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Dynamics of grain boundary 
premelting
M. Torabi Rad, G. Boussinot* & M. Apel

The mechanical strength of a polycrystalline material can be drastically weakened by a phenomenon 
known as grain boundary (GB) premelting that takes place, owing to the so-called disjoining potential, 
when the dry GB free energy σgb exceeds twice the free energy of the solid–liquid interface σsl . While 
previous studies of GB premelting are all limited to equilibrium conditions, we use a multi-phase field 
model to analyze premelting dynamics by simulating the steady-state growth of a liquid layer along 
a dry GB in an insulated channel and the evolution of a pre-melted polycrystalline microstructure. In 
both cases, our results reveal the crucial influence of the disjoining potential. A dry GB transforms 
into a pre-melted state for a grain-size-dependent temperature interval around Tm , such that a critical 
overheating of the dry GBs over Tm should be exceeded for the classical melting process to take place, 
the liquid layer to achieve a macroscopic width, and the disjoining potential to vanish. Our simulations 
suggest a steady-state velocity for this transformation proportional to σgb − 2σsl . Concerning the poly-
crystalline evolution, we find unusual grain morphologies and dynamics, deriving from the existence 
of a pre-melted polycrystalline equilibrium that we evidence. We are then able to identify the regime 
in which, due to the separation of the involved length scales, the dynamics corresponds to the same 
curvature-driven dynamics as for dry GBs, but with enhanced mobility.

In a polycrystalline material at a temperature well below the bulk melting temperature Tm , the disordered region 
at a Grain Boundary (GB) is only a few atomic distances wide. As the temperature increases towards Tm , how-
ever, GBs may turn into a liquid-like, thermodynamically stable thin (i.e., nanoscale) film. This order-disorder 
transition is termed GB  premelting1. Premelting may be observed not only at the GBs but also on the  surfaces2,3 
and, due to its physically-rich nature and important consequences in wide range of applications, has interested 
scientists from not only chemistry and physics domains, but also from domains such as earth  science4, fluid 
 mechanics5, and, interestingly,  biology6.

GB premelting has implications in, for example, general metallic  systems1,  steel7, and  ceramics8. It increases 
GB diffusivity and  mobility9,10, and can drastically influence the macroscopic properties of a material. For exam-
ple, it can reduce the resistance to shear  stresses11,12, which can result in material failure in high-temperature 
applications. GB premelting is also linked to cracking during late-stage solidification of metallic  alloys13,14, to 
liquid metal  embrittlement15 and in general influences grain growth, for example in situations such as brazing. 
Despite these implications, GB premelting is still not fully understood one reason being the lack of abundant 
experimental studies  (see16 and references therein), which is mainly due to the challenges in observing internal 
material interfaces such as GBs. Another reason is that the existing experimental evidence for pure materials 
is  controversial12 due to a fair criticism that the conclusions could have been influenced by trace  impurities17.

In the literature, basic thermodynamics are invoked to suggest that pre-melted GBs form because solid–liq-
uid interfaces may repulse each other and form a liquid-like layer to decrease the free energy of the  system12. 
Generically, the energy σgb of a low-angle GB is small and proportional to the misorientation between the 
adjacent  grains18, while σgb is higher for high-angle GBs. Moreover, σgb may also be influenced by the presence 
of GB adsorption. Then, when σgb is larger than twice the energy of well-separated solid–liquid interfaces σsl , 
the system can lower its free energy by replacing the dry GB with two solid–liquid interfaces and a liquid layer 
between them. This is quite similar to the situation where a solid in contact with vapor starts to melt at its surface 
when it is energetically favorable to replace the solid/vapor interface by a solid/liquid interface and a liquid/
vapor  interface19.

The thickness of the liquid layer at a pre-melted GB is determined by the competition, as the distance between 
the solid–liquid interfaces varies, between the changes in bulk and interfacial free energies. Theoretically, the 
variation of interface energy is provided by a so-called disjoining potential, that describes energetically the devia-
tion of the atomic structure in the thin liquid layer from the one in the bulk liquid and the interaction between 
the solid–liquid interfaces. This potential allows the interface energy to be interpolated continuously between 
σgb , at vanishing distance between the solid–liquid interfaces, and 2σsl at infinite  distance20.
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Several computational methods were employed in order to study premelting. Using Lennard–Jones or embed-
ded-atoms-method potentials, Molecular  Dynamics21–23 and Monte–Carlo  simulations24,25 were performed on 
the atomistic level. Phase-field or diffuse-interface methods were also used. In Refs.26–28, one order parameter 
discriminates between solid and liquid, and one orientation field describes crystallographic orientation in the 
solid phase. In Refs.16,29,30, a multi-phase-field model is used, in which the liquid and each grain are characterized 
by a separate field. More recently, the phase-field-crystal method was also  employed12,31–33, giving also some hints 
on the microscopic mechanisms of premelting.

In general, premelting under equilibrium conditions is mainly controlled by the dependence of the disjoining 
potential on the distance between the two solid–liquid interfaces and by the variation of this dependence with 
temperature. In the simplest case, the disjoining potential is monotonous for any temperature, and the equi-
librium width of the liquid layer varies continuously with the temperature. As soon as the disjoining potential 
becomes non-monotonous, the scenario becomes more complicated. In particular, so-called “thin-to-thick” 
first-order transitions may occur when the disjoining potential corresponds to damped  oscillations25, with a 
coexistence in a certain temperature interval of several equilibrium widths.

The above studies have resulted in valuable insights into the physically-rich nature of GB premelting. They 
have, however, to the best of our knowledge, considered only premelting under equilibrium conditions. In this 
article, we are interested in the dynamics of premelting, i.e., how a liquid layer penetrates along dry GBs driv-
ing the transformation of the latter into a pre-melted equilibrium. More generally, we consider the situation 
where a fully-solid and low-temperature polycrystalline structure is brought to a higher temperature close to 
Tm . Fundamental open questions include the effect of the grain size on the dynamical behavior of a pre-melted 
layer, the dependence of the penetration velocity on the GB and solid/liquid interface energies, the shape of the 
liquid layer around its tip, and the influence of the initial temperature on the final structure, i.e. the product 
of the transformation. We address those questions using the multi-phase-field model with obstacle potentials 
that is implemented in  MICRESS34. While the phase-field-crystal model and molecular dynamics techniques 
have been used for studying premelting in equilibrium conditions, the phase field model is used here to resolve 
the length scale associated with the diffusion field, too large to be addressed with the former methods. We first 
present the solution for the pre-melted equilibrium that this model yields. Assuming a steady-state growth of 
the liquid layer along the dry GB, we analyze the consequences of energy conservation on the equilibrium state 
that develops as a product of the transformation. We then present simulations that focus on the triple junction 
and on the dependence of the growth velocity on the interface energies. Next, we present the simulation of the 
evolution of a polycrystalline structure.

Theoretical phase-field analysis
Phase field models describe the evolution of continuous fields that may represent for example the local tempera-
ture, chemical composition or fraction of each phase under consideration. In the latter case, the fields are called 
‘phase fields’ and their variations represent interfaces, for example between two grains or between a solid and a 
liquid. They may also represent triple junctions when three fields are involved, or even higher order junctions.

The premelting of a GB is linked to the existence of a so-called disjoining potential between solid/liquid 
interfaces that are separated by small enough distances. This interaction between solid/liquid interfaces describes 
the fact that the surface energy may be considered as going continuously from the value of the GB energy σgb at 
vanishing distance (i.e. when the two solids grains are in contact), to twice the value of the solid/liquid interface 
energy σsl at infinite distance. A certain variety of premelting scenarios can be expected depending on the shape 
of the disjoining  potential27,28. When the latter varies monotonically with the distance, the scenario is however 
rather simple and premelting occurs when σgb − 2σsl > 0 , with a unique solution linking the width of the liquid 
layer to the temperature at equilibrium.

In the phase field model, the disjoining potential is related to the overlap of the phase fields of the two grains. 
There are mainly two ways of describing the dynamics of the phase fields. In the first one with so-called double 
well potentials, the phase fields exhibits spatial variations of an hyperbolic tangent type, with an exponential con-
vergence to the value 0 or 1. In this frame, it was  shown29 that premelting is not properly reproduced, especially 
because, although being able to be repulsive at short distances, the disjoining potential is always attractive at large 
ones, regardless of the ratio of GB to solid/liquid energies. In the second one, which we use in this article, with 
so-called obstacle potentials, the phase fields spatial variations are strictly restricted to a finite length scale and 
the fields reach exactly their value 0 or 1 at a finite distance from the center of the interface. The corresponding 
evolution equations are presented in the “Methods”. It was shown (see Fig. 10 in Ref.30) that such a model pro-
vides, regardless of the distance, a repulsive (attractive) interaction when σgb − 2σsl > 0 (< 0) . This model thus 
reproduces premelting in a manner quite similar to a sharp interface description using a monotonous disjoining 
potential, for example a decaying exponential as in Ref.35.

Premelting equilibrium. The pre-melted equilibrium reproduced by the multi-phase field model with 
obstacle potentials, was analyzed in Ref.30, and we give here a brief overview of that analysis. The problem is 
one-dimensional and in the following all lengths are expressed in units of η/(2π) , where η is the width of the 
interface, an intrinsic property of the phase field model. Three phase-fields φ1(x),φ2(x) and φ3(x) are defined so 
as to describe the existence of three phases: two solid grains (solid 1 with φ1 and solid 2 with φ2 ) and the liquid 
( φ3 ). The sum of these phase fields equals unity at any position in space:

The problem is invariant in exchanging solid 1 and solid 2, so that the fields obey some symmetry when x = 0 
is chosen as the center of the liquid film:

(1)φ1(x)+ φ2(x)+ φ3(x) = 1.
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Three regions may then be defined, depending on the local number of phase fields that assume a non-vanishing 
value, as depicted in Fig. 1 in different colors. The black solid line represents φ1 , the black dashed line repre-
sents φ2 and the blue line represents φ3 . Corresponding to region (I), we have φ1(−∞ < x < −x1) = 1 and 
φ2(x1 < x < +∞) = 1 . Corresponding to region (II), we have φ3(−x1 < x < −x2) = 1− φ1(x) , which means 
that only solid 1 and the liquid are present at −x1 < x < −x2 ( φ2 = 0 ), and only solid 2 and the liquid are pre-
sent at x2 < x < x1 ( φ1 = 0 ). In region (III), all three phase fields are non-vanishing. It is important to note that

It can be seen within this frame that φ3 may not reach unity. We are thus in the case of a pre-melted system 
for which a liquid layer presenting a certain degree of crystalline order ( φ3  = 1 ) separates two solid grains. The 
larger is φ3 at the center of the liquid film, i.e. φ3(x = 0) , the larger is the disorder of this pre-melted GB. When 
x2 increases (and x1 decreases consequently owing to x1 + x2 = 2π ), the level of disorder in the liquid layer 
decreases ( φ3 decreases), and when x2 = x1 = π , φ3 vanishes identically throughout the whole system, i.e. the 
GB is dry. On the other hand, when x2 decreases, i.e. x1 increases, the liquid phase field φ3 increases, and when 
x2 = 0 , i.e. x1 = 2π , the level of disorder at the center of the liquid layer is characteristic of the bulk liquid, i.e. 
φ3(x = 0) = 1 . When x2 decreases further, i.e. when x2 < 0 , region (III) disappears, the two solids are no more 
interacting via the disjoining potential ( φ1 and φ2 are no more overlapping), and a macroscopic liquid film hav-
ing the structure of the bulk liquid, with φ3(x2 < x < −x2) = 1 , is then in equilibrium with the two solids. This 
situation is depicted in Fig. 2.

In the following we denote as a pre-melted GB the situation where 0 < φ3(0) < 1 and a melted GB when 
φ3(0) = 1 . Thus premelting occurs in a finite range of x2 , i.e. 0 < x2 < π . This is in contrast to a sharp interface 
description where the disjoining potential exhibits a exponential decay with the distance between the solid–liq-
uid interfaces. Indeed, in this case, the magnitude of the disjoining forces never strictly vanishes, and the width 
of the liquid layer at equilibrium diverges logarithmically when the temperature T approaches from below the 
bulk melting temperature Tm . Here, in the phase field model, 0 < Tm − T → 0 means 0 < x2 → 0 , and x2 < 0 
corresponds to T = Tm.

The analytical solution of the phase field equations for the pre-melted equilibrium, i.e. for 0 < x2 < π , reads 
as follows (see Ref.30 for more details):

(2)φ1(x) = φ2(−x),

(3)φ3(x) = φ3(−x).

(4)x1 + x2 = 2π .
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Figure 1.  Phase fields profiles for the pre-melted equilibrium corresponding to a liquid layer, represented by 
φ3(x) , between grain 1, represented by φ1(x) , and grain 2, represented by φ2(x) . The sum rule 

∑
i φi(x) = 1 

holds. In region (I) at negative (positive) x, grain 1 (grain 2) is in its thermodynamically stable bulk state with 
φ1 = 1 ( φ2 = 1 ). The liquid layer is present with φ3(x)  = 0 in regions (II) and (III) (see text for more details). 
The degree of disorder in the liquid layer φ3 is characteristic of premelting with φ3 < 1.
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and

with

and L corresponds to the latent heat of fusion related to the entropy difference between solid and liquid at Tm . 
The dimensionless quantity σ ∗ = σgb/σsl is a measure of the tendency for the GB to spontaneously melt and 
premelting occurs when σ ∗ > 2 . It can be seen that within this model σ ∗ should remain smaller than 4 for pre-
melting to be described in the terms presented above.

As mentioned above, the level of disorder of the pre-melted GB may be quantified by 
φ3(x = 0) = 1− φ1(x = 0)− φ2(x = 0) = 1− 2φ

(III)
1 (x = 0) , i.e.

For a given � , while x1 = 2π − x2 (owing to x1 + x2 = 2π ), x2 is found as the solution of

This explicit relation between the temperature � and x2 , that was not given in Ref.30, will be used in the following 
paragraph where we study energy conservation during steady-state propagation of the liquid film along the GB.

Let us now consider the two transitions that are described above. For x2 = x1 = π , corresponding to 
φ3(x) = 0 , we have � = −(σ ∗ − 2)/2 . This temperature corresponds to the onset of premelting, i.e. it is the 
minimum temperature at which premelting can be expected. Note that in the neighborhood of this transition, i.e. 
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Figure 2.  Phase fields profiles for a macroscopic solid–liquid equilibrium. The degree of disorder in the region 
(I) around x = 0 is characteristic of bulk liquid with φ3 = 1 (see text for more details).
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when x1 − x2 ≪ 1 , numerics are tedious since the grid spacing should much smaller than x1 − x2 . For x2 = 0 , 
one has � = 0 , corresponding to the melting temperature, i.e. the onset of melting. The level of disorder at the 
center of the liquid film is then characteristic of the bulk liquid, i.e. φ3(0) = 1 . It should be noted that the onset 
of premelting approaches the onset of melting when σ ∗ approaches 2. Then, x2 changes from π to 0 and φ3(0) 
changes from 0 to 1, when � changes within a small interval from −(σ ∗ − 2)/2 to 0.

When x2 < 0 as depicted in Fig. 2, the solution for φ1 in the range −2π + x2 < x < x2 (i.e. for the interface 
between grain 1 and the liquid) is

This is the solution for an interface in a two-phases system as for example during dendritic solidification.

Dynamics of GB premelting. As mentioned in the Introduction, the main objective of this paper is study-
ing the premelting dynamics. We consider a set up presented in Fig. 3 where the liquid layer propagates at a 
constant velocity V along the dry grain 1/grain 2 boundary in a two-dimensional system with a width � . The 
growth is accompanied by heat diffusion and the system is insulated. Thus no heat flux is assumed at the lower 
and upper boundaries of the box, i.e. in the direction normal to the growth. The temperature T∞ of the dry GB 
is represented by the dimensionless quantity

which is a given of the problem, and which is the temperature that is prescribed at the right boundary of the box. 
During steady-state growth, as we will see later, heat fluxes are present in a restricted region around the tip of the 
liquid layer, and, far enough behind, the system equilibrates at a temperature T−∞ represented by

and, in general, �−∞ �= �∞ . The equilibration far behind the tip leads to the one-dimensional equilibrium 
described in the previous section, with �−∞ playing the role of �.

This set-up is typical for the study of a confined growth regime, for example the dendritic growth in a chan-
nel. The new phase, here the liquid, is assumed to nucleate at the GB and subsequently the liquid layer enters the 
growth regime. This scenario is characteristic of a first-order phase transition for which thermal fluctuations 
are needed and an energy barrier has to be overcome in order to locally produce a seed of the new phase. While 
premelting at free surfaces does not seem to require such an energy barrier and takes place homogeneously over 
the  surface19, it should be different in the case of a grain boundary since an elastic accommodation is in general 
required due to the difference in atomic density between the solid and liquid  states36. We thus assume that nuclea-
tion events are rare enough and the nucleii are far enough from each other, so that the liquid layer is able to 
grow steadily along the GB. Therefore, our set-up corresponds to a situation where the polycrystalline structure, 
stable at low temperature, is suddenly brought to a higher temperature �∞ . In an experimental situation, a time 
is needed for the system to reach this temperature; hence, our set-up is relevant to experiments when the time 
for nucleation is larger than the time for thermal equilibration at �∞ . Note that such a thermal equilibration 
may take place on a very short time scale in a thin-sample with two-dimensional dynamics as it is the case here.

The description of the pre-melted equilibrium in the previous section allows to find, for a given temperature, 
the geometrical characteristics of the liquid layer, i.e. x1 and x2 . In the case of a growth of the liquid layer at con-
stant velocity V, conservation of energy implies that the energy far ahead of the tip equals the energy averaged 
over the direction perpendicular to growth far behind the tip where equilibration takes place. In other words, 
the enthalpy associated with the creation of the liquid is compensated by changes in temperature and interface 
energy. This yields an equation that relates �−∞ to �∞ , through the equilibrium profiles φi(x) given in the previ-
ous subsection ( i = 1, 2, 3 ) and their spatial derivatives φ′

i(x):
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1− cos
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2
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(13)�∞ = Lη(T∞ − Tm)/(4σslTm),

(14)�−∞ = Lη(T−∞ − Tm)/(4σslTm),

(15)

��∞ +
2π

S
σ ∗

= ��−∞ +
1

S

∫ x1

−x1

{
L̃φ2

3(3− 2φ3)− 16φ′
1φ

′
3 + 4φ1φ3 − 16σ ∗φ′

1φ
′
2 + 4σ ∗φ1φ2 − 16φ′

2φ
′
3 + 4φ2φ3

}
dx

liquid

grain 1

grain 2

∆∞∆−∞

λ
V

Figure 3.  Schematics of the two-dimensional steady-state growth at velocity V of the liquid layer along the dry 
boundary between grain 1 and grain 2. Ahead of the liquid’s tip, the prescribed dimensionless temperature is 
�∞ , and far behind the tip, the system equilibrates at a dimensionless temperature �−∞.
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where L̃ = ηL/σsl and S = 4cpTm/L with cp the specific heat. The left hand-side of Eq. (15) corresponds to the 
energy far ahead of the tip, while the right hand-side corresponds to the energy far behind the tip.

This equation may be solved numerically by finding which �−∞ , associated with its corresponding x1 and 
x2 , is fulfilling the condition (15). It can be seen that the solution for �−∞ depends on the degree of confine-
ment � . In Figs. 4 and 5, we present the dependence on � of �−∞ and x2 respectively, for three different values 
of σ ∗ > 2 , and for �∞ = −0.047 , S = 40 and L̃ = 15 . These values for S and L̃ , that can correspond for example 
to Tm = 800 K, L = 400 J cm−3 , cp = 5.0 J cm−3 K−1 , σsl =0.2 J m−2 , and a characteristic width of the liquid 
layer η = 7.5 nm, are typical for metals. In particular, they are close to the properties of pure Al, for which some 
experimental results are compared to our polycrystalline simulation later on. In Figs. 4 and 5, it can be seen 
that �−∞ increases with � and x2 decreases when � increases, corresponding to an increases in the width of the 
liquid layer when � increases. At large � , �−∞ converges for all σ ∗ to the dashed line that corresponds to �∞ . The 
limit �−∞(� → ∞) → �∞ results from the fact that the terms proportional to � then dominate in Eq. (15), the 
energy increase caused by the presence of the liquid layer (responsible for �−∞ ≤ �∞ ) becoming negligible in 
the energy conservation relation. Correspondingly, the geometry of the liquid layer represented by x2 in Fig. 5 
becomes independent of � when � ≫ 1 , and may be estimated replacing � by �∞ in Eqs. (10) and (11).

On the other hand, when � becomes small, it can be seen from Fig. 5 that x2 goes to π . As mentioned in the pre-
vious paragraph, this situation corresponds to the onset of premelting, and indeed �−∞(� → 0) → −(σ ∗ − 2)/2 
in Fig. 4. Let us note however that � may not be arbitrarily small since it should, at least, exceed the interface 
width, i.e. 2 π in our dimensionless units.

The �-dependence of �−∞ and x2 implies a �-dependence of the level of disorder of the liquid layer that grows 
along the dry GB. As can be indeed seen in Fig. 6, while the level of disorder φ3(0) given in Eq. (9) intuitively 
increases with σ ∗ , it also decreases when � decreases (since �−∞ increases with �).

Let us note that, as a consequence of the fact that �∞ is close to −(σ ∗ − 2)/2 for σ ∗ = 2.1 , the variations 
of �−∞ and x2 with � are small. Thus �−∞(�) → −(σ ∗ − 2)/2 and x2(�) → π when �∞ → −(σ ∗ − 2)/2 . 
Therefore, a critical undercooling of the dry GB may be defined as

(16)�(1)
∞ = −(σ ∗ − 2)/2
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Figure 4.  Temperature �−∞ in the equilibrated region far behind the tip as a function of � for different 
values of σ ∗ and for a prescribed temperature �∞ = −0.047 of the dry GB (see text for the values of the other 
parameters). The horizontal dashed line corresponds to �∞.
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describing the fact that, even if σ ∗ > 2 , the growth of the liquid layer along the dry GB does not occur when 
�∞ < �

(1)
∞ .

Let us now consider the case corresponding to the other transition, i.e. the onset of melting for which x2 = 0 
and � = 0 in Eqs. (10) and (11). Setting �−∞ = 0, x2 = 0 and x1 = 2π in Eq. (15) and in the equilibrium profiles, 
we find a new critical value for �∞:

When �∞ < �
(2)
∞  , premelting occurs with �−∞ < 0 , x2 > 0 and φ3(0) < 1 . Conversely, when �∞ > �

(2)
∞  , melt-

ing occurs with �−∞ = 0 , x2 < 0 and φ3(0) = 1 , as depicted in Fig. 2. For the typical values used previously and 
yielding L̃ = 15 , it can be seen that �(2)

∞ > 0 . Thus, from our theoretical analysis of energy conservation during 
steady-state growth of the liquid layer, we find that premelting may take place even when the temperature to 
which the dry GB is brought lies above the melting temperature. We are not aware of any analysis in the literature 
pointing in that direction, probably because the dynamics in such a situation has rather scarcely been studied. In 
Refs.35,37, steady-state melting along a dry GB was investigated when σ ∗ − 2 < 0 in an infinite system ( � → ∞ ). 
Let us note that the steady-state velocity then diverges when σ ∗ − 2 approaches 0.

The �-dependence of the critical temperature �(2)
∞  implies that, for a given �∞ , the transition from premelting 

to melting may occur at � = �c = 2π [L̃− (σ ∗ − 2)]/(�∞S) when varying �.
This is what is shown in Figs. 7, 8, and 9, where we plot respectively �−∞, x2/π and the degree of disorder of 

the liquid layer φ3(0) as a function of � for a prescribed overheating �∞ = 0.023 , and for the same parameters 
as for Figs. 4, 5, and 6.

In Fig. 7, it can be seen that, in contrast to Fig. 4, �−∞ does not converge to �∞ when � → ∞ . Instead, 
�−∞ reaches 0 at � = �c , and remains equal to 0 for larger � . In Fig. 8, it can be seen that x2 decreases from π to 
0 when � , smaller than the critical value, increases. Then, for � > �c , x2 follows x2 = −(�− �c)�∞S/(2L̃) . In 
Fig.9, while φ3(0) < 1 when � < �c , φ3(0) = 1 when � > �c . Here, in these plots, the fact that L̃ is much larger 
than σ ∗ − 2 explains why �c is very similar for all three curves.

If now we fix � , we may present �−∞ as a function of �∞ . This is what is displayed in Fig. 10 for � = 4π , 
and for the three values of σ ∗ that are used in the previous figures. The vertical dotted lines correspond to �(1)

∞  
and for �∞ < �

(1)
∞  no premelting exists. The vertical solid lines correspond to �(2)

∞  and for �∞ > �
(2)
∞  melting 

takes place with �−∞ = 0 . The oblique dashed line represents �−∞ = �∞ , i.e. the limiting case for � → ∞ , 
for which �(2)

∞ → 0 . The dots correspond to phase-field simulations.
To summarize the phenomenology associated with the two critical values of �∞ , we present in Fig. 11 a 

schematic kinetic phase diagram where, as a function of �∞ and � , the equilibrium state after transformation 
is given. For �∞ < �

(1)
∞  , no transformation occurs. For �(1)

∞ < �∞ < �
(2)
∞  , the dry GB transforms into a pre-

melted GB with x2 > 0 and for �∞ > �
(2)
∞  melting occurs with x2 < 0 . The interval of temperature for which 

the dry GB transforms into a pre-melted GB increases when � decreases.
Let us note that, in the case where the disjoining potential’s dependence on the layer’s width is non-monoto-

nous, for example yielding a thin-to-thick transition mentioned in the Introduction, corresponding complications 
of the scenarios presented above for �−∞, x2 and φ3 occur and turning points appear. In this case, the sign of 
the disjoining pressure, i.e. the derivative of the disjoining potential with respect to the layer’s width, alternates, 
and �−∞ is positive when the layer’s width corresponds to an attractive part of the disjoining potential. We 
have nevertheless checked using a sharp-interface analytical approach using the disjoining potential proposed 
in Ref.25 that �−∞ < �∞ in any case.

(17)�(2)
∞ =

2π

S

L̃− (σ ∗ − 2)

�
.

Figure 6.  Level of disorder of the growing liquid layer φ3(0) [see Eq. (9)] corresponding to Fig. 4.
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Figure 7.  Temperature �−∞ in the equilibrated region far behind the tip as a function of � for different 
values of σ ∗ and for a prescribed temperature �∞ = 0.023 of the dry GB (see text for the values of the other 
parameters). The horizontal dashed line corresponds to �∞ . For each σ ∗ , there exists a �c such that for � > �c , 
the transition corresponds to melting with �−∞ = 0.
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Figure 8.  Value of x2 corresponding to Fig. 7. The variation is linear as soon as the melting regime is reached.
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Figure 9.  Level of disorder of the growing liquid layer φ3(0) [see Eq. (9)] corresponding to Fig. 7. The degree of 
disorder is characteristic of the bulk liquid ( φ3 = 1 ) as soon as the melting regime is reached.
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To conclude before presenting the simulations, the phase field model allows for a unified description includ-
ing the microscopic physics at the atomic scale (represented by the scale of the interface width in the phase 
field model) responsible for premelting, and reproduces the macroscopic limit, for which the atomic distance 
formally vanishes, with the width of the liquid layer growing proportionally to � when � > �c . Conversely, when 
� is fixed, the width of the liquid layer decreases when �∞ , larger than �(2)

∞  , decreases, and it reaches the atomic 
scale at �∞ ∼ �

(2)
∞  . As schematically represented in Fig. 11, the smaller � , the larger �∞ should be in order for 

the liquid layer to achieve a macroscopic width. The difference between �∞ and �−∞ (which exactly equals 
�

(2)
∞  when �∞ = �

(2)
∞  since �−∞ = 0 in this case) increases when � decreases (with roughly a 1/� dependence). 

For the example displayed in Fig. 10 with � = 4π , those differences are of order 0.1, corresponding to varia-
tions of temperature of order 20 K. These huge temperature differences are reached because � is extremely small 
(approximately few tens of atoms). If we identify � with the grain size of a polycrystalline structure, such a small 
� is obviously unrealistic even for structures that are produced at extremely large cooling rates. For grains about 
few µ m in size, typically seen in laser-based additive manufacturing, we expect the temperature differences to 
be of the order of 0.1 K.

Phase field simulations
In this section, simulations of the growth dynamics of the liquid layer along a dry GB are presented. In order 
to obtain the correct conservation of energy in the simulations, we set the grid spacing to 1/75 of the interface 
width η and simulated domains that are very elongated in the growth direction z. From Fig. 10, it can be seen 
that the temperature of the equilibrated region far behind the tip obtained from the simulations (the dots) agrees 
well with the one calculated analytically (the solid lines). The diffusion coefficient is set constant throughout 
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Figure 10.  For a given � = 4π , plot of the dimensionless temperature in the equilibrated region far behind 
the tip �−∞ as a function of the dimensionless temperature ahead of the tip �∞ for σ ∗ = 2.1, 2.25, 2.4 (same 
color coding as in the previous figures). The vertical dotted lines correspond to �(1)

∞  , and the vertical solid lines 
correspond to �(2)

∞  . The dots correspond to phase field simulations, demonstrating an accurate conservation of 
energy.
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Figure 11.  Kinetic phase diagram where we give, as a function of �∞ and � , the nature of the transformation: 
the GB remains dry when �∞ < �

(1)
∞  , the dry GB transforms into a pre-melted GB with an atomically thin 

liquid layer for �(1)
∞ < �∞ < �

(2)
∞  , and the dry GB transforms into a macroscopic liquid–solid equilibrium 

with a liquid layer having a macroscopic width when �(2)
∞ < �∞.
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the whole simulation domain, i.e. the diffusivity is equal in the liquid and solid phase. In Fig. 12a, where actu-
ally only a portion of the simulation is displayed and where the z axis is such that the steady-state velocity is 
negative, we present the map for the degree of disorder φ3(x, z) and for the dimensionless temperature field 
�(x, z) = Lη[T(x, z)− Tm]/(4σslTm) (for a simulation at �∞ = −0.0046875 , σ ∗ = 2.25 , � = 4π and otherwise 
the same parameters as for Fig. 10, on which we denote �−∞ obtained from the simulation using dots). In the 
region z < 0 , the GB is dry with φ3 = 0 , and � = �∞ . At small positive z, we distinguish a diffuse region where 
φ3 emerges, and, as z increases the liquid layer achieves progressively its equilibrium structure. In Fig. 12b, the 
profiles of φ3 along the x direction x, which is perpendicular to growth direction z, are displayed for z values 
exhibited in Fig. 12a. It can be seen that only at position z ≈ 300 , the liquid layer reaches its equilibrium struc-
ture, with the φ3 profile changing very slightly between z = 276.5 and z = 360.2 . This is the distance to the tip 
of the liquid layer needed for the temperature field to equilibrate. It is obvious that simulating such a process 
using an atomistic method such as phase-field-crystal or molecular dynamics would be computationally intrac-
table. In Fig. 13, the z-dependence of the phase field φ3 and the dimensionless temperature � averaged over the 
x-direction, i.e. �φ3�(z) =

∫
x(dx/�)φ3(x, z) and ���(z) =

∫
x(dx/�)�(x, z) , are presented. It can be seen that 〈�〉 

starts to deviate from �∞ and heat fluxes establish as soon as 〈φ3〉 deviates from 0. The latter deviation is linear, 
illustrating the fact that, as can be seen in Fig. 12b, the bump that characterizes φ3 in the neighborhood of z = 0 
has a width that varies weakly with z, while its amplitude varies much stronger. The saturation of 〈φ3〉 and 〈�〉 at 
large z indicates that, far behind the tip, heat fluxes vanish and the system equilibrates.

Structure of the triple junction. An important feature of the phase field results concerns the structure 
close to the tip of the liquid layer. Here, we focus only on the simulation corresponding to Fig. 12. In the macro-
scopic approach, an equilibrium in the form of Young’s law at the triple junction between grain 1, grain 2 and the 
liquid layer is not possible for σ ∗ − 2 > 0 , and the liquid should wet the GB with a vanishing macroscopic con-
tact angle. Obviously in our case this picture is not appropriate since we study the propagation of the transition 
region that connects spatially the dry GB to the wet GB. We therefore focus on the behavior of the phase fields, 
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Figure 12.  (a) Part of the simulations box, with a color map for φ3(x, z) (left) and the dimensionless 
temperature �(x, z) (right). The dry GB at z → −∞ is represented by the vertical white dotted line, and the 
growth takes place in the direction of the steady-state velocity V. At the formal position of the triple junction 
(x = 0, z = z0) , we have φ1 = φ2 = φ3 = 1/3 . At larger z, the liquid layer approaches the equilibrium given by 
Eq. (15). The temperature far ahead of the liquid layer’s tip ( z → −∞ ) is �∞ = −0.0046875 ; (b) φ3 profiles in 
the x-direction at different z-positions, displayed in (a). The equilibration occurs at z ≃ 300 as illustrated by the 
small difference between φ3 at z=276.5 and z=360.2.
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shown for φ3 in Fig. 12, on the scale of the interface width. We explore the structure close to the tip in a way simi-
lar to what is presented in Fig. 9 in Ref.38. We locate the two isolines φ1 = φ3 and φ2 = φ3 , and the intersection 
of these two isolines, at x = 0, z = z0 , yields the position of the triple junction where φ1 = φ2 = φ3 = 1/3 . The 
microscopic contact angle θ0 is then defined by the angle between the isolines and the vertical axis at the triple 
junction. We illustrate this procedure in Fig. 14 and find θ0 ≃ 2◦.

In Ref.35, a generalization of Young’s law for a triple junction at melting temperature is proposed in order to 
include effects of structural forces in the case σ ∗ < 2 . The microscopic contact angle θ0 relates the macroscopic 
contact angle θ∞ and σ ∗ through θ2∞ − θ20 = −(σ ∗ − 2) . In the case σ ∗ > 2 , their formula may actually be 
read by setting θ∞ = 0 (according to classical Young’s law), and one finds a finite microscopic contact angle 
θ0 =

√
σ ∗ − 2 and a well-defined triple junction. We see that our simulation does not reproduce this result with 

a θ0 much smaller than 
√
σ ∗ − 2 . Several arguments may be invoked in order to explain this discrepancy. First, 

the analysis in Ref.35 holds for a triple junction at melting temperature, while, in our simulation, the temperature 
field is highly inhomogeneous on the scale of the interface width and the temperature lies well below Tm where 
the triple junction is defined. Second, their analysis is performed within a small slope approximation that requires 
σ ∗ − 2 ≪ 1 , which is not the case in our simulation. Finally, as mentioned in Ref.35, kinetic effects at the triple 
junction may take place yielding a deviation from Young’s law for the macroscopic contact angle. All these effects 
are interesting but their investigation is beyond the scope of this paper.
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Figure 13.  Dependence in the z-direction of the phase field φ3 and the dimensionless temperature � averaged 
over the x-direction (see text) for the simulation presented in Fig. 12.

Figure 14.  Isolines φ1 = φ3 and φ2 = φ3 in the neighborhood of the triple junction, located at ( x = 0, z = z0 ) 
and corresponding to φ1 = φ2 = φ3 = 1/3 . The contact angle θ0 , given by the slope of the isolines at z0 , is close 
to 2 ◦.
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We note also that the procedure outlined above and illustrated in Fig. 14 is enabled by the fact that φ3 > 1/3 
in the equilibrated region far behind the tip, as can be seen in Fig. 12. Thus, it is clear that when φ3 remains 
smaller than 1/3, as for example for small enough � , such a procedure may not be adopted. This case lies also 
beyond the scope of this paper.

Velocity dependence on surface energies. Let us now focus on the dependence of the tip growth veloc-
ity on the surface energies. For this purpose, we define the dimensionless velocity

where V is the steady-state velocity and D is the heat diffusion coefficient. The normalization of the dimension-
less velocity by 1/S comes from the following arguments. Our definition of � in Eq. (8) differs from the usual 
definition of the dimensionless driving force for heat diffusion controlled processes in sharp interface models 
�sh = cp(T − Tm)/L = S�/L̃ . Since the growth velocity typically scales with a positive power of �sh , it van-
ishes when cp/L → 0 , this fact being the reason why we divide our velocity by S. As we will see in the following, 
the definition of Ṽ  given in Eq. (18) provides values of order unity. We set the channel width to � = 4π , and 
we perform three simulations for each dependence, i.e. on σ ∗ and on the dimensionless solid–liquid interface 
energy L̃−1 = σsl/(Lη) . In Fig. 15, we plot the growth velocity as a function of σ ∗ − 2 = 0.1, 0.2 and 0.25 for 
L̃ = 15 and �∞ = 0 (we recall that, in a channel, �∞ = 0 does not represent a special point as illustrated by 
Fig. 10 for example). In Fig. 16, we plot velocity as a function of L̃−1 = 11/300, 1/15 and 2/15 for σ ∗ = 2.25 
and �∞ = −0.0046875 . We see that for both curves, the data is well fitted using a straight line passing through 
the origin. This suggests that V ∝ (σ ∗ − 2)σsl = σgb − 2σsl . Thus, it seems that in the premelting problem, the 
excess of interface energy attributable to the unfavorable dryness of the GB is the driving force. This kind of 
dependence of steady velocity on the interface energy is rather unusual for a growth process in a solid–liquid 
system. Indeed, in dendritic growth for example, the velocity is inversely proportional to the solid–liquid energy, 

(18)Ṽ =
1
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Figure 15.  Dimensionless steady-state velocity (see text for definition) as a function of the normalized interface 
energy difference characteristic of premelting σ ∗ − 2 = σgb/σsl − 2 for a dry GB at melting temperature, i.e. 
�∞ = 0.
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Figure 16.  Dimensionless steady-state velocity (see text for definition) as a function of the dimensionless solid–
liquid interface energy L̃−1 = σsl/(Lη) for �∞ = −0.0046875.
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the latter hindering the growth owing to the energetic penalization of interface curvature. Closer to our current 
interest, the steady-state velocity scales with the inverse of the solid–liquid interface energy also in the theories 
developed in Refs.35,37 for melting along a GB. In the second part of the following discussion, we comment on 
these theories and on their link with our premelting problem.

Let us comment on the values of the steady-state velocity that we obtain in phase field simulations. Using a 
typical value D = 106 m 2 /s for the heat diffusivity and the values for η and S used previously, i.e. η = 7.5 nm and 
S = 4cPTm/L = 40 , we find velocities of order 103 m s−1 . Such a value is questionable because it is in the order 
of the speed of sound. In our simulations, we have used a mobility Mij (see “Methods”) providing equilibrium 
boundary conditions at the interface within the thin interface limit of the phase-field  model39. Such a choice 
corresponds to an infinite interface mobility within the sharp interface limit for conditions close to equilibrium. 
Then, for sufficiently small velocities, the interface mobility does not play any role, neither in the pattern nor in 
the velocity selection mechanisms. Here, we have found that reducing the phase field mobility Mij does influence 
the growth. More precisely, reducing the phase field mobility Mij by a factor 30, approximately decreases the 
steady-state velocity by the same factor 30. This indicates that the kinetic does not follow the diffusion-controlled 
regime for which interface mobility does not play a role. On the other hand, for a purely kinetically-controlled 
regime, one should obtain a homogeneous temperature field, which here is not the case either (see Fig. 12). Thus, 
it is likely that the growth kinetics of pre-melted GBs falls into a mixed-mode regime where the interface mobility 
is a material related quantity that influences the transformation speed. This is known for other fast transforma-
tions, such as rapid crystallization in phase change  materials40. The results may also be applied to premelting in 
an alloy. In this case, the diffusion coefficient in the liquid layer is probably in the order of a bulk liquid diffusion 
coefficient, i.e. typically three orders of magnitude smaller than the heat diffusivity provided above, and the dif-
fusion coefficient in the solid grains is typically six orders of magnitude smaller than this heat diffusivity. If one 
assumes that the diffusion in the solid grains mainly sets the magnitude of the liquid layer growth velocity, the 
latter then becomes of the order of a mm/s, which is now well below the speed of sound. Let us note moreover 
that when one applies the classical dendritic growth theory to the melting of an alloy, for which the diffusion 
coefficient is much larger in the growing phase than in the disappearing phase, the velocity does not scale as DS 
but as D2

S/DL where DS ( DL ) is the diffusion coefficient in the solid (liquid)41. This suggests that premelting in 
an alloy might even take place at velocities smaller than a mm/s.

Simulation of a polycrystalline evolution
Now, we briefly investigate the effect of premelting on the evolution of a polycrystalline structure relevant to 
experiments. We simulated the evolution of a microstructure that, initially, consisted of ten grains and a small 
liquid domain that enables the premelting liquid layer to propagate along the dry GBs. The GB energies are all 
equal with σ ∗ = 2.25 , and as previously, the system is insulated. The evolution of the system as the liquid pre-
melts the dry GBs and as the pre-melted GBs evolve with time can be seen in the “Supplementary Material”. Here, 
we show only the results at three different points in time. In Fig. 17, an intermediate state for which the liquid 
layer has not yet propagated along every dry GB is displayed. In the left panel, the color codes φ3 , in the middle 
panel a color is assigned to each grain, and in the right panel the color codes the dimensionless temperature � . 
We see that the temperature has fallen below Tm in the neighborhood of the liquid layer, while it is still at the 
initial temperature � = 0.0046875 above Tm in the bulk of the grains.

In Fig. 18, the liquid layer has propagated along all GBs; there has been an evolution of the size and shape of 
the grains; and we observe the heat diffusion field from the center of the grains to the pre-melted GBs. At the 
triple junctions, relatively large liquid pockets have emerged, where φ3 = 1 since the distance between solid/
liquid interfaces is much larger than the interface width. Nevertheless, the curvature of the solid/liquid interfaces 
allows a temperature below Tm in these regions. Interestingly, the protrusion that is highlighted with an arrow 
in the center panel is already observable at a much earlier stage of the evolution in Fig. 17. This is counterintui-
tive if, naively, one expects that the protrusion simply enhances the interface energy of the system. Instead, one 

Figure 17.  Color map for φ3 (left), grain number (middle), and dimensionaless temperature � (right) for a 
polycrystalline structure initially at � = 0.0046875 , at some intermediate time during the propogation of the 
pre-melted layer along the dry GBs.
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should note that the curvature of the solid/liquid interface allows a minimization of the disjoining potential in 
the thin liquid layers adjacent to the triple junction, and is thus energetically favorable. This is an effect of the 
disjoining potential that should be of fundamental importance for the grain evolution in systems that are prone 
to premelting, and this point is dicussed further next.

As a result of the promotion of premelting against melting due to confinement (here provided by small grain 
sizes) described in the previous sections, we see in Fig. 19 that the temperature everywhere in the domain is below 
Tm although � = 0.0046875 initially, in accordance with our analysis of steady-state growth of a liquid layer and 
the associated energy conservation (i.e., Eq. 15). At the stage of the evolution presented in Fig. 19, some grains 
have increased in size, some have decreased in size, and three grains have vanished. The liquid pockets at the triple 
junctions have further increased in size, but we still identify the effect of the disjoining potential minimization 
through unusual shapes of the grains and curvatures of the solid/liquid interfaces. Let us note that such pre-
melted polycrystalline structure was nicely evidenced experimentally (see Figs. 3 and 4 in Ref.42). These experi-
ments were conducted in pure Al (that has, as mentioned earlier, properties close to the ones that we use here), 
and the undercooling � ≃ −0.01 in our simulation, that corresponds to (T − Tm)/Tm = 0.01× 4/L̃ ≃ 0.0027 , 
is in qualitative agreement with the observation of the authors  in42 that “no signs of melting were detected for 
temperatures up to 0.999 Tm.

In addition, we have plotted in Fig. 20 the φ3 and � profiles along the vertical line visible in the left and right 
panels of Fig. 19. We see that the temperature gradient is much larger across the liquid layer than in the solid. This 
gradient of temperature across the liquid layer, mainly resulting from the opposite sign of the Gibbs–Thomson 
effect at the two solid/liquid interfaces, is responsible for the motion of the liquid layer in its normal direction, 
with a velocity that is easily estimated using the Stefan condition at the interfaces.

Let us now present the physical picture that underpins the phenomenology of the polycrystalline evolution 
discussed above. First, note that a polycrystalline equilibrium state exists for � < 0 , i.e. at a temperature below 
Tm , as shown in Fig. 21 (see the caption for more details). As already mentioned, when the size of the liquid 
pocket at the triple junctions is large enough, the liquid possesses the characteristics of the bulk liquid ( φ3 = 1 ) 
at least at its center.

Figure 18.  The status at some later time after all GBs have been pre-melted. Liquid pockets of macroscopic size 
( φ=1) have emerged at the triple junctions, and protrusions, such as the one highlighted by the vertical arrow in 
the middle panel, allow minimization of the disjoining potential in the adjacent pre-melted liquid layers.

Figure 19.  The status at an even later time when grain morphology has evolved further, the temeprature in 
the whole simulation domain has fallen below Tm , and the size of the liquid pockets at the triple junctions has 
further increased.
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Of course, by symmetry, if the dry GB energies are equal, the angles between the pre-melted GBs will be the 
same (i.e., 2π/3 ); if those energies are not equal, the angles will still be the same if the radius of the curvature 
of the solid/liquid interfaces bounding the liquid pocket is much larger than the width of the layer, i.e., when 
|�| ≪ 1 . Then, in an out-of-equilibrium scenario similar to the one discussed in Fig. 19, if grains are large 
enough, the curvature of the pre-melted layer will be small enough to make the temperature variations across 
the liquid layer much smaller than |�| . In that case, the three lenght scales (the width of the pre-melted liquid 
layers η , their radius of curvature R of the order of grain size, and the radius of curvature of the liquid pockets 
η/|�| ) will be fully separated; the triple junction will be close to the equilibrium presented in Fig. 21; and the 
normal velocity of the pre-melted liquid layers will be proportional to their curvature, corresponding precisely 
to a curvature-driven phenomenon as for the commonly accepted dynamics of dry GBs. However, here, the 
mobility of pre-melted GBs, i.e. the proportionality coefficient between velocity and curvature, will be given by 
the diffusion coefficient in the liquid and will be therefore much higher than of dry GBs. Thus, in the regime 
η/R ≪ |�| ≪ 1 , the pre-melted GB dynamics corresponds to a classical curvature-driven GB dynamics with 
an enhanced mobility. Therefore, further investigations should focus on determining the structure of the triple 
junction, i.e. the structure of the liquid pocket, in these out-of-equilibrium conditions, and especially the devia-
tion from the perfect 2π/3 angles present at equilibrium. Further investigations should also address the question 
of the existence of out-of-equilibrium steady-state situations.

Discussion
For our premelting problem, the phase field model is used in a way at odds with the usual philosophy of phase 
field theories, for example describing the pattern formation during solidification. Within the latter, the phase 
fields are functions that indicate which state the system presents locally. This state belongs to a discrete set, cor-
responding to the different stable or metastable phases under consideration. To each state corresponds a value 
of the phase fields, and the locus of their variations defines the interfaces. The interfaces’ width η , much smaller 
than the length scale of the pattern and the diffusion length in the case of diffusion-controlled processes, is 
considered as a purely numerical parameter upon which no outcome of the simulation should depend. In this 
respect, the bulk of the different phases and the interfaces between them are well separated and identified. The 
interface width η should however be handled with care owing to its influence on the interface boundary condi-
tions that the phase field model reproduces. Indeed, when the phase field model is recast into its corresponding 
sharp interface model using the so-called ’thin-interface limit’39, the interface boundary conditions depend on 
the equilibrium profiles of the phase fields and thus on η . The thin-interface limit is relevant at low enough driv-
ing forces, corresponding to linear kinetics obeying Onsager out-of-equilibrium  thermodynamics43. Then, one 
is able to compare quantitatively the phase field results and the sharp-interface results, for example the growth 
velocity and the interfaces’ shape.

Figure 20.  Profiles of φ3 and � along the vertical line depicted in Fig. 19.

Figure 21.  Color map of φ3 showing the polycrystalline pre-melted equilibrium at a temperature blow Tm 
with six equivalent grains (all dry GB energies are the same) arranged with hexagonal symmetry. Boundary 
conditions for φ3 are periodic at the left and right boundaries and of von neumann type at the top and bottom 
boundaries.
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In opposition, for our premelting problem, the characteristic length scale of the liquid layer is η , and there-
fore no separation of length scales holds. The bulk of the liquid phase and the solid–liquid interfaces cannot be 
identified separately, and the liquid layer corresponds to a multi-phase region where at least two phase fields do 
not vanish. Moreover a physical meaning is attributed to the profile of the liquid phase field φ3 . For example, its 
maximum, that varies continuously with temperature according to Eq. (9), is denoted as the ’degree of disorder’.

The premelting dynamics that we have simulated is, to a large extent, governed by the coupling of the phase 
fields in the multi-phase region and a special care should thus be taken in order to discretize the phase fields’ 
variations faithfully. As mentioned before, we had to use a grid step 75 times smaller than η in order to reach a 
good precision on the conservation of energy. This is a tremendous increase in the number of grid points used to 
discretize the interface compared to usual studies, for example in solidification. We are not aware of any example 
for which such a resolution was needed. This necessity restricts the size of the domains that we were able to 
simulate. As an illustration, since we had to use very elongated simulation boxes in the z-direction in order to 
quantitatively reproduce the analytical results for �−∞ , we had to choose relatively small values of � , i.e. 4π in 
the simulations presented in this article.

As we have seen previously, using a small � promotes premelting against melting, which occurs only when 
a certain overheating of the dry GB is exceeded, i.e. for 0 < �

(2)
∞ < �∞ . In Refs.35,37, melting along a dry GB 

was studied using a sharp-interface approach. A crucial ingredient of the theory is the contact angle at the triple 
junction.  In37, only the macroscopic contact angle θ∞ provided by Young’s law is considered. As mentioned 
before, it vanishes in our case σ ∗ > 2 , and then, the steady-state growth velocity diverges. In Ref.35, a disjoining 
potential with an exponentially decreasing magnitude and a microscopic contact angle θ0 were introduced. As 
mentioned in the previous section, θ0 is related to the macroscopic angle and σ ∗ through θ20 = θ2∞ + σ ∗ − 2 , 
yielding a finite θ20 = σ ∗ − 2 when θ∞ = 0 . This regularization allows the velocity to become finite because, in 
the scaling laws inherited from the theory  in37, θ∞ is replaced by θ0  in35.

In both theories, the velocity is inversely proportional to σsl for a given contact angle. This result opposes 
our simulations’ suggestion that the velocity is proportional to σsl for a fixed σ ∗ . This opposition may be appre-
hended when noting that the driving force for premelting is the reduction of interface energy parametrized 
by σgb − 2σsl = (σ ∗ − 2)σsl , while the driving force for melting is the reduction of bulk free energy due to the 
stabilization of the liquid phase above Tm . It would be interesting to investigate the transition from an interface-
energy-dominated driving force to a bulk-energy-dominated one with phase field simulations. The theories of 
melting  in35,37 that yield a velocity inversely proportional to σsl are derived for an infinite system in the direction 
perpendicular to growth (this is numerically possible because the Green’s function method that is used allows to 
eliminate the diffusion field and reduces to a search for the interface shape). As a consequence of energy conserva-
tion, the interface shape then assumes Ivantsov parabolic asymptotics far behind the  tip44. The distance between 
the solid–liquid interfaces thus diverges, and the disjoining potential vanishes. Within our analysis of the phase 
field model, we have seen that, in a channel also, the disjoining potential vanishes in the equilibrated region far 
behind the tip when � > �c . However, setting � only slightly beyond �c does seem appropriate in order to reach 
a regime where the driving force is dominated by the reduction of bulk free energy. It seems indeed natural to 
suppose that this regime holds when the width of the liquid film is much larger than the spatial range on which 
structural forces act, i.e. when the liquid film is much larger than η . Then conservation of energy in the channel 
tells us that the width of the liquid film in the equilibrated region far behind the tip is approximately given by 
��∞ (especially when L̃ is large). Thus, for a study of the premelting to melting transition under the close-to-
equilibrium conditions assumed in Refs.35,37 ( �∞ ≪ 1 ), we need a simulation box such that � ≫ η/�∞ ≫ η . 
In view of the extremely fine discretization required for an accurate realization of the complex coupling of the 
phase fields in the multi-phase region mentioned above, we understand that the investigation using phase field 
simulations of the cross-over between the regimes of bulk-energy-dominated and interface-energy-dominated 
driving force is rather challenging. The difficulty comes, of course, from the multi-scale nature of the problem. 
Of course, the multi-scale nature of the problem represents also a challenge numerically for the simulation of 
polycrystalline evolutions.

Conclusion
A multi-phase field model with obstacle potentials was used to study, for the first time, the dynamics of grain 
boundary premelting. In the model, the disjoining potential describes structural forces on the scale of the inter-
face width (on the atomic scale in a sharp-interface approach) and decreases monotonically with the distance 
from the solid–liquid interfaces. The model was used to simulate the steady-state growth of a liquid layer along 
a dry GB in an insulated channel and the evolution of a pre-melted polycrystalline microstructure.

Our results show that a transition exists from a premelting transformation, which produces a pre-melted 
equilibrium state with a finite disjoining potential energy, to a melting transformation, which produces a macro-
scopic solid–liquid equilibrium with a vanishing disjoining potential energy. The results also reveal that, due to 
energy conservation, confinement, which is linked to grain size (or channel width), promotes premelting against 
melting, implying that a certain overheating of dry GBs above the bulk melting temperature should be exceeded 
for melting to occur; that overheating is found to be inversly proportional to grain size. Conversely, for a given 
overheating, melting occurs only at large enough grain sizes. Our computational results also show that premelt-
ing dynamics is governed by the reduction of the interface energy, with a velocity proportional to σgb − 2σsl.

We found that a polycrystalline equilibrium exists in which the triple junction takes the form of a liquid 
pocket with a macroscopic size. Realizing the presence of that equilibrium allowed us to gain novel insights into 
the evolution of pre-melted polycrystalline microstructures. That evolution consists of two stages: in the first 
stage, the liquid premelts the dry GBs, and then, in the second stage, the fully pre-melted GBs evolve. Due to the 
presence of the polycrystalline equilibrium, the disjoining potential plays a crucial role not only during the first 
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stage, but also during the second one. For example, it allows the grains to have morphologies that, in the absence 
of the disjoining potential, would be energetically unfavorable. In addition, we find that, again due to the pres-
ence of the polycrystalline equilibrium, if grains within a premelted microstructure are large enough, in weakly 
out-of-equilibrium conditions, the dynamics may be recast into the well-known curvature-driven dynamic of dry 
GBs, with a mobility that is enhanced by a factor proportional to the ratio of liquid to solid diffusion coefficients.

An interesting future study is investigating melting along a dry GB when σgb − 2σsl > 0 , and especially 
the transition between the regime driven by the reduction of interface energy, as in our simulations, and the 
one driven by the reduction of bulk free energy. Another interesting future study concerns the influence of the 
disjoining potential on the contact angles at the triple junction where the dry GB meets the two solid–liquid 
interfaces. Concerning the evolution of pre-melted polycrystalline microstructures, the perspective is to study 
the phenomenology arising from, as we have shown, the existence of three relevant length scales, i.e. the width 
of the liquid layer, the size of the liquid pocket at the pre-melted triple junction and the grain size.

Methods
The governing equations of the model can be outlined as follows. The total free energy reads

where the local free energy density that depends on the spatial distribution of the three phase fields and the 
temperature reads

where σ ∗ = σgb/σsl tunes the tendency to premelting that occurs when σ ∗ > 2.
In a dimensionless form and expressing lengths in units of η/(2π) , we have

with

The phase fields evolution equations are given, when the three phases are present (i.e. φ1φ2φ3  = 0 ), by

with (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2). When one of the phase field vanishes, for example φk = 0 , then

The functional derivatives are given by

On the other hand, the temperature equation reads

where D is the diffusivity, taken constant throughout the whole simulation domain, and with L̃ = Lη/σsl and 
S = 4cpTm/L.

Data availability
The data that support the findings of this study are available on request from the corresponding author [GB].
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