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Abstract 

The contribution of transcription factors (TFs) and gene regulatory programs in the 

immune response to COVID-19 and their relationship to disease outcome is not fully 

understood. Analysis of genome-wide changes in transcription at both promoter-proximal and 

distal cis-regulatory DNA elements, collectively termed the 'active cistrome,' offers an unbiased 

assessment of TF activity identifying key pathways regulated in homeostasis or disease. Here, 

we profiled the active cistrome from peripheral leukocytes of critically ill COVID-19 patients to 

identify major regulatory programs and their dynamics during SARS-CoV-2 associated acute 

respiratory distress syndrome (ARDS). We identified TF motifs that track the severity of COVID-

19 lung injury, disease resolution, and outcome. We used unbiased clustering to reveal distinct 

cistrome subsets delineating the regulation of pathways, cell types, and the combinatorial 

activity of TFs. We found critical roles for regulatory networks driven by stimulus and lineage 

determining TFs, showing that STAT and E2F/MYB regulatory programs targeting myeloid cells 

are activated in patients with poor disease outcomes and associated with single nucleotide 

genetic variants implicated in COVID-19 susceptibility. Integration with single-cell RNA-seq 

found that STAT and E2F/MYB activation converged in specific neutrophils subset found in 

patients with severe disease. Collectively we demonstrate that cistrome analysis facilitates 

insight into disease mechanisms and provides an unbiased approach to evaluate global 

changes in transcription factor activity and stratify patient disease severity.  
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Introduction 

Acute respiratory distress syndrome (ARDS) is the cardinal clinical feature and the 

primary contributor to mortality in severe SARS-CoV-2 infection. Cytokine and single-cell 

analyses support a model for a prolonged hyperinflammatory response driving diffuse alveolar 

damage (1-8). Tremendous effort has been invested in repurposing available therapeutics for 

the treatment of severe COVID-19. To this end, glucocorticoids and anti-interleukin-6 receptor 

monoclonal antibodies reduce mortality for severe cases of COVID-19. Importantly, the mortality 

benefits were only observed in subgroups of patients. Therapies provided to inappropriate 

patient subpopulations may cause harm (9). These results signal the unmet need for additional 

therapeutic targets and novel stratification strategies to identify the right patient for the right 

therapy. 

Understanding the dynamic relationship of transcription factor activity and disease 

severity may offer insights for precision therapy. Transcriptional responses are an important 

component of the host response to infectious disease. Not only do SARS-CoV-2 infected cells 

up-regulate antiviral gene expression programs to halt the viral spread, but they also signal to 

activate regulatory networks in other cells and tissues to mount a coordinated immune response 

to the pathogen. Transcription factors (TFs) are vital in orchestrating these transcriptional 

responses. TFs integrate upstream inflammatory and immunological signals to direct changes in 

the transcriptional programs mediating cellular adaptation and function. TFs bind DNA in cis at 

regulatory regions through specific recognition DNA sequences, also known as TF motifs. 

Unbiased, genome-wide profiling of cis-regulatory elements, coupled with computational 

analysis for motif enrichment, is a powerful tool to discover transcriptional regulatory 

mechanisms. Understanding what these pathways and cell types are, how they vary across 

individuals and time, and how they are dysregulated in severe disease is critical to 

understanding COVID-19 and host response to sepsis and severe lung injury. 
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 This study used unbiased cistrome profiling of peripheral leukocytes from COVID-19 

patients to decipher regulatory networks activated or repressed during severe SARS-CoV-2 

infection. Given that transcription is a hallmark of regulatory activity from promoters and 

enhancers (10), we used capped small (cs)RNA-seq to measure the transcriptional activity from 

genome-wide cis-regulatory elements. csRNA-seq captures short, 5' capped RNAs (20-60nt) 

associated with engaged RNA polymerase II and defines the transcription start sites at a single-

nucleotide resolution of both stable and unstable transcripts such as enhancer RNA (eRNA) 

(11). Moreover, csRNA-seq focuses motif analysis on the active cistrome compared to the 

assessment of chromatin accessibility, where regulatory elements may be accessible but 

transcriptionally inactive (e.g., open-poised, insulators, etc.) (12). 

 We performed csRNA-seq with matched samples for RNA-seq to capture the steady-

state transcriptome and cytokine analysis on peripheral leukocytes to construct a natural history 

of TF programs in ARDS associated with severe COVID-19. We profiled the active cistrome 

from 22 individuals, with a median of 7 time points encompassing early, mid, and late 

hospitalization. Our analysis revealed regulatory programs associated with specific TFs and cell 

types that exhibited activity patterns correlated with clinical phenotypes. We identified a role for 

inflammatory transcription factor families in early-stage disease, including Nuclear Factor-kappa 

B (NFkB), Signal Transducer and Activator of Transcription (STAT), and Interferon Regulatory 

Factors (IRF). We also identified robust disease associations for other TFs and TF families, 

including Glucocorticoid Receptor, Nuclear Factor E2 Related Factor 2 (NRF2), E2F, MYB, and 

the family of microphthalmia (MiT/TFE). Because our dataset provides precise genomic 

locations of regulatory activity during COVID-19 infection, we cross-referenced the active 

cistrome with existing genomics data, including chromatin state maps and genetic variants 

associated with COVID-19 clinical outcome. We identified significant enrichment of diseased-

associated single nucleotide polymorphisms (SNPs) in distinct TF regulatory networks. Using 
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target gene expression as a measure of TF regulatory network activity, we independently 

stratified COVID-19 patients with poor outcomes in a large published cohort with early 

admission transcriptomics. Patients with high expression for E2F/MYB and STAT targets, or 

target expression that is low for Type 1 interferon and high for STAT targets, had the most 

severe outcome. Integrating these findings with published single-cell RNA-seq, we show that 

dysregulated E2F/MYB, STAT, and Type 1 interferon signals are reflected in the differential 

distribution of neutrophil subsets. These findings showcase the utility of profiling transcription 

initiation to reveal regulatory programs from blood samples and provide insight into the key TFs 

and pathways activated during the host response to COVID-19.  

Results 

Transcription initiation analysis with csRNA-seq reveals the active cistrome from peripheral 

leukocytes during severe SARS-CoV2 infection.  

Genomic regions that initiate transcription represent active cis-regulatory elements (10, 

13, 14). To understand the dynamic changes in cistrome activity during the course of COVID-

19, we profiled transcription initiation events from peripheral leukocytes of COVID-19 patients 

(Fig 1a). We isolated peripheral blood from 5 healthy controls and 17 patients, with a median of 

7 time points per patient, spanning a median hospitalization of 8 days (range 1-22 days), for a 

total of 92 time points. 16 of the 17 patients required care in the Intensive Care Unit (ICU). 13/17 

required mechanical ventilation. 48% of the samples were collected from patients with severe 

lung injury, defined as a Modified Murray Score > 2.5 (15). Five patients recovered and were 

discharged within ten days (Fast Recovery). Nine survivors had prolonged hospitalization with 

three in-hospital fatalities (Fig 1b, Supp Table 1).  

 Across a total of 97 csRNA-seq libraries, we cumulatively identified 93,465 genomic 

regions with ample evidence of transcription initiation, termed Transcription Start site Regions 

(TSRs). >95% of the identified TSRs overlapped with open chromatin regions defined by ATAC-
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seq in one or more leukocyte cell populations (Supp Fig 1) (16, 17). 42% of the TSRs mapped 

to the vicinity (< 500 bp) of annotated gene promoters. Nucleotide frequency analysis relative to 

transcription start sites showed defined features consistent with promoter elements. 58% of 

TSRs mapped to promoter-distal regions co-localized with epigenetic marks in leukocytes 

associated with active enhancers (18), with nucleotide frequency distinct from promoters (Supp 

Fig 1a-c). For example, the intronic regions of the STAT5B and LITAF loci have open chromatin 

regions with transcription initiation activity consistent with enhancer elements (Fig 1d left, middle 

panel). The interferon-induced MX-1 gene has two TSRs representing the gene promoter and 

enhancer (Fig 1d right panel). The MX-1 enhancer TSR resides 2kb upstream of the promoter in 

an open chromatin region (ATAC-seq) surrounded by modified histones (acetylated-H3K27) 

consistent with an active neutrophil-specific enhancer. Notably, the activity of the enhancer TSR 

correlates with the transcriptional initiation signal and the stable RNA transcript level (total-RNA 

seq) of MX-1. Overall, we generated a dataset of cistromic activity from peripheral leukocytes 

that accurately identify promoters and enhancers in leukocytes from patients with severe SARS-

CoV-2 infection. 

Agnostic TSR clustering contextualizes the activity of the immune cistrome with lung injury 

severity 

The activity of the cistrome is influenced by multiple biological factors, including 

regulation by TFs, cell-type specificity, disease severity, and other physiological factors. To 

appreciate these interactions, we performed unsupervised clustering based on TSR activity 

across all 97 samples capturing TSRs co-regulated across patients at different time points and 

disease severity states. TSRs regulated by a common biological mechanism(s) should display 

similar activity and therefore cluster together. To this end, we applied hierarchical clustering, 

revealing 26 distinct TSR clusters, and used Uniform Manifold Approximation and Projection 

(UMAP) to group TSRs by their similarity and visualize them in 2D space (Fig 1e, Suppl Fig 2). 
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 We first interrogated the relationship of cistrome activity with disease severity. We 

focused on lung injury and quantified how individual TSR activity correlated with patients' 

Modified Murray Lung Injury Score. By coloring the TSR UMAP by their correlation to lung 

injury, we observed that TSRs were primarily segregated by disease severity (Fig 2a). For 

example, TSR A found in a STAT5B intronic region has an activity that correlates with lung 

injury (rho = 0.3559, p-value = 5x10-4). In contrast, TSR B located in an intron of LITAF has a 

negative correlation to lung injury (rho = -0.4487, p-value < 1 x 10-4) (Fig 2b).  Because each 

sample profiles the entire bulk population of peripheral leukocytes, we next estimated the cell 

type specificity of each TSR to compare with the lung injury spectrum. We utilized a 

hematopoietic cell-type-specific reference ATAC-seq dataset from healthy donors to identify 

discrete cistrome clusters associated with neutrophils, monocytes, lymphocytes, and 

plasmablasts specific peaks (Fig. 2c, Supp Fig 3) (16, 17). Lymphocyte-associated TSR-

clusters correlated with lower Modified Murray Lung Injury Scores, consistent with the 

observation that the neutrophils to lymphocytes ratio is elevated in severe COVID-19 (19). Of 

significance, not all TSRs within the neutrophil clusters are positively correlated with lung injury, 

suggesting different transcriptional programs may be activated in neutrophils associated with 

different disease states. Furthermore, TSRs with high activity on the first day of enrollment are 

distinct between patient severity groups, collectively suggesting the active cistrome encodes 

valuable information about disease states (Fig 2d). 

 We then investigated the association of transcription factor motifs in the active cistrome 

in relationship to disease severity. We searched for known TF motifs within -150 to +50 bp of 

the transcription start sites and performed a score-based logistic regression model (MEIRLOP) 

to identify TF motifs associated with lung injury (Fig 3a) (20). We identified enrichment of STAT, 

NFkB, and myeloid lineage determining (LD) CEBP/AP1 TF motifs in TSRs associated with 

severe lung injury. Interestingly, the Antioxidant Responsive Element (ARE) is one of the top 
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five motifs most associated with severe lung injury. This motif is recognized by transcription 

factors involved in reduction-oxidation homeostasis, including the members of NRF, the small-

MAF, and the BTB and CNC Homology (BACH) families. Genetic variants in the NRF member 

NFE2L2 are associated with higher susceptibility to ARDS (21), thus providing biological 

plausibility that this pathway is active in COVID-19 ARDS. TSRs associated with low lung injury 

indices exhibited enrichment in the YY1 promoter element, glucocorticoid response element 

(GRE), X-box, and motifs recognized by lymphocytes lineage determining TFs (LDTFs) 

including ETS/RUNX (Fig. 3a). The correlation of GRE motifs with lower lung injury index is 

consistent with studies showing the benefit of glucocorticoid therapy in severe COVID-19. 

Identification of a cooperative transcriptional factor regulatory network 

To further define transcriptional regulatory mechanisms underlying cistromic activity, we 

performed motif enrichment and pathway analysis on TSRs that segregated into distinct 

clusters, representing co-regulated networks of TSRs (Fig 3b-c, Supp Fig 4). This analysis 

successfully captured enrichment of key immune regulators in specific clusters, suggesting we 

can segregate and track the activity of distinct pathways across our dataset. Furthermore, motif 

analysis identified co-enrichment of signal-dependent TFs (SDTFs) with LDTFs, consistent with 

the model that pioneering TFs establish accessible sites for cell-type-specific transcriptional 

regulation (22). This point is exemplified by the two distinct clusters with enrichment for NFkB 

motifs (Fig 3b-c, top panel, Supp Fig 4). One NFkB cluster is myeloid-centric with 904 TSRs, co-

enriched for CEBP, and strongly correlated with severe lung injury. 62% of the TSRs are in 

enhancers. TSRs located in promoters of protein-coding genes within this cluster are associated 

with the canonical pathway of NFkB and TNFα signaling in gene ontology analysis. The second 

NFkB cluster is lymphocyte-centric, negatively correlated with lung injury, with 1,136 TSRs and 

motif co-enrichment for the E-protein HEB, critical for T cell development (23).  
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 To test the notion that our analysis distinguishes NFkB regulatory programs activated in 

different cell types, we cross-examined NFkB p65/RELA chromatin localization in activated 

myeloid (24) and lymphoid cells (25) from publicly available Chromatin Immunoprecipitation 

(ChIP)-seq studies (Supp Fig 5). The TSRs from the myeloid NFkB cluster have a more 

significant overlap with NFkB ChIP-seq signal from activated monocyte-derived macrophages 

than from activated CD4+ T cells. In contrast, the lymphoid NFkB cluster has a greater overlap 

with NFkB ChIP-seq signal from activated CD4+ T cells (Supp Fig 5b), demonstrating that motif 

analysis of co-regulated TSRs can provide insights about activated pathways, their TFs, and cell 

types of activity. 

 Interestingly, we often observed co-enrichment of multiple SDTFs within the same TSR 

cluster, suggesting coactivation by multiple regulators or pathways. This is exemplified by a 

cluster with a Type-1 interferon sensitive responsive element (T1ISRE) signature, which 

exhibited co-enrichment for the STAT motif, consistent with the role of STAT in interferon 

signaling during viral infection (Fig 2b-c top panel) (26).  

 The redox-responsive ARE motif participated in several distinct TSR clusters co-

enriched with multiple SDTF motifs representing unrecognized SDTF-SDTF regulatory networks 

(Fig 3b-c, middle panel). First, an enhancer-centric 1,296-TSRs neutrophil cluster (Supp Fig 3-

4) exhibited co-enrichment for motifs recognized by the MiT/TFE family (MITF, TFE3, TFEB, 

and TFEC) and NFkB. Genes located in the vicinity of these TSRs were functionally enriched for 

autophagy, lysosomes, and membrane trafficking, consistent with the role of the MiT/TFE family 

in reprogramming metabolism during stress (Fig 3c, middle panel) (27). In this cluster, TSRs 

containing both ARE and MiT motifs are enriched 3.4-fold relative to other active TSRs (Chi-

square p-value < 1.0 x 10-5, two-tailed), suggesting a model where MiT/TFE and the NRF/small-

MAF/BACH family are acting on the same regulatory regions (Supp Fig 6). 
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A second ARE cluster is enhancer-centric with 1,235 TSRs overlapping monocyte open 

chromatin (Fig 3b-c, middle panel; Supp Fig 3-4). In addition to ARE, this cluster had motif 

enrichment for Activator Protein 1 (AP1) and SMAD, the transducers for the Transforming 

Growth Factor β (TGFβ) signaling pathways. In addition, the target genes within this cluster 

were associated with TGFβ signaling in gene ontology analysis (Fig 3c, middle panel). 

Consistent with this assertion, genome-wide TF localization studies in macrophages found that 

Nfe2l2, Smad3, and AP1 member Fos co-localized in common regulatory regions upon 

exposure to tissue damage signals (28). 

We identified co-enrichment for the cell cycle and proliferation E2 Factor (E2F) and MYB 

TF families in a cluster of 2,364 TSRs (Fig 3b-c, bottom panel). The activity of this cluster was 

highly associated with lung injury severity (correlation = 0.36). When assessed individually using 

rank-based logistic regression, E2F and MYB motifs had a weak association to lung injury 

indices (Fig 3a, MEIRLOP coefficients = 0.102 and 0.077, respectively). Indeed, the E2F motif 

was enriched in five other clusters associated with varied disease severity (Supp Fig 4). Thus, 

the unique association of this cluster with severe lung injury suggests a synergistic role of the 

E2F and MYB pathways during the severe phase of ARDS. 

Lastly, the two distinct TSR clusters with the highest lung injury severity association 

have motif enrichment for STAT and NFkB (Modified Murray Score correlation, 0.518 and 0.417 

respectively) (Fig 2b-c, top panel). Both clusters are enhancer-centric (71% and 62%) and 

enriched in neutrophil open chromatin (Supp Fig 3). Motif analysis demonstrated that the STAT 

and NFkB clusters are co-enriched, respectively, with BCL6 and RBPJ, the transcriptional 

effector for the NOTCH signaling pathway (Fig 3c, top panel). 

 We further validated the TF and TSR cluster association through orthogonal 

approaches. Cross-referencing the active cistrome with available TF ChIP-seq datasets reveals 

that TSR clusters are generally enriched for ChIP-seq signals associated with the predicted TF 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.24.457187doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

motif (Supp Fig 5c). Furthermore, we tested whether target genes of each TSR cluster overlap 

with gene signatures from a systematic experimental perturbation with chemical and small 

molecules intended for drug repurposing and discovery (Connectivity Map, CMap) (29). We 

expected to find therapeutic candidates that target the TFs predicted for each TSR cluster. 

Indeed, CMap analysis revealed multiple cell-cycling inhibitors for the target genes from the 

E2F/MYB cluster, BCL inhibitor and JAK/STAT inhibitor for the STAT/BCL6 cluster, TGFb 

receptor inhibitors for the ARE/SMAD/AP1 cluster, and cortisone for the GRE cluster (Supp 

Table 2). Overall, the unbiased discovery of TSR clusters based on the dynamic transcriptional 

activity, when coupled with motif analysis, revealed TF-regulated biological pathways during 

severe SARS-CoV-2 infection.  

Natural history of the transcriptional factor program in survivors of severe COVID 

We next sought to delineate the temporal trajectory of the immune TF program during 

severe COVID-19 infection. Utilizing a subset of survivors (N = 9, Supp Table 1) with severe 

COVID-19 and prolonged hospitalization for COVID-19 associated ARDS with longitudinal 

sampling, we characterized the natural history of peripheral immune transcriptional programs. 

Correlation coefficients for TSR activity relative to hospital admission overlaid onto the cistrome 

UMAP displayed a non-random distribution of TSRs characterized by their temporal response 

patterns to COVID-19 recovery (Fig 4a). Most TSRs in clusters corresponding to T1ISRE/STAT, 

NFkB/RBPJ, STAT/BCL6, and X-Box/CRE/KLF/NFY displayed strong activation early in the 

hospitalized clinical course (Fig 4b-d). In contrast, the temporal correlation coefficients for TSRs 

in CEBP/PU.1, the promoter-centric YY1/CEBP/PU.1, and the monocytic ARE/AP1/SMAD are 

associated with late activation in the clinical course (Fig 4e). We observed consistent temporal 

patterns when the median TSR activity for each cluster was plotted across hospitalization time 

(Fig 4b-e). As independent corroboration of T1ISRE activity, the T1ISRE/STAT csRNA 

clustering paralleled the circulatory level of IP-10 (Fig 4f, Pearson's correlation = 0.846, p-value 

< 1 x 104), an interferon-induced cytokine associates with severe COVID-19 (5). STAT/BCL6 TF 
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activity was also correlated with IL-6 plasma cytokine levels (Fig 4g, Pearson's correlation = 

0.641, p-value < 1 x 104). 

The inverse temporal profile of the neutrophil TSRs indicates a transition within 

neutrophil cistrome activity during recovery from COVID-19 ARDS. We performed gene 

ontology analysis on the target genes identified within temporal clusters. The target genes 

associated with the early neutrophil TF programs were enriched in interferon signaling, 

leukocyte activation, NFkB/TNFα signaling, autophagy, protein catabolic process, and 

membrane trafficking (Fig 4h, Supp Table 3). The target genes for the late neutrophil TF 

programs enriched in pathways associated with RNA splicing, translation, and protein and 

organelle localization (Fig 4h, Supp Table 3). TGFβ signaling was the top pathway in the 

monocytic clusters with ARE/AP-1/SMAD motif enrichment (Fig 3c). Notably, NFkB motifs were 

significantly depleted in both CEBP/PU.1 (Cluster 5) and YY1/CEBP/PU.1(Cluster 18) network, 

suggesting that the NFkB pathway was inactive during recovery (Supp Fig 4).  

 In summary, cistrome analysis across the clinical course identified a transition in TF 

network activity in the transcriptional program during the recovery of critically ill patients with 

COVID-19 ARDS. 

Distinct TF regulatory networks overlap genetic variants associated with COVID-19 clinical 

outcomes 

We hypothesized that the regulatory elements we identified as associated with severe 

COVID-19 ARDS might overlap with genetic variants associated with COVID-19 outcome. To 

this end, we cross-referenced the active cistrome with disease-associated SNPs from the 

COVID-19 Host Genetic Initiative Consortium (30). The consortium performed a meta-analysis 

with a combined 49,562 COVID-19 cases identifying thousands of SNPs (p-value < 5 x 10-8) 

associated with COVID-19 clinical outcomes. We first identified the disease-associated SNPs 

within -300 to +100 bp of the TSS (Fig 5a-b). We tested for enrichment of disease-associated 
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SNPs within active cistrome regulatory patterns using RELI (31), which assesses the 

significance of overlap between genetic variants and regulatory elements while considering the 

underlying genetic structure of the data. We focused on SNPs associated with hospitalization, 

with non-hospitalized COVID-19 cases as controls, mirroring the focus of our COVID-19 ARDS 

cistromic data. TSRs positively correlated with lung injury index (Modified Murray Score 

coefficient > 0.15) have significant enrichment for disease-associated SNPs associated with 

hospitalization (Padj 2.57 x 10-13) (Fig 5c). We next cross-referenced disease-associated SNPs 

with our TSR clusters identifying significant disease-associated SNP enrichment in distinct TSR 

clusters. The E2F/MYB, STAT/BCL6, and T1ISRE/STAT clusters are significantly enriched for 

COVID-19 hospitalization-associated SNPs when compared to non-hospitalized cases (Padj- 

7.62 x 10-7, 1.67 x 10-9, and 2.16 x 10-13, respectively). Additionally, the three clusters with ARE 

motifs - MiT/NFkB/ARE, CEBP-AP1/ARE, and SMAD/AP-1/ARE (Padj- 6.2 x 10-4, 1.7 x 10-3, 

and 5.12 x 10 -11, respectively) also have SNPs associated with COVID-19 hospitalization. 

Cistrome-disease relationship reveals dysregulated E2F/MYB, STAT/BCL6, and T1ISRE/STAT 

activity  

Reflecting on the GWAS analysis, we hypothesized that the activity of TF-regulatory 

networks enriched for disease-associated genetic variants is likely correlated with disease 

outcome. Consistent with this notion, the two deceased patients in our cohort had persistently 

elevated STAT/BCL6 and E2F/MYB activities compared to survivors with a prolonged hospital 

course (Supp Fig 7). To extend these observations and test the predictive ability of our findings, 

we expanded our cistrome-based TF network analysis to measurements of gene expression 

(RNA-seq), under the assumption that target gene expression can quantify TF activity indirectly 

(Fig 6a). We focused on the E2F/MYB, STAT/BCL6, and T1ISRE/STAT TF regulatory networks 

because of their early activation in the hospital courses, consistent with most published COVID-

19 studies with transcriptomic data. Toward this goal, we used samples with matched cistrome 
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and transcriptome data (n = 55) to identify E2F/MYB, STAT/BCL6, and T1ISRE/STAT target 

genes (n = 106, 176, and 58 respectively, see method). The average target gene expression for 

E2F/MYB, STAT/BCL6, and T1ISRE/STAT is highly correlated with the average TSR activity for 

those clusters (r = 0.92, 0.89, and 0.93 respectively) (Fig 6b, Supp Fig 8), enabling us to 

estimate the activity of these regulatory programs from blood leukocytes RNA-seq from 

individual patients. 

 Using this approach, we evaluated the correlation of E2F/MYB, STAT/BCL6, and 

T1ISRE/STAT network activity to disease severity in a large COVID-19 cohort (n = 100) with 

available peripheral leukocyte transcriptomics (32). This cohort used the number of hospital-free 

days at the 45th day of admission (HFD45) to delineate clinical severity – severe cases with 

prolonged hospitalization have fewer hospital-free days. Both E2F/MYB and STAT/BCL6 activity 

independently correlated with disease severity, with higher TF-network activity corresponding to 

lower number of hospital-free days (Fig 6c). T1ISRE/STAT activity did not show a linear 

relationship with disease severity; rather, patients at each extreme of T1ISRE activity trended 

toward poor disease prognosis (Fig 6c). 

 We then queried whether TF-network interactions track disease severity. The cohort was 

divided into "high" and "low" groups based on TF-network activity. The STAThiE2Fhi group 

included significantly more fatal cases (HFD45 = 0, Chi-square, p-value = .004, two-tailed) with 

the lowest HFD45 (Fig 6d-e). When delineated by T1ISRE/STAT and E2F/MYB activity, the four 

groups have no statistically significant differences in fatality numbers (Chi-square, p-value = 

0.47, two-tailed) or HFD45 (ANOVA, adj p-value = 0.34) (Fig 6f). T1ISRE/STAT and 

STAT/BCL6 did exhibit significant interaction. The T1ISRElo/STAThi group (n=14) included the 

highest proportion of fatalities and lowest average HDF45 score (Fig 6g). This finding is 

consistent with the current literature on interferon dysregulation in COVID-19 (3, 8, 33), but it 
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uniquely emphasizes that patients with combined high STAT/BCL6 and low T1ISRE/STAT 

activity are the most vulnerable. 

The imbalance of STAT/BCL6, E2F/MYB, and T1ISRE/STAT reflects the imbalance of 

neutrophil subsets. 

With emerging clinical correlates of immune subsets with COVID-19 severity, we 

investigated the relationship of the cistrome-signature with immune subpopulations. We cross-

examined the enrichment of E2F/MYB, STAT/BCL6, and T1ISRE/STAT in COVID19 single-cell 

RNA-seq studies to see if these pathways converge on specific cell populations (8). Among all 

the leukocytes in the single-cell RNA-seq analysis, we found high enrichment of E2F/MYB, 

STAT/BCL6, and T1ISRE/STAT in neutrophils, comprising three subpopulations (Fig 6h, Supp 

Fig 9). The STAT/BCL6 signature is significantly enriched in all three neutrophil populations. 

Notably, the subset consistent with immature neutrophils (LCN2+, CEBPE+) has the highest 

STAT/BCL6 enrichment, with nearly 50% of the transcripts per cell derived from target genes in 

the STAT/BCL6 network (Fig 6i). The immature neutrophil subset also has a high E2F/MYB and 

low T11SRE/STAT signature, resembling the expression signature associated with severe 

disease identified in both bulk RNA-seq cohorts (Fig 6i). The two other major populations are 

consistent with mature neutrophils, with each having approximately 20% of transcripts per cell 

derived from the STAT/BCL6 network. Notably, mature neutrophil 1 has the highest enrichment 

for target genes in the T1ISRE/STAT network, including numerous interferon-stimulated genes 

(ISGs), consistent with a subspecialized neutrophil population with antiviral activity (Fig 6i) (34). 

To track how these cell populations vary with the disease, we assessed cell counts in each 

patient stratified by disease severity, finding patients with COVID-19 have disproportionately 

higher neutrophil counts overall. However, patients with severe disease were more likely to 

have neutrophils from mature neutrophil 2 (NEAT/S100A12) and immature neutrophil 
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subpopulations, implicating that STAT/BCL6 and E2F/MYB pathways likely converge to regulate 

the emergence of immature neutrophils in severe disease (Fig 6j). 

Discussion 

We report the first study to profile initiating transcription in primary patient samples. One 

study has previously used nascent transcriptomics to identify active regulatory elements in 

patient samples (35), but our current study is the first longitudinal, active cistromic study of 

peripheral immune leukocytes in ARDS associated with COVID-19. Our analysis of the 

regulatory landscape catalogs the dynamic regulation of eRNAs and provides a TF-centric 

analysis and interpretation. Because the identity of the TF is revealed through the genomic DNA 

sequence, csRNA-seq coupled with motif analysis is, in essence, an unbiased functional assay 

for TF activity (36), and provides a novel dataset that is substantially different and 

complementary to traditional transcriptomics or other types of epigenetics profiling (e.g., ATAC-

seq). Active cistromic analysis provides unique insights into the underlying TF networks and 

mechanisms in complex diseases when integrating with GWAS, bulk, and single-cell 

transcriptomics. 

With this approach, we identified pathways and TFs implicated in severe COVID-19, 

including known therapeutic targets such as the glucocorticoid receptor, the interferon pathway 

(37), and targets currently in clinical trials including in the JAK/STAT pathway (38). Our analysis 

identified novel TFs in the immune response to severe COVID-19 and implicated their activity in 

neutrophils, including motifs for antioxidant response elements involved in oxidative 

homeostasis with NRF, small-MAF, and BACH. The genetic association of ARDS to NRF family 

NFE2L2 in patients (21), and higher mortality due to bacterial pneumonia (39, 40) or more 

significant acute lung injury due to high tidal volume (41) in mice lacking Nfe2l2, supports the 

biological plausibility of our findings. 
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Identifying distinct co-TF regulatory networks is the principal finding of this study. With 

csRNA-seq and unsupervised clustering, we identified cis-regulatory elements and target genes 

with similar transcriptional initiation activity profiles clustering into distinct groups. Co-enrichment 

of TF motifs within a single cluster is therefore suggestive of cooperative regulation. This 

concept is classically exemplified by the interaction between signal-dependent and lineage-

determining TFs, where cell-lineage pioneering TFs established chromatin accessibility for cell-

type specific, signal-dependent regulation (22). Importantly, our dataset revealed networks with 

co-enrichment of multiple SDTFs, including 1) E2F and MYB, 2) MiT/TFE, ARE and NFkB, 3) 

NFkB and Notch, 4) STAT and BCL6, and 5) ARE/SMAD/AP1. The patient's active immune 

cistrome thus provides evidence of unrecognized interactions between otherwise well-described 

pathways. MiT/TEF family of TF plays a crucial role in autophagy and lysosomal biogenesis for 

nutrient and energy homeostasis, adaptation to metabolic stress, and immune response (27, 42, 

43). The convergence of ARE, NFkB, and MiT/TEF motifs in a single TF network suggests a 

biological significance in the interaction of redox, inflammation, and autophagy during COVID-19 

ARDS. Similarly, the co-enrichment of ARE/SMAD/AP1 late in the hospital course for prolonged 

survivors suggests co-regulation of TFs in the TGFβ and redox pathways. Such has been 

shown in macrophages during wound healing, where the expansion of cistromic co-occupancy 

was noted for Nfe2l2, Smad3, AP1 family Fos1, and NFkB upon simultaneous exposure to 

tissue damage signals (28). This finding provides a collaborative model where TFs of different 

families converge in response to combinatorial biological signals in the cellular milieu. 

 The significant overlap of disease-associated SNPs in distinct TSR clusters suggests 

plausible functional importance of co-regulatory TF networks in COVID-19 outcome. Our 

cistrome dataset is uniquely complementary to the ongoing COVID-19 GWAS effort. The 

dataset directly identifies transcriptionally active genomic regions from immune cells from 

COVID-19 patients, with detailed annotation of disease severity and TF regulatory pattern 
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associations. While a disease-associated SNP localizes disease risk to a genomic locus, 

enrichment of disease SNPs within multiple regulatory elements of a TF program implicates the 

biological significance of the TF pathway (31). We identified over-representations of COVID-19 

associated SNPs at TSRs regulated by the T1ISRE/STAT, STAT/BCL6, and E2F/MYB 

networks. We further demonstrated that the activity of these TF regulatory networks parallels 

disease outcomes. Specifically, a combination of high STAT/BCL6 and E2F/MYB signals, even 

early in the hospital course, is associated with a poor prognosis. COVID-19 patients with low 

Type 1 interferon and high STAT/BCL6 activity also exhibited worse outcomes. Furthermore, 

these TF network signatures mapped to distinct neutrophil subsets. While our dataset cannot 

provide evidence of causal genetic variants, integrating the cistrome, GWAS, and transcriptomic 

analyses supports functional roles for co-regulatory TF networks. 

 Our work has several limitations. First, the study design maximizes temporal resolution, 

which limits patient numbers. A dedicated study with a larger cohort for csRNA-seq would be 

ideal for confirmation. Nonetheless, the validation analysis using a large external COVID-19 

cohort confirmed the cistrome association with poor disease outcomes. It also demonstrates the 

feasibility of identifying target genes as a proxy for TF network activity. Secondly, we profiled the 

cistrome of all peripheral leukocytes, a heterogeneous cellular population with different 

proportions. The imbalance in cellular proportion influences clustering resolution, which is more 

sensitive to cells making up the majority of the heterogeneous population. Cell sorting prior to 

cistrome analysis would address this issue but presents technical and feasibility challenges 

requiring larger blood volumes from clinically unstable patients. To address cell-type identity, we 

cross-examined publicly available cistrome databases and successfully identified major 

inflammatory pathways in smaller subsets of circulatory immune cells, including the lymphocytic 

NFkB and the monocytic ARE/SMAD/AP1 programs. We also identified the combined 
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STAT/BCL6 and E2F/MYB signature from immature neutrophils, which usually represent < 10-

20% of total leukocytes even in critical illnesses. 

 In summary, we used a novel unbiased technique to examine active genomic regulatory 

elements by profiling levels of initiating transcripts directly from peripheral leukocytes of critically 

ill COVID-19 patients. We identified and provided evidence of TF pathways and co-regulatory 

mechanisms implicated in severe COVID-19 ARDS. Many of these transcription factors are 

pharmacological targets for existing compounds. These pathways may also be critical players in 

infectious, non-COVID-19 ARDS, a heterogeneous clinical syndrome with high mortality (35-

40%) that currently depends on supportive care without targeted pharmacological therapy (44). 

We demonstrated the feasibility of using cistrome-derived TF networks to stratify patients by 

clinical outcome. Fast-turn around, TF activity profiling could be clinically applicable to stratify 

patients for TF-targeted therapy, such as anti-IL6 or JAK-STAT inhibitor for patients with high 

STAT/BCL6 activity. Equally important, one may avoid non-specific JAK-STAT inhibitors in 

severe patients with high STAT/BCL6 and low T1ISRE/STAT activity, where further impairment 

in the type 1 interferon pathway could be detrimental. Overall, our study demonstrates that 

unbiased active cistrome profiling offers an unprecedented TF-centric resolution in 

understanding human disease. 

Materials and Methods 

Study and Participants. Hospitalized patients diagnosed with COVID-19 at UCSD hospitals 

including Hillcrest and Jacobs Medical Centers as well as Rady Children’s Hospital were 

recruited for these studies from April to June 2020. After informed consent, blood was drawn on 

hospitalization days 1, 3, 5, 7, 9, 11 and discharge/death for analysis. Medical records were 

reviewed and patient demographics, laboratory values, and clinical characteristics were 

extracted using the Research Electronic Data Capture (REDCap) electronic data capture tool 

hosted at the University of California, San Diego.  
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Characterizing Lung Injury with Modified Murray Score. The Murray Score was developed 

to characterize the level of lung injury in acute respiratory distress syndrome (15). This system 

assigned a score of 0-4 to the following 4 categories. 1) the extent of lung involvement on chest 

radiograph; 2) level of hypoxemia using PaO2 to FiO2 ratio; 3) the range of positive end 

expiratory pressure (PEEP); and 4) range of lung compliances based on tidal volume, peak 

inspiratory pressure, and PEEP. For this study, in order to stratify lung injury of patients prior to 

mechanical ventilation, after liberation from mechanical ventilation as well as requirement for 

advance therapy on mechanical ventilation, we added the mode of respiratory support. Patients 

on room air will be given 0 point; 1 point for 1-6 liter (L) of supplemental oxygen through nasal 

cannula; 2 points for non-rebreather mask at 10-15L of supplemental oxygen; 3 points for 

mechanical ventilation; and 4 points for mechanical ventilation with proning and paralysis. The 

modified Murray Score was tabulated by averaging the score from these five categories. A 

score of 0.1 to 2.5 was considered mild-moderate disease. Severe ARDS is > 2.5. Non-invasive 

positive pressure ventilations including bi-level and heated high flow nasal cannula were not 

included in the modified Murray score because at the time of recruitment, the safety of these 

modalities for exposing medical staff were not well understood, and their use was generally 

discouraged.  

Blood sample processing. Blood (3-10mL) was collected in a Sodium Heparin (BD 

Vacutainer, REF: 366480) or Potassium EDTA (BD Vacutainer, REF 367861) tubes. To prevent 

coagulation, the tubes were inverted 10 times prior to transport at room temperature. Blood was 

processed within 4 hours of collection and kept at room temperature throughout the protocol. 

Whole blood from EDTA tubes and Heparin tubes was processed for isolation of plasma and 

whole white blood cells (WBC).  

Peripheral Leukocytes Isolation. To isolate WBCs, whole blood in EDTA tubes was 

centrifuged at 300xg for 20 minutes. Plasma was first removed, leaving a cell pellet containing 

WBCs and red blood cells (RBCs). RBCs were lysed by resuspending the cellular pellet in 1X 
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RBC Lysis Buffer (ammonium chloride (8.02 g/L), sodium bicarbonate (0.84 g/L), and EDTA 

(0.37 g/L) in deionized water) and incubated for 10 minutes. The cell suspension was then 

centrifuged at 600xg for 5 minutes and the pellet was again resuspended in RBC lysis buffer for 

5 minutes. The reaction was quenched with 3 times the volume of 1X HBSS (Gibco, REF 

14175-095). After a sample was collected for a cell count, the isolated WBCs were pelleted at 

600xg for 5 minutes. The WBC pellet was lysed in Trizol Reagent (Life Technologies, REF 

15596018) with a target concentration of 5-10 million cells/mL and stored at -80C prior to RNA 

extraction.  

Plasma Isolation. Plasma for cytokine analysis was collected from Sodium Heparin tube. 

Plasma was removed from blood separated by PolymorphprepTM per manufacturer’s 

instructions (Progen). Plasma was transferred to new microcentrifuge tubes and centrifuged at 

3731xg for 5 minutes at room temperature to remove any cellular debris. Supernatant was 

transferred to new tubes and flash frozen in dry ice and 95% ethanol. Plasma was stored at -

80C for further analysis.  

RNA extraction and purification. Total RNA was extracted from WBCs using TRIzol(tm) 

reagent (Cat. No. 15596018, ThermoFisher Scientific) as per manufacturer's instructions. Half of 

the total RNA was submitted for capped-small RNA-seq library generation. The remaining RNA 

was treated with TURBO(tm) DNase (AM1907, ThermoFisher Scientific) as per manufacturer's 

instructions and used for bulk total RNA-sequencing. 

Capped small RNA-sequencing. csRNA-seq was performed as described in previously (11). 

Briefly, small RNAs of 20-65 nt were size selected from 0.3-1.0 microgram of total RNA by 

denaturing gel electrophoresis. A 10% input sample was taken aside, and the remainder 

enriched for 5’-capped RNAs with 3’-OH representing RNAPII initiated RNAs. 

Monophosphorylated RNAs were selectively degraded by Terminator 5'-phosphate-dependent 

exonuclease (Lucigen). Subsequent 5’ dephosphorylation by CIP (NEB) followed by decapping 

with RppH (NEB) augments Cap-specific 5’ adapter ligation by T4 RNA ligase 1(NEB). The 3’ 
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adapter was ligated using truncated T4 RNA ligase 2 (NEB) without prior 3’ repair to select 

against degraded RNA fragments. Following cDNA synthesis, libraries were amplified for 11-14 

cycles and sequenced SE75 on the Illumina NextSeq 500 sequencer.  

Sequencing reads were trimmed for 3’ adapter sequences using HOMER (“homerTools 

trim -3 AGATCGGAAGAGCACACGTCT -mis 2 -minMatchLength 4 -min 20”) and aligned to the 

human GRCh38/hg38 genome using STAR (45) with default parameters. Only reads with a 

single, unique alignment (MAPQ >=10) were considered in the downstream analysis. 

Furthermore, reads with spliced or soft clipped alignments were discarded (the latter often 

removes erroneous snRNA alignments). Transcription Start Regions (TSRs), representing loci 

with significant transcription initiation activity (i.e. ‘peaks’ in csRNA-seq), were defined using 

HOMER’s findcsRNATSS.pl tool, which uses short input RNA-seq, traditional RNA-seq, and 

annotated gene locations to eliminate loci with csRNA-seq signal arising from non-initiating, high 

abundance RNAs that nonetheless are captured and sequenced by the method (full description 

is available in Duttke et al.(11). To lessen the impact of outlier samples across the data 

collected for this study, csRNA-seq samples were first pooled into a single META-experiment, 

and TSRs where then identified using findcsRNATSS.pl with a minimal TSR detection threshold 

of 1 read per 10 million mapped reads (“-ntagThreshold 1”), yielding 93,465 TSRs total. The 

resulting TSRs were then quantified in all samples by counting the 5’ ends of reads aligned at 

each TSR on the correct strand. The raw read count table was then normalized using DESeq2’s 

rlog variance stabilization method (46). The resulting normalized data was used for all 

downstream analysis. Normalized genome browser visualization tracks were generated using 

HOMER’s makeMultiWigHub.pl tool. TSR genomic DNA extraction, nucleotide frequency 

analysis relative to the primary TSS, general annotation, other basic analysis tasks were 

performed using HOMER’s annotatePeaks.pl function. Overlaps between TSRs and other 

genomic features (including peaks from published ATAC-seq studies, and annotation to the 5’ 
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promoter of annotate GENCODE(v34) transcripts), was performed using HOMER’s 

mergePeaks tool. 

Total RNA sequencing. Libraries were prepared using Illumina's TruSeq Stranded Total RNA 

Library Prep Gold according to manufacturer's instructions. In brief, rRNA was depleted from 

total RNA (0.35 mg) by using subtractive hybridization. The RNA was then fragmented by metal-

ion hydrolysis and subsequently converted to cDNA using SuperScript II. The cDNA was then 

end-repaired, adenylated, and ligated with Illumina sequencing adapters. Finally, the libraries 

were enriched by PCR amplification. All sequencing libraries were then quantified, pooled, and 

sequenced paired-end 150 base-pair (bp) on Illumina Novaseq at the Salk Next Generation 

Sequencing Core. Each library was sequenced on average 30 million reads. Sequencing reads 

were aligned to the human GRCh38/hg38 genome using STAR. STAR was also used to 

quantify read counts per gene using transcripts defined by GENCODE (version 34). RNA-seq 

read counts were then normalized using DESeq2’s rlog variance stabilization method (46) for all 

downstream analyses. 

For total RNA-seq from Overmyer et al (47), sequencing reads were downloaded from 

GSE157103 and were processed in the same fashion (i.e. mapped with STAR, rlog normalized 

with DESeq2). 

Unsupervised machine learning for TSR cluster identification. We used hierarchical 

clustering and Uniform Manifold Approximation and Projection (UMAP) for unbiased clustering 

of TSRs based on csRNA-seq activity at the level of each TSR. First, patterns of csRNA-seq 

regulation were identified with unbiased hierarchical clustering using HOMER (“homerTools 

cluster”). The rlog normalized read counts across all TSRs were first row centered by the 

average read count for each TSR, and the data was subsequently hierarchically clustered using 

average linkage and the Pearson correlation coefficient between TSR profiles as the distance 

metric. Due to the size of the dataset, 10,000 random TSRs were first selected for hierarchical 

clustering. After completion, the remaining TSRs were assigned to their location in the 
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hierarchical tree based on their nearest neighbor. The final clusters were defined as the 

maximum sized subclusters with an average correlation coefficient no greater than 0.30 and a 

minimum of 500 TSRs (to exclude small, highly variable clusters), yielding a total of 26. To 

visualize the data, we performed UMAP independently using R packages uwot, leiden, igraph, 

and FNN, with the following setting: n_component = 2, n_neighbors = 16, a = 2.5, b = 0.575, 

and metric = ‘correlation’. We used ggplot to visualize the UMAP projection and to overlay 

information including cluster IDs, relative csRNA-seq activity, chromatin accessibility, Modified 

Murray Score correlation coefficient, and Hospital Time correlation coefficient.   

Motif enrichment analysis. To identify TF motifs in TSRs that are associated with clinical 

scores and other quantitative phenotypes, we applied MEIRLOP, a tool that uses logistic 

regression to model the presence of motifs in a set of scored DNA sequences while accounting 

for simple nucleotide composition bias, such as that introduced by CpG Islands (20). TSRs were 

first scored by how well their activity profile across samples correlated (Pearson) with the 

Modified Murray Score, such that TSRs with relatively high activity in samples from very sick 

patients (i.e. high Modified Murray Score) yield high correlation coefficient values, while TSRs 

with relatively high activity in healthy patients yield low values. Sequences from -150 to +50 bp 

relative to the primary (mode) TSS within each TSR were then extracted, and these sequences 

and their associated correlation scores were then analyzed using MEIRLOP. 438 TF motifs in 

HOMER’s known motif database were evaluated and the motifs yielding the most extreme 

enrichment coefficients with significant p-values were reported. 

 To identify motifs associated with discrete TSR clusters, we used HOMER (22) to scan 

for DNA motifs in each TSR (-150,+50) using HOMER’s known motif database, assigning the 

presence of a motif to each TSR if the motif was detected at least once. Motif enrichment for 

each cluster was calculated by comparing motif occupancy rates in each cluster versus all other 

clusters to calculate the log2 enrichment and significance using the Fisher Exact test. The top 
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enriched motif(s) were then used to label the clusters, accounting for highly similar motifs from 

large families. 

Integration of csRNA-seq data with hematopoietic NGS epigenome profiling. Previously 

published bulk epigenomics data (ATAC-seq/ChIP-seq) from isolated hematopoietic cell types 

was used to assess the potential cell-type specificity of TSRs identified in our whole leukocyte 

csRNA-seq profiling experiments. ATAC-seq data from GSE118189 (16) 26 different peripheral 

blood cell types was further supplemented with ATAC-seq from primary neutrophils from 

GSE150018 (17) to analyze open chromatin. H3K27ac ChIP-seq data for 21 different peripheral 

blood cell types were downloaded from the Blueprint Epigenome project (https://www.blueprint-

epigenome.eu/) (18) to assess regions with active chromatin modifications. TF ChIP-seq data 

for RELA(NFkB) in monocyte derived macrophages (MDM) (GSE100381 (24)), NFKB1 in CD4+ 

T cells (GSE116695 (25)), STAT3 in MDM (GSE120943 (48)), GR in MDM (GSE109438 (49)), 

and IRF1 in MDM (GSE43036 (50)) were used to confirm the binding of TFs to predicted sites 

based on DNA motif analysis of TSR sequence. For ATAC-seq and TF ChIP-seq experiments, 

sequencing reads were downloaded from NCBI SRA, trimmed for adapter sequences, and 

aligned to the hg38 genome using STAR with default parameters. Replicate experiments were 

pooled by concatenating alignment files. Uniquely aligned reads (MAPQ>10) were then 

analyzed using HOMER to find peaks using “-style atac” and “-style factor” for ATAC-seq and 

TF ChIP-seq experiments, respectively. TF ChIP-seq peaks were found using their respective 

negative control input sequencing experiments, while ATAC-seq peaks were found using the 

pooled input from all ChIP-seq experiments as a control. HOMER was used to create genome 

browser tracks, quantify reads in the vicinity of TSRs to quantify enrichment, and create 

histograms of read distributions relative to the primary TSS (e.g. Supp. Fig. 1c). H3K27ac ChIP-

seq data from the Blueprint Epigenome project was downloaded as bigWig files, converted to 

bedGraph files using UCSC’s bigWigToBedGraph utility, and quantified at TSRs using 

HOMER’s annotatePeaks.pl program using the ‘-bedGraph’ option. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.24.457187doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

 To score TSRs by their cell type-specific ATAC-seq enrichment (i.e. Fig. 2c), ATAC-seq 

reads (normalized to 107 total mapped reads) for each cell type were quantified in the vicinity of 

all TSR (+/-200bp from the primary TSS or each TSR). For each TSR, the enrichment for each 

cell type was defined as the log2 ratio of reads from that cell type divided by the average 

normalized read count for all cell types. The same approach was used to score ChIP-seq 

specific enrichment (i.e. Supp. Fig. 3, 5c) by quantifying each ChIP-seq experiment across 

TSRs (+/-200 bp for TF ChIP-seq, +/- 500 bp for H3K27ac ChIP-seq). Aggregate cluster cell-

type enrichments were reported by calculating the average TSR cell-type specific enrichment for 

each of the TSRs in the cluster/TF-network (i.e. Supp. Fig. 3, 5c). Cell type enrichment patterns 

were further hierarchically clustered using Cluster 3.0 (51) (Pearson Correlation, average 

linkage) and visualized using Java TreeView (52).  

Overlap of disease-associated SNPs from COVID-19 GWAS with TSRs. GWAS meta-

analysis results from the COVID-19 Human Genetics Initiative (30) corresponding the A2, B1, 

B2, and C2 comparisons (Version 6, hg38 version) were downloaded from the consortium 

website (https://www.covid19hg.org/results/r6/). Significant disease-associated SNPs were 

defined using a p-value threshold of 5x10-8 as recommended in the original study (30). To 

visualize disease-associated SNPs overlapping TSRs in the TSR UMAP, we identified the SNP 

with the most significant p-value that overlapped each TSR within -300 to +100 relative to the 

primary TSS. 

Regulatory Element Locus Intersection (RELI) (31) was used to assess the significance 

of overlap between lists of TSRs (e.g. TF clusters, TSRs with modified Murray Scores > 0.15, 

etc.) and significant GWAS SNPs. First, lists TSRs were first mapped from the hg38 to the hg19 

version of the human genome using UCSC’s liftOver tool. Next, lists of significant disease-

associated SNPs were expanded to include additional SNPs in LD (r2 > 0.8) using SNIPA (EU 

ancestry) (53). These data were then used to run RELI using default parameters, looking for 
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SNPs that overlapped TSRs from -300 to +100 relative to the primary TSS, reporting the 

corrected p-value and overlapping SNPs (Supp. Table 7). 

Target genes selection and pathway analysis. Traditionally target genes are identified as the 

nearby genes to regulatory elements (54). Because csRNA-seq simultaneously profiles 

transcriptional initiation of protein-coding genes and cis-regulatory elements, the initiation 

activities of the target genes should correlate with the cis-regulatory elements. We defined 

target genes if they have promoter TSR that are in the same TF-network cluster. These target 

genes were submitted for Gene Ontology and Pathway Analysis using Metascape (55). 

Calculating TF-network activity from csRNA-seq. The aggregate TSR csRNA-seq signal 

represents the activity of the TF-network program. For each TSR cluster, the median csRNA-

seq normalized count (log2) for all TSRs in a given cluster was calculated to represent TF-

network activity. 

Target gene selection to calculate TF-network activity from transcriptomes. To compute 

TF-network activity from transcriptomic data, we first need to identify target genes whose steady 

state RNA levels reflect regulation at the transcription level. The target genes RNA level from 

total RNA-seq should match the transcriptional initiation activity from csRNA-seq. We used 

matching samples to process both total RNA-seq and csRNA-seq (n = 55) to identify target 

genes within the E2F/MYB, STAT/BCL6, and T1ISRE/STAT network. We computed a Pearson 

correlation coefficient for each target gene’s RNA level to the activity pattern of the cistromic 

TSR cluster across the 55 samples. Target gene was then selected by the following criteria: 1) 

the gene has a TSR resides in the annotated promoter and clusters into the E2F/MYB, 

STAT/BCL6, or T1ISRE/STAT network; 2) the gene is unique to one TF-network; 3) the gene is 

expressed in the transcriptomic analysis, defined by having a median normalized read count 

greater than 4 FKPM across all samples; 4) the target genes RNA level is positively correlated 

with the activity of the TSR cluster (correlation coefficient > 0.2). The last criteria remove genes 

whose steady-state RNA level can be influenced by post-transcriptional mechanisms. We 
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identified 106, 176, and 58 target genes for E2F/MYB, STAT/BCL6, and T1ISRE/STAT 

respectively. For validation, the TF-network activity determined by TSRs (csRNA-seq) and 

target genes (total RNA-seq) for the three TF-networks were analyzed in a 3x3 correlation 

matrix with Pearson’s correlation and two-tail test for statistical significance (Prism 9). 

Integrated analysis with single cell RNA-seq data. Single-cell RNA-seq data from Combes et 

al (8) was analyzed using the SCANPY toolkit (56). Cells with greater than 20% mitochondrial or 

50% ribosomal RNA reads were excluded, as were cells with fewer than 100 genes detected. In 

some cases, previous annotation labeling cells as possible multiplets was available and used to 

filter out non-singlets. Gene set signatures were tabulated per cell from raw read counts. For 

cell type identification, read counts per cell were normalized and log-transformed before 

applying the regress_out function to the total counts. The counts were then scaled to unit 

variance and zero mean. The cells were run through PCA, neighbor graph generation, and 

UMAP with default parameters. Cell clusters were identified using Leiden clustering with a 

resolution parameter of 0.25. Marker genes from these clusters were used to identify five 

neutrophil clusters. 

Cytokine measurements. The Human Anti-Virus Response Panel (13-plex; BioLegend, San 

Diego, CA) was used to quantitate human plasma cytokines (IL-1β, IL-6, IL-8, IL-10, TNFα, and 

IP-10). Plasma samples were stored at -80ºC until use. For the cytokine assay, plasma was 

freshly thawed at room temperature, centrifuged at 1,000 x g for 5 min, and run at a 2-fold 

dilution in Assay Buffer per the manufacturer’s instructions. Samples were acquired on a Canto 

II flow cytometer (BD) using a high throughput sampler. Samples were run in duplicate unless 

plasma volume was inadequate, and standards were run on all plates. Cell signaling technology 

(CST) was run prior to all flow cytometry runs to ensure low detector CVs and set laser delay. 

LEGENDplex Data Analysis Software (BioLegend) was used for analysis. 

Drug repurposing & connectivity mapping.  CMap (https://clue.io/cmap) provides expression 

similarity scores for a specific expression profile with other drug-induced transcriptional profiles, 
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including consensus transcriptional signatures of 2,837 drugs grouped into 83 drug classes (29). 

The connectivity score from CMap is calculated based on the observed enrichment scores in 

the queried gene lists relative to transcriptional signatures in the L1000 reference database. The 

score incorporates a nominal p-value calculated based on the comparison between the query 

and reference signatures relative to a null distribution of random queries, using the Kolmogorov-

Smirnov enrichment statistic, which is then corrected for multiple testing using the false 

discovery rate method (29, 57-59). 

For drug repurposing, the connectivity map scores were computed based on the target genes 

for each TF-network cluster. We hypothesized that the gene expression pattern resulting from 

the perturbation by a therapeutic compound should negatively correlate with the COVID-19 

transcriptional signature as previously shown (58, 59). Therefore, we selected those compounds 

that had significant negative connectivity map scores (i.e. compounds with the connectivity 

scores < −90, predicted to reverse our input signature (29)). For each cluster, we grouped 

predicted drugs into: (1) individual drug lists with connectivity scores (cs) <-90; (2) Drugs for 

each cluster based on the predicted cluster targets with cs <-90; and (3) Pharmacological drug 

classes (i.e. JAK inhibitors) to determine which broader classes of drugs may be predicted by 

each cluster to reverse the COVID-19 transcriptional signature (cs <- 90). 

Statistical Analysis. The appropriate statistical analysis is performed and detailed in the 

corresponding sections above.  

Study Approval. The study was approved by the Institutional Review Board at the University of 

California, San Diego (UCSD IRB#190699). Written informed consent was received prior to 

patient’s participation in the study. 
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Figure 1. Activated immune cistrome from peripheral leukocytes of hospitalized COVID-19 
patients. a-b. Longitudinal study design sampled plasma and peripheral leukocytes of 
hospitalized COVID-19 patients across different stages of lung injury quantified by the Modified 
Murray Lung Injury Score. Ninety-seven samples were included for active cistrome analysis 
using capped-short RNA-seq (csRNA-seq). For fatal cases, the collection ended after patients 
transitioned to comfort care. One patient declined resuscitation or intubation (DNR/DNI). c) 
csRNA-seq captures short 5' capped RNA species, including active cis-regulatory elements and 
gene promoters, collectively termed Transcription Start site Regions (TSRs). d) csRNA-seq 
identifies transcriptional activity (red) in putative enhancers (eRNAs) in the STAT5B (left), LITAF 
(middle) and MX1 (right) loci. The STAT5B enhancer resides in a neutrophil-specific active 
chromatin region (+ acetylated H3K27 and + ATAC-seq), whereas the LITAF enhancer resides 
in CD4 T cell active chromatin region. MX1 eRNA correlates with MX1 gene expression over 
time. e) Unbiased clustering of 93,465 TSRs grouped by similarity of their activity across 97 
samples using Uniform Manifold Approximation Projection (UMAP). Inset shows TSRs residing 
in the promoter (red) or promoter-distal regions (blue). f) Pearson correlation of csRNA-seq 
levels from TSR A compared to TSR B (left), TSR C (middle), and TSR D (right).  
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Figure 2. Differential activation of the immune cistrome at different disease states. A) UMAP of 
TSRs, shaded based on the correlation of their activity profile with lung injury score B) 
Spearmen correlation analysis of the activities of TSR A (left) and TSR B (right) with modified 
Murray Lung Injury Score. C) Open-chromatin ATAC-seq enrichment in neutrophils, 
plasmablasts, monocytes, and Th1 precursor lymphocytes from each TSR visualized on the 
immune cistrome UMAP (16, 17). Red delineates high ATAC-seq enrichment relative to other 
hematopoietic cell types. D) Genome-wide relative average TSR activity in asymptomatic 
controls (n=5) and patients with fast (n=5) or prolonged recovery (n=9) on the first day of 
enrollment.  
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Figure 3. Distinct cistrome clusters identify co-enrichment of transcription factor (TF) motifs 
suggestive of co-regulatory mechanisms. a) A logistic regression analysis (MEIRLOP) identified 
transcription factor (TF) motifs enriched in regulatory elements associated with high (violet) or 
low (orange) lung injury indices. Each dot represents the enrichment coefficient of TF motifs in 
TSRs with activity profiles highly correlated with the lung injury index. Error bars represent the 
lower and upper 95% confidence intervals. The enrichments of all motifs, except for T1ISRE, 
are all statistically significant (adj. p < 0.0001). b) UMAP representation showing discrete TSR 
clusters labeled by representative TFs exhibiting the highest enrichment in each cluster. c) Motif 
analysis depicts co-enrichment of signal-dependent, lineage-determining, and promoter TF 
motifs. Red depicts the Log2 ratio enrichment of the motif frequency in the TSR cluster relative 
to all TSRs; blue, depletion. The dot size represents the Fisher Exact Test p-value. Functional 
enrichment/GO analysis identifies top pathways from genes associated with each TSR cluster.  
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Figure 4. The natural progression of transcriptional programs during the clinical course of 
COVID19 ARDS. a) Genome-wide kinetic correlation analysis for cistrome activity to hospital 
days in critically ill COVID19 ARDS survivors (n = 9) with prolonged recovery (the median 
number of time points is 7 per patient; total = 63 samples). Correlation coefficients for each TSR 
activity to hospital time are overlaid on the UMAP. Purple indicates higher activity early in the 
hospital course; yellow, later hospital course. b-e) Time course of TF-activity in clusters 
enriched for (b) STAT/BCL6, (c) T1ISRE/STAT, (d) NFkB/RBPJ, X-Box/NFY/CRE, and YYI, e) 
ETS/YY1, CEBP/PU1, and ARE/AP1/SMAD. TF activity represents the median log2 csRNA-seq 
signals of all TSRs in a given cluster. f-g) Serum cytokines for (f) IL6 and (g) IP-10 implicated in 
the STAT and Interferon pathway, respectively. Each point represents the median log2 of TSR 
cluster activity with the color indicating the lung injury score at those time points (violet = high; 
gold = low). The line and shaded region correspond to the smooth conditional mean and 95% 
confidence intervals, respectively. h) Gene pathways enriched in the early (purple) and late 
(yellow) TF programs. Ridge plot shows the time-TSR activity correlation coefficient of genes in 
the respective pathways. 
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Figure 5. Distinct TSR clusters exhibit significant enrichment of single nucleotide polymorphisms 
associated with COVID-19 clinical outcome. a) The LZTFL1 locus in chromosome 3p21.31 
harbors numerous SNPs associated with COVID-19 clinical outcome (p-value < 5 x 10-8). SNP 
A (rs34460587, -log p-value > 15, hospitalization vs. non-hospitalized COVID-19 cases) lies 
within -300 to + 100 bp of a transcription start sites (TSS) located in the intergenic region 
between the CCR1 and XCR1 genes. c) UMAP showing the distribution of TSRs with COVID-19 
associated SNPs overlap. d) Statistical analysis for enrichment of COVID-19 associated SNPs 
in TSRs based on lung injury index (left) or TSR clustering (right) using Regulatory Element 
Locus Intersection (RELI) (31). The color represents the RELI corrected p-values that account 
for the underlying genetic structure.  
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Figure 6. Dysregulated E2F/MYB, STAT/BCL6, and T1ISRE/STAT programs are associated 
with severe COVID-19. a) Framework for applying aggregate TF-network target gene 
expression as a representation of TF activity to validate cistrome-disease relationships in patient 
clinical outcome and cellular subtypes. b. Pair-wise Pearson's correlation analysis of TF activity 
as determined by cistrome (csRNA-seq) and target gene expression (total RNA-seq) for 
E2F/MYB, STAT/BCL6, and T1ISRE/STAT using 55 matched samples. Correlation coefficients 
and the p-values for each pair-wise comparison are indicated. c. Spearman correlation of 
clinical severity (HFD45) with E2F/MYB, STAT/BCL6, and T1ISRE/STAT activity in an external 
COVID19 cohort (n = 100) (32). Smooth conditional means and 95% confidence intervals are 
depicted. d) Scatterplot of individual patient samples from the external COVID19 cohort based 
on STAT/BCL6 (x-axis) and E2F/MYB (y-axis) activity. The color of each point represents 
clinical disease severity (Red = severe; green = mild). The dash lines demarcate the medians 
for STAT/BCL6 (vertical) and E2F/MYB (horizontal) activity. The fatal cases for each quadrant 
are significantly different (Chi-square, p-value = 0.004, two-tailed). e-g) The average HFD45 for 
patient subgroups based on the activity of (e) E2F/MYB and STAT/BCL6, (f) E2F/MYB and 
T1ISRE/STAT, and (g) T1ISRE/STAT and STAT/BCL6. Error bars represent 95% confidence 
intervals from the mean (horizontal lines). One-way ANOVA with multiple comparisons shows 
statistical differences between subgroups. Adjusted p-values * < 0.05, ** < 0.005, *** < 0.0005. 
h) Three neutrophil subsets identified from COVID19 peripheral leukocyte single-cell RNA-seq 
analysis (8). i) Distribution of activities in E2F/MYB, STAT/BCL6, and T1ISRE/STAT programs 
per cell in each neutrophil subset. j) The cellular distribution of neutrophil subsets in control and 
COVID19 patients with mild and severe disease. 
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