
fnagi-10-00294 September 24, 2018 Time: 15:42 # 1

ORIGINAL RESEARCH
published: 26 September 2018
doi: 10.3389/fnagi.2018.00294

Edited by:
Ashok Kumar,

University of Florida, United States

Reviewed by:
Eduardo Candelario-Jalil,

University of Florida, United States
Hyacinth Idu Hyacinth,

Emory University, United States

*Correspondence:
Natalia Cichoń
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Background: Neuroplasticity ensures the improvement of functional status in patients
after stroke. The aim of this study was to evaluate the effect of extremely low-frequency
electromagnetic field therapy (ELF-EMF) on brain plasticity in the rehabilitation of patients
after stroke.

Methods: Forty-eight patients were divided into two groups underwent the same
rehabilitation program, but in the study group, the patients additionally were exposed to
a standard series of 10 ELF-EMF treatments. To determine the level of neuroplasticity,
we measured the plasma level of the brain-derived neurotrophic factor (BDNF), the
vascular-endothelial growth factor, as well as BDNF mRNA expression. Additionally, we
determined the molecule levels for hepatocyte growth factor, stem cell factor, stromal
cell-derived factor 1α, nerve growth factor β, and leukemia inhibitory factor, using
5plex cytokine panel in plasma. After 4 weeks, during which patients had undergone
neurorehabilitation and neurological examinations, we assessed functional recovery
using the Barthel Index, Mini-Mental State Examination (MMSE), Geriatric Depression
Scale, National Institutes of Health Stroke Scale (NIHSS), and the modified Rankin Scale
(mRS).

Results: We observed that ELF-EMF significantly increased growth factors and cytokine
levels involved in neuroplasticity, as well as promoted an enhancement of functional
recovery in post-stroke patients. Additionally, we presented evidence that these effects
could be related to the increase of gene expression on the mRNA level. Moreover, a
change of BDNF plasma level was positively correlated with the Barthel Index, MMSE,
and negatively correlated with GDS.
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Conclusion: Extremely low-frequency electromagnetic field therapy improves the
effectiveness of rehabilitation of post-stroke patients by improving neuroplasticity
processes.

Keywords: extremely low-frequency electromagnetic field, neuroplasticity, brain-derived neurotrophic factor,
stroke, rehabilitation

INTRODUCTION

Regenerative processes within the brain tissue are limited and
regulated by tissue environmental properties, which are affected
by changes in the physiology of the organism (Hagg, 2009).
Neurotrophic factors affect neurogenesis through the condition
of the growth of new neurons and the survival of existing
ones (Hylin et al., 2017). Traditionally, neurotrophic factors are
divided into three protein families: the classic neurotrophin,
ligands of Glial Cell Derived Neurotrophic Factor (GDNF),
and neuropoietic cytokines. Neurotrophins are synthesized and
secreted by nerve cells in the brain and spinal cord, and the cells
of dependent tissue (Hagg, 2009; Lindholm and Saarma, 2010).

Compensatory plasticity of the damaged brain is a completely
different process from the plasticity occurring in a normally
functioning, healthy brain. This process is initiated under
critical conditions: in interactions with oedema, inflammation,
apoptosis, metabolic disturbances, and fiber degeneration. It
starts immediately after an ischaemic event (Liguz-Lecznar
and Kossut, 2013). Moreover, neuroplasticity consists of
strengthening the existing nerve pathways and then establishing
new connections. Existing, but weaker connections between
brain centers undergo activation (Martin et al., 2017). As a result,
the defective function can be restored partially or completely,
because other cortical or subcortical structures will take over the
function of the damaged area. In the brain in animal models,
synaptogenesis was found in the area adjacent to tissue damaged
by the stroke, and also in regions of the undammed hemisphere
(Law et al., 2017).

Neuroplasticity is closely related to neurogenesis, wherein
fully functioning neuronal cells are generated, resulting from
the differentiation of neuronal stem cells (NSCs) present in
the adult, fully formed brain. NSCs are characterized by the
ability of indefinite mitotic division, potential divisions, and
to differentiate into the appropriate morphological phenotype
(Klein et al., 2016). The process of neurogenesis occurs in
certain brain structures throughout life, nevertheless the rate
of proliferation and the ability of the newly formed neurons
to survive to reduce with age. Nerve cells are generated in
brain regions responsible for learning, memory, and reception of
olfactory sensation, primarily in the sub-ventricular zone (SVZ)
and the subgranular zone (SGZ), and also in the migration of
emergent neuroblasts toward injury (Zelentsova-Levytskyi et al.,
2017). Neurogenesis is regulated by many factors, including
neurotrophins, growth factors, hormones, neurotransmitters,
and microenvironmental factors (Aimone et al., 2014).

Physical therapy, including the use of extremely low-
frequency electromagnetic field (ELF-EMF) therapy, is beneficial
in restoring the patients after stroke. ELF-EMF demonstrates

anti-inflammatory, regenerative, analgesic, and osteogenic
action. Moreover, ELF-EMF promotes cell proliferation,
protein synthesis, ion transport, and changes in cellular signal
transmission (Li, 2017). Our previous studies have shown that
ELF-EMF therapy reduces oxidative stress during rehabilitation
of post-acute stroke patients (Cichoń et al., 2017a, 2018).
Additionally, our recent research, for the first time focused on
the effect of ELF-EMF on the potential factors of brain plasticity,
indicate that ELF-EMF therapy increases the generation and
metabolism of NO – neurotransmitter regulating neurogenesis,
and synaptic plasticity (Cichoń et al., 2017b). As part of the
broadening the examined issue, the present analyses are a
continuation of the parameter evaluation of the same group of
post-stroke patients but currently relate to changes in blood levels
of growth factors involved in the neuroplasticity process, induced
by ELF-EMF therapy. We selected two significant growth factors
for analysis, i.e., brain-derived neurotrophic factor (BDNF)
and vascular endothelial growth factor (VEGF). BDNF is the
most common neurotrophin in the nervous system, and playing
an important role as an effective indicator for rehabilitation
interventions in relation to brain neuroplasticity improvement
(Qiao et al., 2017). VEGF is one of the most important pro-
angiogenic factors and is critical for blood vessel growth
in the nervous system of vertebrates. VEGF-induced blood
vessel growth may be essential for nervous tissue regeneration
during the recovery process. Moreover, several recent studies
demonstrate that VEGF has significant non-vascular functions
in the nervous system, and it can be considered as an important
agent for promoting neurogenesis, glial growth, and nerve
repair (Rosenstein et al., 2010). It is well documented that the
cytokine-mediated inflammatory mechanisms within the central
nervous system (CNS) contribute to cognitive impairment due
to disorders of neurons and glial cells in acute stroke patients.
Therefore, we have also chosen a panel of 5 cytokines (HGF,
SCF, SDF-1α, β-NGF, and LIF) simultaneous measured using
Bio-Plex System, which may be the important factors involved in
the neurochemical features of brain tissue damage and repair.

MATERIALS AND METHODS

Blood Sample Collection
Blood samples were taken twice: before and after a standard
ten sessions of therapy (with an interval of 14 days). They were
collected into CPDA1 containing tubes (Sarstedt, Nümbrecht,
Germany). For analysis of mRNA expression, a portion of the
sample was frozen at −80◦C immediately upon collection. The
rest of the samples were centrifuged (15 min at 1,500 g) at 25◦C,
to isolate the plasma. All blood samples were collected at the same
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time of day (between 7 am and 9 am), under conditions of dietary
fasting, and stored using the same protocol.

Subject Presentation
Post-stroke patients with moderate stroke severity (n = 48) were
recruited to the study, and were then randomly divided into
a study group [ELF-EMF (n = 25; NIHSS scores of 4.9 ± 3.1;
aged 48.0 ± 8.0)], and a control group [non-ELF-EMF (n = 23;
NIHSS scores of 5.4 ± 2.9; aged 44.8 ± 7.7)]. Clinical and
demographic characteristics are shown in Table 1. The same
patients were enrolment to our previous study (Cichoń et al.,
2017b). Subjects with neurological illness other than stroke,
haemorrhagic stroke, chronic or significant acute inflammatory
factors, dementia, and/or decreased consciousness in their
medical pre-stroke history, were all excluded. The patients
had undergone neurorehabilitation as well as internal and
neurological examinations, for 4 weeks in Neurorehabilitation
Ward III of the General Hospital in Łódź, Poland.

In both subject groups the same therapeutic program (aerobic
exercise 30 min, neurophysiological routines 60 min, and 15 min
psychological therapy) was used. Furthermore, ELF-EMF therapy
was conducted using a Magnetronic MF10 generator (EiE
Elektronika i Elektromedycyna, Otwock, Poland). Both groups
were treated for the same amount of time (15 min), but sham
exposures were administrated to the non-ELF-EMF subjects.
Subjects were excluded from the ELF-EMF group who had

TABLE 1 | Demographic characteristics.

Non-ELF-
EMF

group

ELF-EMF
group

p

Demographics

Age [mean ± SD] 44.8 ± 7.7 48.0 ± 8.0 0.84

Sex (man) [%] 48 vs. 52 60 vs. 40 0.27

Living alone [%] 32.1 34.2 0.59

Vascular risk

Hypertension [%] 97.3 98.5 0.07

Diabetes [%] 31.4 39.2 0.21

Dyslipidemia [%] 78.8 72.2 0.7

BMI ≥ 30 [%] 21 34 0.78

Concomitant medications

Antidepressants [%] 29 34 0.5

ASA [%] 70 65 0.42

NSAID [%] 25 27 0.8

Stroke characteristics

Weeks since stroke [mean ± SD] 3.9 ± 0.6 3.2 ± 0.4

NIHSS scores [mean ± SD] 5.4 ± 2.9 4.9 ± 3.1

ADL [mean ± SD] 8.89± 2.87 9.95± 2.35 0.22

Lesion location

Anterior [n] 3 5

Posterior [n] 7 6

Intermediate [n] 13 14

Lesion side

Left [n] 15 13

Right [n] 8 12

electronic and/or metal implants (pacemakers, etc.). ELF-EMF
therapy with specific parameters (magnetic induction of 5 mT,
40 Hz, rectangular and bipolar waveforms) was conducted in the
ELF-EMF group. The pelvic girdle of the patients was exposed to
the electromagnetic field.

Determination of BDNF Level in Plasma
Plasma samples were diluted ten times (using a diluents buffer)
before measurement of BDNF concentration, using a Human
BDNF ELISA Kit (Abcam, Cambridge, MA, United States), in
accordance with the manufacturer’s protocol. The intensity of the
color was measured at 450 nm (Schiavone et al., 2017).

Determination of BDNF Expression in
Whole Blood Samples
Isolation of RNA and Reverse Transcription
Frozen whole blood samples (−80◦C) were lysed using TRI
Reagent R© (Sigma-Aldrich, St. Louis, MO, United States), after
which phase separation was performed. Then, an InviTrap Spin
Universal RNA Mini Kit (Stratec Biomedical Systems, Birkenfeld,
Germany) was used to purify the RNA-containing aqueous
phase. The quantity and purity of RNA were estimated using a
Synergy HTX Multi-Mode Microplate Reader, equipped with a
Take3 Micro-Volume Plate (BioTek Instruments, Inc., Winooski,
VT, United States). RNA samples were diluted to 20 ng/µL
and transcribed into cDNA with a High-Capacity cDNA
Reverse Transcription Kit (Applied BiosystemsTM, Waltham,
MA, United States). All steps were performed according to the
manufacturers’ recommendations.

Real-Time PCR
Expression levels of the studied genes were obtained using the
following TaqMan probes: Hs02718934_s1 for human BDNF
gene, and Hs02786624_g1 as an endogenous control, which
was a human GAPDH gene (Life Technologies, Carlsbad, CA,
United States). Real-time PCRs were performed in a CFX96
real-time PCR system (Bio-Rad Laboratories, Hercules, CA,
United States) using a TaqMan Universal Master Mix II, without
UNG (Life Technologies, Carlsbad, CA, United States). All
procedures were performed according to the manufacturers’
protocols. Relative expressions of the studied genes were
calculated using the equation 2−1Ct, where 1Ct = Cttargetgene –
CtGAPDH.

Determination of VEGF in Plasma
Measurement of VEGF concentration was conducted using a
VEGF Human ELISA Kit (Novex R© Life Technologies, Carlsbad,
CA, United States), according to the manufacturer’s protocol. The
intensity of the color was measured at 450 nm (Ling et al., 2015).

Analysis of Plasma Cytokine Levels
The level of HGF, SCF, SDF-1α, β-NGF, and LIF plasma growth
factors were indicated using a Human Cytokine 5-plex assay
kit (Bio-Rad, Hercules, CA, United States), on a Bio-Plex R© 200
system (Bio-Rad, Hercules, CA, United States). Growth factors
were measured in accordance with the manufacturer’s protocol
(Zanotta et al., 2016).
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Cichoń et al. Effect of ELF-EMF on Neuroplasticity in Post-stroke Patients

FIGURE 1 | Comparison of the BDNF level obtained from the ELF-EMF group vs. the non-ELF-EMF group. (A) BDNF plasma concentration. Statistical significance
between ELF-EMF and non-ELF-EMF groups: b vs. d: p < 0.0001. (B) BDNF mRNA expression. Statistical significance between ELF-EMF and non-ELF-EMF
groups: b vs. d: p < 0.0001.

Clinical Parameters Determination
The stroke-related neurologic deficit was measured using The
National Institutes of Health Stroke Scale (NIHSS). Functional
status was evaluated using the Barthel Index of Activities
of Daily Living (ADL) and modified Rankin Scale (mRS),
and cognitive status using the Mini-Mental State Examination
(MMSE). Depression, the most common affective complication
after stroke, was estimated using the Geriatric Depression Scale
(GDS) (Cichoń et al., 2017a). The NIHSS, ADL, MMSE, GDS,
and mRS were conducted either on the same day as the blood
sampling or the afternoon before, in both groups.

Data Analysis
All experiments were performed in duplicate and calculated as
mean values. For all subjects, the values of parameters before their
treatments were used as the output value (100%). Data from the
experiments performed on these same subjects after appropriate
treatments were expressed as a percentage of the output value.
Values obtained in this way were expressed as mean± SD.

The all statistical analyses were performed using Stats Direct
statistical software v.2.7.2. To avoid committing a type 1 error
statistical analysis was performed using multiple comparison
methods. First, the Shapiro–Wilk test was used to assess normal
distribution of variables. Next, the results were analyzed for
equality of variance using Levene’s test. The significance of the
differences between the values was analyzed using ANOVA,
followed by Tukey’s range test for multiple comparisons (for
data with normal distribution and equality of variance) or non-
parametric the Kruskal–Wallis test (when variables had other
than normal distribution or had no equality of variance) (Bijak
et al., 2012, 2013).

Additionally, we performed a correlation analysis between
the changes in both experimental and clinical parameters. For
these analyses, a Spearman’s rank correlation was used, with the
Spearman’s rank correlation coefficient and the probability of
correlation designated. For all analyses, a level of p < 0.05 was
accepted as statistically significant.

RESULTS

In our comparative analysis, we demonstrated the effect of
ELF-EMF therapy on various neurotrophic factors. Particularly
relevant findings relate to the level of BDNF as the most
prevalent growth factor in the CNS, which is essential for the
development of CNS and neuronal plasticity. The plasma level of
BDNF in the ELF-EMF group after ten sessions of rehabilitation
was significantly higher compared to the non-ELF-EMF group
(p < 0.0001). The increase of the BDNF level in the ELF-EMF
group was about 200% (p < 0.0001), while in the non-ELF-
EMF group it was comparable (p > 0.05) (Figure 1A). We also
evaluated the effect of ELF-EMF on gene expression in the whole
blood samples of BDNF. We demonstrated that after ELF-EMF
therapy, expression of BDNF increased about 195% (p < 0.0001),
while in the non-ELF-EMF group it did not change (Figure 1B).
Because of the crucial role of BDNF participates in the formation
of appropriate synaptic connections in the brain, it seems that
ELF-EMF may serve as a therapeutic treatment to improve the
neuroplasticity after stroke. Moreover, as proved to be significant
differences in the level of VEGF caused by ELF-EMF application.
VEGF is crucial for cross-talk between the cardiovascular and
nervous systems, which is particularly important in the case
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FIGURE 2 | Comparison of the plasma VEGF level obtained from the
ELF-EMF group vs. the non-ELF-EMF group. Statistical significance between
ELF-EMF and non-ELF-EMF groups: b vs. d: p < 0.001.

of brain stroke that damages both blood vessels and nervous
tissue. After treatment, the VEGF plasma concentration in the
ELF-EMF group increased about 50% (p< 0.001), but in the non-
ELF-EMF group it remained unchanged (p > 0.05) (Figure 2).
The raw data of both BDNF and VEGF plasma level has been
shown in Table 2). We also assessed five cytokine concentrations
in plasma using the Luminex platform. Two of these (βNGF
and LIF) presented as out of range, both before and after
treatment (<2.57 pg/ml and 1.92 pg/ml, respectively) (Table 3).
After treatments, hepatocyte growth factor (HGF) and stem cell
factor (SCF) levels in plasma were elevated in the ELF-EMF
group (p < 0.01 and p < 0.05, respectively), but the SDF-1α

level was comparable in both groups (p > 0.05) (Table 3 and
Figure 3). HGF is another (like VEGF) angiogenic factor that
also produces neurotrophic effects in CNS. HGF plays pivotal
roles in the nervous system during nerve regeneration process,
by acting on neuronal or non-neuronal cells. HGF concentration
after ELF-EMF therapy increased about 35% (p < 0.01), and
in the non-ELF-EMF group remained unchanged (p > 0.05)
(Figure 3A). SCF is a cytokine belonging to the control factors
of the differentiation of stem cells to neurons and glia. Given the
capacity of SCF to induction of regenerate of cells lost through
brain injury, this cytokine seems particularly essential for the
course of neuroplasticity processes. SCF level in the ELF-EMF
group was higher by about 25% after treatment (p < 0.05), and in
the non-ELF-EMF group was unchanged (p > 0.05) (Figure 3B).
After therapy, the change of SDF-1α concentration was low
and not statistically significant in either group (Table 3 and
Figure 3C).

Additionally, we estimated the clinical status of patients using
NIHSS, ADL, mRS, MMSE, and the GDS in both groups. Stroke-
related neurologic deficit estimated using NIHSS in ELF-EMF
group decreased about 65% more than in non-ELF-EMF group
(p < 0.001) (Figure 4). Functional status assessed by ADL in
both groups increased (p < 0.001 and p < 0.001), but 1ADL
in both groups was comparable (p > 0.05), whereas assessed by
mRS decreased in both group, and decline in ELF-EMF group
was more about 50% than in non-ELF-EMF group (p < 0.01)
(Figure 4). A better improvement after ELF-EMF therapy was

TABLE 2 | Plasma levels (in pg/ml) of BDNF and VEGF measured before and after
treatment in ELF-EMF and non-ELF-EMF groups.

Non-ELF-EMF
group

ELF-EMF
group

BDNF [pg/ml] Before treatment 25.57 23.68

After treatment 23.31 36.36

p >0.05 <0.001

VEGF [pg/ml] Before treatment 37.67 30.75

After treatment 34.79 46.29

p >0.05 <0.001

TABLE 3 | Cytokine plasma profile.

Non-ELF-EMF
group

ELF-EMF
group

HGF [pg/ml] Before treatment 369.55 274.43

After treatment 390.83 366.62

p >0.05 <0.001

SCF [pg/ml] Before treatment 96.21 85.66

After treatment 98.68 105.29

p >0.05 <0.05

SDF-1α [pg/ml] Before treatment 105.55 122.45

After treatment 108.65 120.40

p >0.05 >0.05

βNGF [pg/ml] Before treatment <2.57 <2.57

After treatment <2.57 <2.57

LIF [pg/ml] Before treatment <1.92 <1.92

After treatment <1.92 <1.92

observed in cognitive impairment estimated by MMSE, with
about a 35% higher growth (Figure 4). Depressive syndrome
measured in GDS decreased significantly, while 1GDS gained
about 45% better results in the ELF-EMF group than the non-
ELF-EMF group (Figure 4).

Subsequently, we performed a correlation analysis between
the plasma level of the most important neurotrophic factor,
BDNF, and clinical parameters. Correlation parameters indicated
a significant positive correlation between changes (1) of BDNF
plasma level and 1ADL, as well as between 1BNDF and
1MMSE, and a negative correlation between 1BNDF and
1GDS (Figure 5). The detailed process of these relationships,
which confirms the correlation and the numeric data shown, is
presented in Table 3.

DISCUSSION

Post-stroke rehabilitation is intended to restore the patient
to a healthy condition and return them to a functional
state, as prior to their illness, or allow them to adapt and
achieve an optimal level of independence. Active post-stroke
therapy should be begun as soon as possible, immediately upon
stabilization of the general medical state. The rehabilitation
process should be continued until obtaining a good result on an
actual improvement index, which should also include cognitive
disorders and behavioral changes (Jia et al., 2017).
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FIGURE 3 | Comparison of the plasma cytokine profile obtained from the ELF-EMF group vs the non-ELF-EMF group. (A) HGF plasma level. Statistical significance
between ELF-EMF and non-ELF-EMF groups: b vs. d: p < 0.01. (B) SCF plasma level. Statistical significance between ELF-EMF and non-ELF-EMF groups: b vs. d:
p < 0.05. (C) SDF-1α plasma level.

FIGURE 4 | Clinical parameters NIHSS, ADL, mRS, MMSE, and GDS as measured in the study vs. the control group. Data is shown here as a delta of scores
obtained before and after the standard series of treatments (1 NIHSS = the decline of NIHSS; 1ADL = the gain of ADL; 1 mRS = the decline of mRS;
1 MMSE = the gain of MMSE; 1 GDS = the decline of GDS).

Ischaemic stroke and other acute CNS injury indicates an
increase of neuronal progenitor’s proliferation in the SVZ zone
identifying the lesion area and neuroblast migration to the
ischaemic area within the striatum and cortex (Hu et al., 2013;
Liu et al., 2015b; Choi et al., 2017).

In current research on brain plasticity processes, particular
attention has been focused on BDNF an activator of various
signaling pathways involved in regulation of neurogenesis and
survival of neurons. The BDNF function may also be related to
the formation and maintenance of dendritic spines and dendrites,
as well as regulation of synaptic function during long-term
potentiation, learning, and memory process (Greenberg et al.,
2009). The source of BDNF is an active microglial, as well as

the endothelium and neurons (Gomes et al., 2012). BDNF is
involved in the regulation of neurogenesis in the SVZ zone and
the migration of progenitor cells from the SVZ to the damaged
striatum (Bathina and Das, 2015). BDNF infusions into lateral
ventricles cause duplication of a number of neurons in the
olfactory bulb region and production of synaptic connections
(Bath and Lee, 2010).

In this study, we showed for the first time that ELF-EMF
increased BDNF concentration (Figure 1A), as well as BDNF
mRNA expression in vivo in humans (Figure 1B). Our results
coincide with those of studies conducted by Di Loreto et al.
(2009). They investigated changes in the expression profile of
cytokine and the growth factor profile in rat cortical neurons
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FIGURE 5 | Scatterplots presenting correlation between changes of BDNF
plasma level (in pg/ml) in ELF-EMF group and (A) changes of ADL;
(B) changes of MMSE; (C) changes of GDS.

with exposure to ELF-EMF (50 Hz, 0.1 and 1 mT) during
maturation of cells. They observed that ELF-EMF exposure
induced an increased mRNA and protein expression of BNDF
and its receptor. As such, they found that ELF-EMF caused
up-regulation in neurons (Di Loreto et al., 2009).

The regenerative ability of ELF-EMF has been confirmed by
Hei et al. (2016) They observed that pulsating electromagnetic
fields (50 Hz, 1 mT) caused increased BDNF gene expression
in immortalized rat Schwann cells. They suggested that the
electromagnetic field improved regeneration of peripheral nerves
by enhancing proliferation of cells, and BDNF and S100 gene

expression (Hei et al., 2016). Similar evidence was provided by
Urnukhsaikhan et al. (2017). The increase of BDNF, protein
level after EMF treatment, confirmed the neuroprotective
action of EMF in mice during recovery process after stroke
(Urnukhsaikhan et al., 2017).

The probable mechanism of increase of BDNF mRNA
expression after EMF treatment was explained by Li et al. (2014).
They investigated L-type voltage-gated calcium channels-and
Erk-dependent signaling pathways and sampled BNDF mRNA
expression in cultured dorsal root ganglion neurons (Li et al.,
2014). Sun et al. (2016) investigated membrane capacitance and
calcium influx in the calyx of Held. They certified the significance
of the effect of ELF-EMF on plasticity and synaptic transmission
by facilitation of synaptic plasticity in a calcium-dependent
manner, and vesicle endocytosis. Exposition of ELF-EMF causes
increases in the impact of calcium influx on the enhancement
of calcium channel expression at the presynaptic nerve terminal
(Sun et al., 2016).

The primary function of VEGF is a pro-angiogenic action, but
there is much evidence of its neurotrophic and neuroprotective
effect, both on the central and peripheral nervous system (Saban
et al., 2011; Yao et al., 2016; Shahhoseini and Bigdeli, 2017). VEGF
generated by ependymal cells activates and enhances neuronal
precursor proliferation and growth in the SCZ and SGZ zones
(Chodobski et al., 2003). Moreover, VEGF enhances astrocytes
proliferation and migration (Lenzer-Fanara et al., 2017), as
well as stimulates growth and survival of Schwann cells after
hypoxia (Cattin et al., 2015). Its neurogenesis effect is assessed
by stimulation of the endothelium to release neurotrophic factors
(Feng et al., 2012).

In the current study, we observed that the VEGF plasma
level increased in the group exposed to ELF-EMF (Figure 2).
However, our results are compatible with studies conducted
by Delle Monache et al. (2008), who suggested ELF-EMF’s
impact on in vitro modulation of endothelial functions through
VEGF-dependent signal transduction pathways. Liu et al. (2015a)
estimated the effect of a pulsating electromagnetic field on
neurotrophic genes’ expression and proliferation in Schwann
cells in rats. They observed that EMF increased both protein
levels and the gene expression of VEGF, BDNF, and GDNF. They
thereby confirm that EMF therapy improves nerve regeneration
(Liu et al., 2015a).

We also measured the cytokine plasma levels involved in
neuroplasticity processes: HGF, SCF, SDF-1α, β-NGF, and LIF.
We observed that after the application of ELF-EMF, hepatocyte
growth factor increased (Table 3 and Figure 3A). HGF is
expressed in many different tissues, including the brain (Sharma,
2010). HGF by cMet receptor impacts morphogenesis, cell
motility, and proliferation of neuronal and non-neuronal tissues.
It also activates the migration and proliferation of the progenitors
of oligodendrocyte, Schwann cells, as well as intensifying
the differentiation and survival of hippocampal, cortical, and
midbrain dopaminergic neurons (Wang et al., 2011). Shang et al.
(2011) found that in Wistar rats, after transient middle cerebral
artery occlusion (tMCAO), exogenous administration of HGF
caused a decrease in infarct size, intensification of synaptogenesis
and angiogenesis, and a reduction of scar thickness of the pia
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mater and glial scar formation (Shang et al., 2011). Similarly,
Doeppner et al. (2011) investigated the impact of intrastriatal
HGF treatment on the long-term effects of and neurologic
recovery and brain injury. They suggested that long-term
neuroprotection caused by HGF was associated with enhanced
neurovascular remodeling, and maintained recruitment of
proliferating cells (Doeppner et al., 2011).

Stem cell factor (SCF) also has an impact on neuroprotection
and neurogenesis. It is involved in the development of the
cortex, and migration and proliferation of neural progenitor
cells. SCF in microglia enhances BNDF and NGF expression and
reduces pro-inflammatory cytokine expression. Furthermore,
SCF participates in neuron-glia, and neuron-neuron interaction
(Benedetti et al., 2016). Liu et al. (2016) estimated the effect of
administration of SCF and granulocyte-colony stimulating factor
(G-CSF) on the effectiveness of recovery in aged mice after stroke.
A similar study was conducted by Cui et al., who investigated
the effect of the SCF and G-CSF combination on brain repair,
6 months after cortical injury in transgenic mice. They also
suggested that SCF+G-SCF treatment enhanced motor function
through vascular and synaptic regeneration (Cui et al., 2016).
In this study, we showed that the plasma concentration of
SCF increased about 25% in the ELF-EMF group (Table 3 and
Figure 3B), and this is consistent with Fan et al. whose evaluated
the effect of ELF-EMF (50 Hz, 1 mT) on cytokine production
and proliferation of mesenchymal stem cells (MSC) in rats. They
found that SCF mRNA expression after ELF-EMF increased in
comparison to their control group. They suggested that ELF-
EMF enhanced the proliferation of MSC, as well as up-regulated
haematopoietic growth factor expression (Fan et al., 2015).

Stromal derived factor-1α (SDF-1α) is a chemokine secreted
from the endothelium which can induce neuroblast migration
from SVZ to the ischemic area in rats (Zhao et al., 2015). Luo
et al. (2014) demonstrated the impact of physical exercise on
functional recovery by improving migration, differentiation, and
proliferation of NSCs in SDF-1α rats after MCAO. In our study,
we observed no change in SDF-1α, in both the ELF-EMF and
non-ELF-EMF groups (Table 3 and Figure 3C).

Despite nerve growth factor (NGF) being a neurotrophic
factor predominantly involved in neuroplasticity (Isaev et al.,
2017), in our study, the βNGF level in both groups before and
after treatment was out of range (Table 3). Similarly, leukemia
inhibitory factor (LIF), which is an anti-inflammatory cytokine
involved in brain plasticity (Vidal et al., 2013), was out of range
(Table 3). In research by Sarchielli et al. (2013) the level of these
molecules was also below the detection limit.

In our study we suggested that ELF-EMF improved
neuroplasticity, which idea is compatible with data from
the existing literature (Oda and Koike, 2004; Cuccurazzu et al.,
2010; Balassa et al., 2013; Cheng et al., 2015). Cuccurazzu
et al. (2010) investigated the effect of ELF-EMF (50Hz, 1mT)
on hippocampal neurogenesis in adult mice. They observed
that ELF-EMF exposition increased the expression of Mash1,
NeuroD2, and Hes1 (pro-neuronal transcription genes), and
genes encoding Ca(v)1.2 channel α(1C) subunits, thus promoted
neurogenesis in the dentate gyrus (Cuccurazzu et al., 2010). On
the other hand, Balassa et al. estimated the impact of long-term

ELF-EMF (50 Hz, 3mT) synaptic functions in the developing
brain. They found that exposure to ELF-EMF enhanced synaptic
plasticity and basic neuronal functions in the brain, both in
newborn and fetal rats (Balassa et al., 2013). Oda and Koike
examined the effect of ELF-EMF (50 Hz, 0.3 mT) on neuronal
apoptosis. They observed that application of ELF-EMF inhibited
apoptosis and enhanced the survival of immature cerebellar
granule neurons (Oda and Koike, 2004). Moreover, Cheng
et al. investigated the impact of ELF-EMF (50 Hz, 0.4 mT) on
hippocampal neural progenitor cells from both ischaemic and
embryonic brains. They observed that application of ELF-EMF
intensified the ability of neural progenitor cells to proliferate in
both kinds of the brain (Cheng et al., 2015).

In our study, we also found a relationship between ELF-
EMF and the enhancement of the clinical parameters of tested
subjects, as well as a correlation between BDNF level and
clinical parameters (Figure 5). The results we obtained show
that the ADL value was comparable in both groups of patients
(Figure 4) and that there was a significant positive correlation
between an increase of BDNF level and 1ADL in the ELF-
EMF group (Figure 5 and Table 4). Our findings are compatible
with results obtained by Zhang et al. (2017). They evaluated
functional recovery and serum BDNF level in post-stroke patients
and the relationship between the two. They observed a positive
correlation between BNDF level and Barhel Index, and between
BNDF level and mRS, which indicated functional status (Zhang
et al., 2017). The increase in the MMSE parameter before and
after ELF-EMF treatment was about 15% (Figure 4), and we
proved a significantly positive correlation between 1BDNF level
and 1MMSE in our study group (Figure 5 and Table 4).
A positive correlation between BDNF level and the MMSE
scale was previously shown by Belviranli et al. (2016) who
investigated the dependence of cognitive parameters (assessed
by MMSE) and BDNF plasma level in endurance athletes.
Similarity, Levada et al. (2016) observed that after BDNF
administration in patients with mild neurocognitive disorders,
their MMSE level increased. The decline in parameters on the
GDS scale was about 50% greater in the ELF-EMF group, in
comparison to the non-ELF-EMF group. We also demonstrated
a significant positive correlation between changes of BDNF
level and 1GDS (Figure 5 and Table 4). Importantly, a low
BDNF level is associated with post-stroke depression and acute
stroke (Yang et al., 2011), and over-expression of BDNF in

TABLE 4 | Correlation coefficient values obtained for the change in BDNF plasma
level (1BDNF) and parameters of functional status (ADL, MMSE, and GDS) after
ELF-EMF treatment.

1 BDNF plasma level

ADL MMSE GDS

Rho = 0.7720 Rho = 0.5979 Rho = −0.55924

p < 0.0001 p < 0.01 p < 0.01

H1: positive correlation H1: positive correlation H1: negative correlation

The correlation was made using Spearman’s rank correlation method. This table
includes Spearman’s rank correlation coefficient (Rho), the probability of correlation
(p), and hypotheses verification (H1).
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the hippocampus moderates depression behaviors in post-stroke
depressive rats (Chen et al., 2015).

CONCLUSION

ELF-EMF improves functional recovery in stroke patients
by improving neuroplasticity processes. Intensifying brain
plasticity using ELF-EMF therapy is associated with an
increased level of neurotrophic factors, which could be
caused by the impact of ELF-EMF on gene expression. We
also suggested that the inclusion of ELF-EMF treatment in
post-stroke therapy could enhance the effectiveness of the
therapy.
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relationship between brain-derived neurotrophic factor, irisin and cognitive
skills of endurance athletes. Phys. Sportsmed. 44, 290–296. doi: 10.1080/
00913847.2016.1196125

Benedetti, F., Poletti, S., Hoogenboezem, T. A., Locatelli, C., Ambrée, O., de
Wit, H., et al. (2016). Stem cell factor (SCF) is a putative biomarker of
antidepressant response. J. Neuroimmune Pharmacol. 11, 248–258. doi: 10.
1007/s11481-016-9672-y

Bijak, M., Kolodziejczyk-Czepas, J., Ponczek, M. B., Saluk, J., and Nowak, P. (2012).
Protective effects of grape seed extract against oxidative and nitrative damage
of plasma proteins. Int. J. Biol. Macromol. 51, 183–187. doi: 10.1016/j.ijbiomac.
2012.05.009

Bijak, M., Saluk, J., Antosik, A., Ponczek, M. B., Zbikowska, H. M., Borowiecka, M.,
et al. (2013). Aronia melanocarpa as a protector against nitration of fibrinogen.
Int. J. Biol. Macromol. 55, 264–268. doi: 10.1016/j.ijbiomac.2013.01.019

Cattin, A. L., Burden, J. J., Van Emmenis, L., Mackenzie, F. E., Hoving, J. J., Garcia
Calavia, N., et al. (2015). Macrophage-induced blood vessels guide schwann
cell-mediated regeneration of peripheral nerves. Cell 162, 1127–1139. doi: 10.
1016/j.cell.2015.07.021

Chen, H. H., Zhang, N., Li, W. Y., Fang, M. R., Zhang, H., Fang, Y. S., et al. (2015).
Overexpression of brain-derived neurotrophic factor in the hippocampus
protects against post-stroke depression. Neural Regen. Res. 10, 1427–1432. doi:
10.4103/1673-5374.165510

Cheng, Y., Dai, Y., Zhu, X., Xu, H., Cai, P., Xia, R., et al. (2015). Extremely low-
frequency electromagnetic fields enhance the proliferation and differentiation
of neural progenitor cells cultured from ischemic brains. Neuroreport 26,
896–902. doi: 10.1097/WNR.0000000000000450
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Benign effect of extremely low-frequency electromagnetic field on brain
plasticity assessed by nitric oxide metabolism during poststroke rehabilitation.
Oxid. Med. Cell. Longev. 2017:2181942. doi: 10.1155/2017/2181942
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