinal nerves, suggesting strong neuroimmune

interplay between these two partitions (34, 104) (Figure 3).

NMU intrinsically promotes ILC2 activation, expansion, and

production of type 2 cytokines involving IL-5, IL-9, and IL-13
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through NMUR1-Gaq signaling. NMU treatment in vivo

robustly induces anti-N. brasiliensis type 2 responses and

attenuates gut worm burden, whereas NMUR1-/- mice have

compromised worm expulsion. In contrast, a-CGRP plays

dual roles in regulating the activation of ILC2s, antagonizing

the expansion and IL-13 production of KLRG1+ ILC2s but

promoting IL-5 secretion (105–107).

At steady state, VIP is released in response to food intake.

Intestinal CCR6+ILC3 and ILC2 highly express VIP receptor 2

(VIPR2) and VIP expressing enteric neurons project into both

the VIPR2+ ILC3-enriched cryptopatches and the villi (42, 104,

108). This VIP signaling modulates ILC3 activity in the gut

creating a circadian expression of IL-22 in anticipation of

pathogenic threats associated with food intake (42).

Mechanist ica l ly , enteroendocrine ce l ls can secrete

cholecystokinin in response to feeding, which rapidly increases

the systemic levels of VIP (108). VIP signaling can also synergize

with inflammatory signals such as IL-23 and strongly increase

the IL-22 expression in ILC3. This synergy increased the

resilience of mice to DSS-induced inflammation (42) and to

bacterial infection (109). VIP induces the activation of ILC

through the increase in intracellular cAMP and calcium levels

and it is suggested that VIP potentiates ILC function by

increasing glycolysis-based energy metabolism (108).

Interestingly, Talbot et al. reported a negative effect of VIP

on IL-22 production correlated with exacerbated intestinal

bacterial infection (104). In this study, VIP fosters lipids

absorption at the expense of pathogen protection. Even if the

cause of the discrepancies between these studies are unclear, it is

not surprising that the same neuropeptide can have different

physiological outcomes, depending on the animal facility, the

activation status, the proportion of ILC3 subsets, or the presence

of other environmental cues that differentially synergize or

antagonize the VIP signaling.

The role of the PNS and SNS on ILC regulation is less

understood. Similar to lung ILC2s, sympathetic nerves appear to

inhibit intestinal ILC2 proliferation and functions in producing

IL-5 and IL-13 after N. brasiliensis infection (34). ACh has been

shown to support regenerative capacity of peritoneal ILC3 by

inducing PCTR1 (protectin conjugates in tissue regeneration 1),

placing the ILC3 at the center of resolution circuitry controlled

by the central nervous system (110). PCTR1 is a pro-resolving

mediator that exerts potent tissue regenerative effects by

enhancing macrophage recruitment and phagocytosis and

reducing leukocyte infi l t ra t ion and inflammation .

Consequently, vagotomy reduces peritoneal ILC3 numbers and

delays the resolution of infection-induced inflammation (110).

Finally, enteric glial cells also prove to orchestrate ILC3

functions by direct GDNF-RET signaling pathway. RET

deficiency in ILC3 results in diminished IL-22 production and

aggravates intestinal inflammation and injury following C.

rodentium infection or DSS-induced colitis (111).
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The neuroimmune interactions that occur in the gut are

intense but vary with time and inflammation. These interactions

are not simple to study and spatiotemporal analysis would be

needed to better understand the consequences of these

interactions on the function of the tissue. The expression of

the neuropeptide receptors is not homogeneous on the different

ILC subsets. This could indicate that specialized groups of ILCs,

that are likely localized at different strategic locations, are

sensitive to specific neurotransmitters. This could lead us to

rethinking the classifications of ILC subsets. Instead of using

immunological markers such as KLRG-1 or NKp46 to define

ILC2 and ILC3 subsets respectively; we may define subsets based

on the expression of the receptor for host derived modulators.

Comparing the activity of the VIPR2+ ILC3 and VIPR2- could

help to better understand the homeostatic function of these cells.

Understanding the functional differences between nicotinic and

muscarinic receptors expressing ILC2 could reveal the molecular

network promoting the pro- and anti-inflammatory property of

these cells.
Perspectives

The study of tissue-resident immune cells, ILCs in

particular, has highlighted how constitutive activities of

immune cells contribute to tissue functions rather than being

limited to the immune surveillance and pathogen elimination.

This feature could be one of the key differences of

ILCs compared to conventional T cells. Although they

share common transcriptional regulators with T cells, the

tissue residency of ILCs and their capacity to integrate

physiological host-derived signals at steady state confers a

unique place for ILCs in the immune system. The studies

cited in this review show that ILC, not only, respond to

different physiological cues but also actively produce

neuropeptides such as CGRP (58), ACh (53, 54), serotonin

(112) or methionine-enkephalin (24). The homeostatic

functions of ILCs, control the balance between the type 1, 2

and 3 response but also modulate non-immunological function

such as thermal regulation, lipid absorption and storage,

neuropeptide production and tissue repair extending the

capacity of these cells well beyond the canonical function of

immune cells. Immunologists will have new horizons to

explorer that will require multidisciplinary approaches to

understand how ILCs, and tissue resident immune cells in

general, modulate physiological functions.

Physiological modulators are dynamically regulated during

inflammation allowing a negative feedback loop to control the

inflammatory responses and promote tissular protection. What

is more interesting is that these modulators are also expressed to

maintain tissue homeostasis, in absence of harmful pathogens. A

dysregulation, or a disruption in the sensing of physiological
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cues can lead to tissue inflammation by modifying the

constitutive activity of ILCs. For example, unbalanced type 1

and type 2 immune responses in the adipose tissue led to

metabolic disorder, or the disruption of type 3 response in the

gut provoked dysbiosis.

The increasing prevalence of chronic inflammatory diseases

in the most developed countries are associated with fat-rich

diets, disrupted circadian rhythms, and chronic stress. Chronic

inflammatory diseases have common pathogenic features in

dysregulated host immune responses. There are opportunities

here to improve our understanding about the impact of

physiological cues on the immune system and explore new

therapeutic strategies to re-establish homeostasis to treat these

conditions. Due to their chronic nature, inflammatory

conditions are linked to metabolic perturbation, and higher

risk of developing chronic diseases including type 2 diabetes

and cancer. Understanding how physiological signals modulate

immune responses could not only reveal the mechanisms that

underlie the development of sterile inflammation but also

provide new insights into the pathogenesis of comorbidities

that have a major impact on human health.
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