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Escherichia coli cells respond to a period of famine by globally reorganizing their gene
expression. The changes are known as the stringent response, which is orchestrated by
the alarmone ppGpp that binds directly to RNA polymerase. The resulting changes in
gene expression are particularly well studied in the case of amino acid starvation. We used
deep RNA sequencing in combination with spike-in cells to measure global changes in the
transcriptome after valine-induced isoleucine starvation of a standard E. coli K12 strain.
Owing to the whole-cell spike-in method that eliminates variations in RNA extraction
efficiency between samples, we show that ribosomal RNA levels are reduced during
isoleucine starvation and we quantify how the change in cellular RNA content affects
estimates of gene regulation. Specifically, we show that standard data normalization
relying on sample sequencing depth underestimates the number of down-regulated
genes in the stringent response and overestimates the number of up-regulated genes by
approximately 40%. The whole-cell spike-in method also made it possible to quantify how
rapidly the pool of total messenger RNA (mRNA) decreases upon amino acid starvation. A
principal component analysis showed that the first two components together described
69% of the variability of the data, underlining that large and highly coordinated regulons
are at play in the stringent response. The induction of starvation by sudden addition of high
valine concentrations provoked prominent regulatory responses outside of the expected
ppGpp, RpoS, and Lrp regulons. This underlines the notion that with the high resolution
possible in deep RNA sequencing analysis, any different starvation method (e.g., nitrogen-
deprivation, removal of an amino acid from an auxotroph strain, or valine addition to E. coli
K12 strains) will produce measurable variations in the stress response produced by the
cells to cope with the specific treatment.

Keywords: stringent response, deep RNA sequencing, whole-cell spike-in normalization, ribosomal RNA
degradation, transcriptome, ppGpp, gene expression
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INTRODUCTION

During stress conditions, cells of Escherichia coli (E. coli) impose
dramatic changes in their transcriptional profile and proteome to
combat stressors. The cells ensure that genes important to
overcome the stress are turned on and other redundant and
energy-demanding gene products, such as genes of the protein
synthesis machinery [i.e., those encoding the ribosomes, transfer
RNAs (tRNAs) and factors required for translation] are down-
regulated. The rapid re-orchestration of the transcriptome in E.
coli occurs on the timescale of a few minutes, and is aided by the
small molecules guanosine tetra- and pentaphosphate, herein
collectively referred to as ppGpp. This physiological response is
called the stringent response (Ryals et al., 1982; Cashel et al.,
1996) and has become a model system for studies of bacterial
stress responses. Together with the protein DksA, ppGpp binds
two sites on RNA polymerase, which affects promoter selectivity
and reduces the ribosomal RNA (rRNA) promoter clearing rates
(Artsimovitch et al., 2004; Gummesson et al., 2013; Ross et al.,
2016). The nucleotide ppGpp is produced when amino acids
become limiting and upon starvation for many different kinds of
nutrients as well as by other circumstances restricting growth
(Cashel et al., 1996). In E. coli, the synthesis of ppGpp is
mediated by two related proteins, RelA and SpoT; each
requiring different signals for activation. The RelA protein is
associated with uncharged tRNA and the synthesis of ppGpp is
triggered when the translating ribosome binds a RelA-tRNA
complex at the starving A-site codon (Haseltine and Block, 1973;
Winther et al., 2018). The SpoT protein is bi-functional; besides
synthesizing ppGpp, SpoT can hydrolyse ppGpp to guanosine
diphosphate and pyrophosphate (Murray and Bremer, 1996),
thus allowing a way out of stringency when conditions allow.

The global effect of ppGpp on transcription has previously
been studied upon starvation for the amino acid serine (Durfee
et al., 2008) or isoleucine (Traxler et al., 2008; Traxler et al.,
2011). These studies have in common that they utilized the well-
established expression microarrays as their read out, the best
technology available for genome-wide analysis at the time.
However, the much more sensitive technique of deep RNA
sequencing (RNAseq) has emerged as a standard method to
measure globally the relative abundance of RNA species in the
cell, and offers a superior dynamic range for measuring
variability in the levels of expressed transcripts (Wang et al.,
2009; Croucher and Thomson, 2010). The effects of ppGpp on
global transcriptional regulation without concomitant starvation
has recently been studied using RNAseq, and resulted in a
substantial expansion of the genes that can be assigned to the
ppGpp-controlled regulon (Sanchez-Vazquez et al, 2019).

The long-lived house-keeping RNAs, rRNA, and tRNA,
constitute the vast majority of the total RNA in the cell (>95%)
(Bremer and Dennis, 1996). For this reason, rRNA and
sometimes tRNA are generally removed prior to RNAseq, or
not included on microarrays, unless they are the specific focus of
the study. One goal of our work was to obtain data on the
response to amino acid starvation in E. coli that includes the
changes in the whole transcriptome, including the most
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abundant RNAs, and to analyze how inclusion of all RNA may
enhance the current understanding of the well-studied stringent
response. In connection with this goal came the need to quantify
transcripts without making assumptions about the total RNA
content of the cells before and after starvation. Typical
transcriptome analyses, whether done by microarray or
RNAseq, rely on the assumption that the total amount of RNA
is constant across different sample conditions. However, while
rRNA and tRNAs are generally believed to be stable during
exponential growth (Baracchini and Bremer, 1987), the familiar
way of thinking of these RNAs as stable in an absolute sense has
been questioned for some time (Deutscher, 2003). Our previous
work shows that a substantial fraction of the tRNA and rRNA
pools in the cell is rapidly degraded upon amino acid starvation
(Svenningsen et al., 2017; Fessler et al., 2020), suggesting that the
total RNA content of E. coli cells may decrease appreciably under
this condition. Given the global changes in gene expression and
the possibility that total RNA levels may decrease upon amino
acid starvation we reasoned that a normalization method that is
independent of any assumptions about cellular RNA content
would be important for accurate detection of gene expression
changes during the stringent response. Therefore, we chose to
normalize the sample sequencing reads using a spike-in culture
for reference. Spike-in, in the form of in vitro synthesized RNA,
has been used in many experiments for normalization of
transcriptional activity (see e.g., Schena et al., 1995;
Bartholomäus et al., 2016; Gorochowski et al., 2019) and to
verify the accuracy of RNA preparation protocols (see e.g., Jones
et al., 2015; Ju et al., 2019). However, in-vitro-transcribed spike-
in RNA is added after the extraction of the experimental RNA
and quantification of transcription rates assume an equally
efficient extraction of RNA from each sample (Gorochowski
et al., 2019). Or, if the spike-in transcripts are added per mass of
RNA in each sample, the underlying assumption is that cells
contain equal amounts of RNA at the different conditions. The
whole-cell spike-in approach is often used in microbiome studies
to quantify cell numbers (Hornung et al., 2019) but has not, to
our knowledge, been used outside our research group for
quantification of RNA (Svenningsen et al., 2017). The benefit
of the whole-cell spike-in approach we use here is that it allows
normalization directly to the concentration of bacteria in each
sample [as measured by optical density (OD)], without making
any assumptions about the RNA content of the cells. For
comparison, we also normalized our data set using the
conventional approach of normalizing the data based on the
sequencing depth obtained for each sample. The analysis of the
transcriptome of isoleucine-starved cells normalized by the two
methods reveal that the regulon responding negatively to
starvation is much larger than what is detected using a
conventionally normalized RNAseq transcriptome, and the
regulon responding positively is correspondingly smaller. This
observation relates to a greater turnover of total RNA in starved
cells than previously anticipated, and the spike-in approach
enabled us to quantify the loss of rRNAs and total messenger
RNA (mRNA) during starvation relative to the levels during
steady-state growth. Furthermore, principal component analysis
March 2020 | Volume 11 | Article 144
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of the stringent response transcriptome reveals two predominant
temporal gene profiles that are enriched for classes of genes with
related biological functions. Finally, it was evident that isoleucine
starvation induced by L-valine has transcriptional consequences
that are separate from the general stringent response of amino-
acid-starved cells controlled by ppGpp.
MATERIALS AND METHODS

Strains, Media, and Growth Condition
The wild-type strain E. coli K-12 MAS1081 (MG1655 rph+ gatC+

glpR+) were grown in flasks at 37°C at 200 rpm in
morpholinepropanesulfonic acid (MOPS) minimal medium
(Neidhardt et al., 1974) supplemented with 0.2% glucose. Cell
growth was monitored spectrophotometrically by optical density
at 436 nm (OD436) and cultures were grown for at least nine
generations in exponential phase before sampling. Isoleucine
starvation was induced by adding L-valine to a final
concentration of 400 µg/ml (Leavitt and Umbarger, 1962). The
small RNA (sRNA) qrr2 from Vibrio cholerae was cloned
downstream of the T7 promoter in the vector pET11a (XbaI/
Bpu1102I) and transformed into E. coli BL21 (DE3) to yield the
spike-in strain BKG3; 100 µg/ml ampicillin was used to maintain
the plasmid and the expression of Qrr2 was induced with 1 mM
isopropyl b-D-1-thiogalactopyranoside (IPTG). Rifampicin was
added to a final concentration of 300 µg/ml immediately after the
last isoleucine starvation sample to block transcription initiation.

Spike-In and RNA Extraction
To preserve cellular RNA, bacterial culture samples were
harvested by mixing with 1/6 vol of a stop-solution composed
of 5% water-saturated phenol in ethanol at 0°C (Bernstein et al.,
2002). All samples were kept at 0°C until the final sample had
been harvested. Prior to total RNA extraction, a volume of spike-
in culture corresponding to 1% of the experimental culture was
added to each sample, based on sample OD. The volume of
spike-in cell culture used was calculated according to Equation 1
(as described in Stenum et al., 2017).

Vspike−in =
0:01*Vsample*ODsample

ODspike−in
(1)

RNA was isolated using a hot phenol extraction method.
Briefly, cell pellets were mixed with resuspension solution (0.3 M
sucrose, 0.01 M sodium acetate pH 4.5, 0°C), then with lysis
solution [2% sodium dodecyl sulfate (SDS), 0.01 M sodium
acetate pH 4.5] and finally with hot acidic phenol [pH 4.3, 65°
C (Fisher BioReagents)]. The mixture was snap-freezed in liquid
nitrogen and centrifuged, and the aqueous phase was re-
extracted by phenol (65°C) and frozen in liquid nitrogen one
more time. RNA was precipitated with 2.5 vol ethanol and 0.1 vol
sodium acetate (3M, pH 4.7) at −80°C overnight. Precipitated
RNA was pelleted, washed with 70% ethanol, and re-suspended
in nuclease-free H2O. The remaining DNA was removed by
Frontiers in Genetics | www.frontiersin.org 3
DNaseI treatment (Roche), according to the manufacturers
manual. RNA integrity (16S and 23S rRNA) was verified by
agarose gel electrophoresis.

Northern Blot
An aliquot of total RNA was mixed with 3 vol loading dye (8 M
urea, 6% formaldehyde, bromophenol blue) and fractionated by
electrophoresis through a 1% MOPS-buffered agarose gel
prepared with 6% formaldehyde. The RNA was transferred
from the gel onto a Hybond-N+ membrane by capillary transfer
overnight and was fixed to the membrane by 0.12 J/cm2 of UV
light in a Hoefer UVC 500 UV crosslinker. Membranes were pre-
hybridized for one hour at 42°C in 6 ml hybridization solution
[0.09 M NaCl, 0 .05 M NaH2PO4 (pH 7.7) , 5 mM
ethylenediaminetetraacetic acid (EDTA), 5x Denhardt's
solution, 0.5% (w/v) SDS, 100 mg/ml sheared, denatured
herring sperm DNA]. Hybridization of the immobilized RNA
was performed at 42°C overnight in the same solution as above
with 40 pmol 32P 5'end-labeled oligo-DNA probe (g-[32P]-ATP;
PerkinElmer). DNA-oligos used were complementary to a
sequence in the 5S rRNA, 16S rRNA, 23S rRNA, or Qrr2,
probe sequences are listed in Supplementary Table S11.
Membranes were washed several times in 0.3 M NaCl, 30 mM
sodium citrate, 0.1% SDS at room temperature prior to exposure
to a phosphor-imaging screen. The radioactivity present in
specific bands was measured on a Typhoon phosphor Imager
FLA7000 (GE Healthcare) at 100 microns. Membranes were
stripped of hybridized probes with 90–95°C stripping buffer
(0.1% SDS, 18 mM NaCl, 1 mM NaH2PO4, 0.1 mM EDTA)
under shaking until no more radioactivity could be detected on
the blot by a Geiger-Müller tube. The program ImageQuant TL
8.2 was used to quantify each band on the phosphor-imaging
screen. The quantified intensity on each rRNA band were then
divided with the values from Qrr2 in the same lane and this ratio
is plotted relative to the three samples harvested immediately
before inducing starvation.

Quantitative Reverse Transcription PCR
First-strand complementary DNA (cDNA) was reverse
transcribed from 1 mg of total RNA with Thermo Scientific
RevertAid RT Kit (#K1691) using the supplied random hexamer
primers. As control for genomic DNA contamination, a reaction
with no reverse transcriptase was included for each sample (RT-).
A 1/10,000 to 1/25 fraction of the total synthesized cDNA was
combined with SsoAdvanced Universal SYBR Green Supermix
(Bio-Rad) and analyzed in triplicate by quantitative reverse
transcribed PCR (qRT-PCR) using the QuantStudio 3 system
(Applied Biosystems). Thermal cycling conditions used were 95°
C for 30 s followed by 40 cycles of 95°C for 15 s, 60°C for 1 min.
A final melting-curve cycle was performed to check for
amplification artifacts starting at 95° for 15 s, 60° for 1 min,
followed by a dissociation step to 95°C with 0.15°C/s increments.
The relative levels of RNA is calculated as the signal ratio
between the target transcript and one of the reference genes
from the spike-in plasmid, namely bla, using the formula:
2−(DDCT) where DDCT = (CT,target−CT,bla)timex−(CT,target−CT,bla)
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time 0 (steady state), as previously described (Livak and Schmittgen,
2001). Primer sequences for target genes and control gene are
listed in Supplementary Table S11.

RNA Sequencing and Data Analysis
The RNA used for RNAseq was harvested, spiked-in, and
extracted as described above; 1–1.5 µg of total RNA from each
sample was sent to the GATC BIOTECH facility, European
Genome and Diagnostics Centre, Konstanz, Germany for
library preparation and RNA sequencing. RNA quality was
assessed using an Agilent 2100 Bioanalyzer/Advanced
Analytical Technologies Fragment Analyzer. Strand-specific
cDNA libraries were prepared according to Illumina's
protocols without prior rRNA depletion. RNAseq experiments
were performed on an Illumina HiSeq using a paired-end read
length of 2x50 bp. Twenty-two to 29 million paired-reads were
obtained per sample. GATC BIOTECH initially processed the
raw read files, removing adapters prior to delivery. Then the files
were uploaded to the Galaxy web platform and we used the
public server at usegalaxy.org to analyze the data (Afgan et al.,
2018). The files were checked using fastQC1. The reads were then
aligned to Escherichia coli str. K-12 substr. MG1655 (RefSeq
NC_U00096.3) using bwa-aln (version 0.7.15.2 with default
parameters) (Li and Durbin, 2009). Reads were counted using
htseq-count (version 0.6.1p1) (Anders et al., 2015). In parallel,
the reads were aligned (bwa-aln) to the reference sequence of the
plasmid harboring the spike-in genes and raw read counts
mapping to three features (qrr2, bla, and antisense-lacI), and
counted using htseq-count and summed to give the plasmid
spike-in reads for a given sample. Raw read counts were then
normalized to gene size prior to normalization to spike-in reads
to give RPKSP, Reads Per Kilobase of gene per 10 kilobase of
spike-in as shown in Equation 2.

RPKSP =
Gene� specific Reads Per Kilobaseð Þ

Spike� in Reads Per Kilobase=10:000ð Þ (2)

We emphasize that the order in which the raw reads were
aligned to the E. coli chromosome and to the spike-in plasmid
did not change the results. Specifically, the same results were
obtained when the raw reads were separately aligned to the
plasmid and the chromosome as when the alignment was carried
out sequentially (i.e., reads were first aligned to the chromosome
and remaining reads were aligned to the plasmid).

The raw read counts were also normalized according to the
standard method to give RPKM, Reads Per Kilobase Million as
shown in Equation 3.

RPKM =
Gene� specific Reads Per Millionreadsð Þ

Size of Specific gene kbð Þð Þ (3)

High-throughput sequencing data has been deposited in
NCBI's Gene Expression Omnibus (Edgar et al., 2002) and are
accessible through GEO Series accession number GSE1367532.
1Andrews, S. FastQC: a quality control tool for high throughput sequence data
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
2 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136753)
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Transcriptome Data Filtering
We initially applied some filtering of the normalized
transcriptomic data (RPKSP and RPKM) in order to quantify
the magnitude of fold differences in transcriptional regulation
upon starvation for isoleucine. i) All genes that were neither
sequenced in steady state nor in starvation were filtered out (50
genes). ii) Transcripts in the triplicate steady-state samples that
either had low average normalized reads or no reads in
combination with either low average normalized reads or no
reads in the four starvation samples were filtered out (112
genes). These transcripts did not yield any computable fold
differences between steady-state growth and starvation. One
feature, the gene lacI, was present on both the E. coli
chromosome and the spike-in plasmid. lacI was therefore
excluded from our analysis. A third filtering step was applied in
the comparison of fold differences between RPKM and RPKSP
normalization at 10 and 80 min starvation, iii) genes where the
fold change at both the 10 and 80 min time points relative to the
steady-state average could not be calculated due to a lack of
coverage were omitted (60 genes). In total 4,048 transcripts were
assessed, i.e., 95% of the annotated genes in the Escherichia coli str.
K-12 substr. MG1655 (RefSeq NC_U00096.3) reference genome.
The average standard deviation between the three steady-state
measurements of each of the 4,048 transcripts was 25%. The
normalized sequencing reads, including omitted genes, are
reported in Supplementary Data Sheet 1 (RPKSP) and
Supplementary Data Sheet 2 (RPKM). For the analysis of the
variance among steady-state samples as a function of gene length
(Supplementary Table S2), we also applied a filter; the analysis
was restricted to only consider genes where at least two of the
triplicate steady-state samples had detectable transcripts. This
yielded 3.979 transcripts for analysis.

Principal Component Analysis
Principal component analysis (PCA) (Abdi and Williams, 2010)
was performed on RPKSP-normalized reads of the steady-state
samples and the starvation time series in Supplementary Data
Sheet 1. In order to focus on the temporal profile of expression
changes and not the absolute expression level, the number of
reads for each data point were normalized to the average number
of reads mapped to the corresponding gene for the seven time
points. PCA was performed and visualized in MATLAB
(MATLAB, Release R2016b). PC1 and PC2 captured 48 and
21% of the variability of the data, respectively. PC3 captured 9%
of the variability, but the PC3 vector showed large variability
among the three steady-state samples, indicating that it captured
a trend that is due to sampling error. Therefore, we focused on
the first two principal components. For the enrichment analysis,
the Enrichment tool in the SmartTable of the EcoCyc webserver
(Karp et al., 2014; Keseler et al., 2017) was used with the options
of “Fisher Exact” and “Benjamini-Hochberg Correction” on
“Biological Process” gene ontology terms.

Ecocyc Omics Dashboard Tool
Genes in Supplementary Data Sheet 1 and the log2-fold
induction ratios of the data points in the starvation time series
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136753
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Gummesson et al. Isoleucine Starvation in E. coli
were imported as a SmartTable in Ecocyc (Karp et al., 2014;
Keseler et al., 2017) and analyzed using the Omics Dashboard
Tool (Paley et al., 2017). The Dashboard Biosynthesis shown in
Figure 8A was modified to only show the seven largest sub-
systems of biosynthetic genes. In addition, the group of
aminoacyl-tRNA synthetases was added manually by curating
and extracting the relevant genes from the Biosynthesis sub-
system “Others.” Genes belonging to the arginine biosynthesis
sub-system were exported and their induction ratio at the 5 min
time point after starvation are shown alongside data on the same
genes extracted from the dataset published by Sanchez-Vazquez
and co-workers (Sanchez-Vazquez et al., 2019).

RESULTS

Experimental Approach and Provoking
Amino Acid Starvation
To evoke amino acid starvation in cultures of E. coli K-12, we
grew MAS1081 (MG1655; rph+ gatC+ glpR+) in MOPS-buffered
minimal medium supplemented with 0.2% glucose and starved
for the amino acid isoleucine by adding excess L-valine. The K-
12 strain of E. coli harbors a frameshift mutation in ilvGM,
inactivating one of three isozymes in the valine and isoleucine
biosynthetic pathways, while the other two isozymes, ilvBN and
ilvIH, are susceptible to feedback inhibition by L-valine (Valle
et al., 2008). High concentrations of L-valine therefore renders
E. coli K-12 auxotrophic for isoleucine (Leavitt and Umbarger,
1962). Three samples were collected during steady-state growth
immediately before starvation and five samples in total were
collected in a time series; 5, 10, 20, 40, and 80 min after L-valine
Frontiers in Genetics | www.frontiersin.org 5
addition, resulting in a total of eight samples (Figure 1A). A
culture of spike-in E. coli cells was grown in a parallel, which was
not exposed to L-valine (Figure 1B). The spike-in cells carry an
inducible plasmid and express three transcripts that are not
present in the wildtype strain, namely a V. cholerae sRNA (qrr2),
an antibiotic marker (bla), and an antisense transcript of lacI,
from the plasmid. The spike-in cells were induced with IPTG for
approximately four generations before they were mixed with the
experimental samples in a 1:100 ratio based on OD. We added
spike-in cells to the experimental samples prior to total RNA
extraction to ensure that variations in RNA recovery, cDNA
synthesis, and sequencing depth between the samples would be
reflected in the numbers of spike-in reads. By using this
approach, we were able to, very precisely, quantify the relative
changes in the transcriptome during the experiment, while we
lost the information about absolute amounts of transcripts
mapped, which is only obtainable by addition of in vitro
transcribed spike-in RNA after sample preparation
(Gorochowski et al., 2019).

Overview of Spike-In Methodology and
RNAseq Data
RNAseq libraries were prepared from the eight samples collected
during the isoleucine starvation time series. Illumina sequencing
results produced 22 to 29 million reads per sample and the
proportion of uniquely mapped reads to the E. coli genome
(RefSeq NC_U00096.3) was at least 97.8% for all samples. The
reads from each sample were mapped in parallel to the spike-in
plasmid reference sequence (Supplementary Table S1). The
volume of spike-in cells added to each sample prior to RNA
FIGURE 1 | Provoking amino acid starvation and addition of spike-in cells to samples. (A) Cells were grown in steady state (closed circles) before induction of
isoleucine starvation by addition of 400 mg/ml L-valine (denoted by *). Three steady-state samples (blue arrows) were harvested as reference immediately before
addition of L-valine and five samples in total were harvested during starvation up to 80 min after the addition of L-valine (open circles and red arrows). (B) In parallel,
an E. coli strain that carried an inducible plasmid expressing a Vibrio cholerae small RNA (sRNA) (qrr2), antisense-lacI and an antibiotic marker (bla) (gray closed
circles) was grown as a spike-in culture. Addition of inducer (1 mM IPTG) is indicated with a gray arrow. The samples collected in (A) were spiked-in with 1% optical
density (OD) units of the spike-in culture of cells harboring the plasmid (gray dashed arrows).
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purification was adjusted according to the samples' OD at the
time of harvest, to ensure a constant ratio of spike-in cells to
sampled cell mass (as measured by OD). We first assessed the
spike-in method by calculating the ratio of spike-in reads to total
reads. Thus, we could evaluate two parameters; i), how much the
three steady-state replicate samples varied from each other and
ii), whether the spike-in method indicated changes in total RNA
levels during starvation. As seen in Supplementary Figure S1A,
the ratio of plasmid reads to total reads of the three replicates
taken during steady-state growth varied only by ~1%, indicating
a high reproducibility of the data. In contrast, as starvation
progressed within the 80-min time series, the ratio of plasmid
reads/total reads increased, indicative of a decline in total RNA
levels from the experimental samples, which is consistent with
the net negative effect of ppGpp on the activity of RNA
polymerase (Fiil et al., 1972; Sarubbi et al., 1988) and break-
down of rRNA (Zundel et al., 2009; Fessler et al., 2020) and tRNA
(Svenningsen et al., 2017) upon starvation. However, the
correlation deviated from the expected ratio at the 20-min time
point with approximately 30% from the trend. The deviation is
most likely due to erroneous sampling, which results in a surge in
the ratio of ribosomal reads to spike-in reads at the 20-min time
point (Supplementary Figure S1B). The surge in rRNA mid-
starvation is highly unlikely to have a biological explanation,
given the negative effect of amino acid starvation and ppGpp
production on rRNA synthesis (Sands and Roberts, 1952; Cashel
and Kalbacher, 1970). Therefore, we regarded the 20-min time
point as an outlier and did not include it in the further analysis of
the transcriptome. We then proceeded with normalizing the
sequencing reads to the spike-in RNA (here designated RPKSP,
Reads Per Kilobase of gene per 10 kilobase of spike-in, see
Materials and Methods). For comparison we also normalized
the sequencing reads (excluding reads mapping to the spike-in
plasmid) using the standard method that only takes into account
Frontiers in Genetics | www.frontiersin.org 6
the sequencing depth and gene length (RPKM, Reads per
Kilobase Million).

Hallmark Stringent Response Gene
Regulation Is Captured With RNAseq
When E. coli experiences amino acid starvation, transcription
of the protein synthesis machinery is adjusted within minutes
to meet the lower demand for protein synthesis (Maaløe, 1979;
Ryals et al., 1982; Nomura et al., 1984). This hallmark of the
stringent response was clearly reflected in our transcriptomic
data, shown in Figure 2 by the mRNAs encoding ribosomal
proteins and elongation factor Tu. Figure 2 also shows that
two extensively characterized promoters known to be activated
by ppGpp, namely the iraP and uspA promoters (Nyström and
Neidhardt, 1992; Bougdour et al., 2006; Vollmer and Bark,
2018), are up-regulated in this analysis. Thus, the ppGpp-
mediated stringent response is activated upon L-valine-
induced isoleucine starvation in our experiment, and the
general trends are detected using both methods of data
normalization (RPKSP and RPKM).

Ribosomal RNA Turnover Upon
Isoleucine Starvation
Assessing the ribosomal RNAs, however, our spike-in-
normalized data show that not only was the synthesis of rRNA
down-regulated, but the levels of existing rRNA per OD unit of
cells were substantially reduced upon isoleucine starvation.
Specifically, after 80 min of starvation the levels of 16S and 23S
rRNAs had decreased to approximately 70% of the pre-
starvation level (Figure 3A, RPKSP). This behavior was only
visible when we normalized the sequencing reads to levels of
reads from the spike-in plasmid, and not to total reads (Figure
3B, RPKM). In agreement with the RPKSP-normalized data,
northern blots showed that 16S and 23S rRNAs decayed to
FIGURE 2 | The messenger RNA (mRNA) encoding protein components of the protein synthesis machinery are rapidly down-regulated, and known ppGpp-
controlled stress response proteins are rapidly up-regulated upon isoleucine starvation. The average levels of ribosomal protein mRNA reads during isoleucine
starvation plotted as log2-fold change relative to pre-starvation levels (rpsA-U: open diamonds, rplA-Y: open squares, and rpmA-J: open triangles) as well as the
average mRNA levels of elongation factor EF-Tu (tufAB: circles) and mRNA levels of the anti-adaptor protein, iraP (closed circles), and universal stress protein A,
uspA (closed triangles).
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approximately 60–80% of the pre-starvation level in the first 80
min after starvation (Figures 3C, D).

While there is good agreement between the two methods for
16S and 23S rRNA, there is a discrepancy in the quantification of
5S rRNA levels. In the northern blot analysis, 5S levels declined
to approximately 80% after 80 min, whereas RNAseq reads
indicate a decline to approximately 40% of the pre-starvation
level. We suspect that the lower levels of 5S reads is likely a
consequence of a higher number of mapping errors for short
RNAs in the RNAseq pipeline, as we noticed a general increase in
the variation between the triplicate steady-state samples for reads
mapping to short genes (<0.2 kb) (Supplementary Table S2). As
a further quantification control, we assessed the RNA samples by
qRT-PCR for the levels of 5S. The qRT-PCR data verified the
magnitude of 5S decline shown in the northern blots
(Supplementary Figure S2), confirming that 5S was unreliably
quantified in the RNAseq pipeline. Collectively, the RPKSP-
normalized transcriptome, the northern blots, and the qRT-PCR
Frontiers in Genetics | www.frontiersin.org 7
assay, validate that rRNA levels decrease substantially during the
early response to isoleucine starvation.

Transfer RNA Turnover Upon
Isoleucine Starvation
A rapid reduction in tRNA levels upon L-valine-induced
isoleucine starvation as well starvation for other amino acids
was reported previously, but the kinetics of tRNA disappearance
shown in Figure 3 are much faster than expected from northern
blot experiments (Svenningsen et al., 2017), regardless of the
method of normalization. In addition, the concentration of
tRNA is highly underestimated by the RNAseq method as a
molar ratio of about 10 tRNAs per ribosome is expected (Dong
et al., 1996), but we only detected 0.003 tRNA per rRNA by
RNAseq during steady-state growth (Supplementary Table S3).
The low detection of tRNAs is reportedly due to the difficulties in
reverse transcription of the highly modified tRNA to cDNA
(Motorin et al., 2007). While tRNA is quantified independently
FIGURE 3 | Normalizing RNA sequencing reads to spike-in RNA reveals that stable RNA levels are substantially reduced during isoleucine starvation. The average
reads of stable RNA (23S; circles, 16S; diamonds, 5S; squares and transfer RNAs (tRNAs); triangles) during isoleucine starvation are shown relative to the average
pre-starvation levels normalized with two different methods: (A) by spike-in cells (RPKSP, Reads Per Kilobase of gene per 10 kilobase of spike-in) and (B) by total
reads (RPKM, Reads per Kilobase Million). (C) A 1% agarose gel was used for electrophoresis of total RNA from three samples harvested in steady-state growth
before induction of isoleucine (Ile) starvation (0 time points) and during starvation (5, 10, 20, 40, 80 min time points). The resulting blot was probed for 23S, 16S, 5S,
and the spike-in-cell-specific RNA Qrr2 as indicated. (D) The levels of stable RNA (23S; circles, 16S; diamonds, 5S; squares) were quantified by normalizing to Qrr2
from the spike-in cells and shown relative to the average of the three RNA samples harvested prior to starvation. The quantified and normalized data originates from
the blot in panel (C).
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of its modification status in northern blots, here it is not, and we
therefore expect newly transcribed hypomodified tRNA to be
overrepresented in the RNAseq analysis. This could explain why
tRNA “disappears” fast (within 5 min of the onset of starvation;
Figure 3) as transcription of tRNA genes is curtailed by the
stringent response, so the pool of hypomodified tRNA is
expected to decrease very fast upon starvation and enter the
pool of poorly detected mature tRNA. Indeed, treatment of the
starved culture with the transcription initiation inhibitor
rifampicin, which terminates initiation of RNA synthesis,
resulted in an additional decrease in tRNA-mapped reads
down to just 2% of the pre-starvation level, supporting that
very little mature tRNA was detected by RNAseq (Figure 4),
while previous northern blot experiments showed at least 20%
retention of tRNA 80 min after rifampicin treatment
(Svenningsen et al., 2017). By contrast, the profile of rRNA
levels per OD unit of culture remained nearly undisturbed
during the rifampicin treatment (Figure 4).

Changes in the Size of the Total
Messenger RNA Pool Upon
Isoleucine Starvation
The whole-cell spike-in method in combination with RNAseq
allowed us to estimate the kinetics of the reduction in the total
mRNA pool during starvation (Figure 5). This estimate is unique
in that it yields direct information on mRNA abundance per OD
unit of bacterial culture under starvation relative to steady-state
levels, whereas previous estimates were based on the change in
synthesis rates of stable RNA relative to total RNA (RS/RT)
during starvation (Ryals et al., 1982), or the addition of synthetic
Frontiers in Genetics | www.frontiersin.org 8
RNA spike-in after the preparation of sample RNA (see e.g.,
Schena et al., 1995; Gorochowski et al., 2019). It is well known
that the promoter selectivity and the initiation frequency of RNA
polymerase changes as a function of the ppGpp concentration
(Kajitani and Ishihama, 1984; Sanchez-Vazquez et al., 2019) and
that ppGpp switches RNA polymerase onto stress-related genes
rather than genes for components of the translational apparatus
(as illustrated in Figure 2). It has also been shown that the
processivity of the RNA polymerase is negatively affected by the
concentration of ppGpp (Kingston and Chamberlin, 1981;
Kingston et al., 1981; Sørensen et al., 1994; Vogel and Jensen,
1994; Roghanian et al., 2015). In the present set of data (Figure
5) we can see how these effects of reduced RNA polymerase
initiation frequency, processivity, and altered promoter
selectivity combined to reduce the total mRNA pool to about
70% already after 10 min of starvation, and reduced it by half
after 80 min (Figure 5 and Supplementary Table S4).

In summary, the spike-in methodology allowed us to quantify
the change in the pools of rRNA and mRNA upon isoleucine
starvation and subsequent rifampicin treatment, while tRNA
could not be reliably quantified using this method. Northern blot
analysis confirmed the decrease in rRNA shown by RPKSP
normalization (Figure 3C). The underlying reason that RPKSP
reveals this decrease while RPKM normalization does not, is that
since the rRNA comprises ~85% of total RNA in the cell (on
average 89% of the total reads in our samples), a decrease in
rRNA will result in an almost equivalent decrease in the total
RNA. Therefore, a normalization method that relies on
sequencing depth will i) mask changes in very abundant
rRNAs, ii) underestimate the magnitude of the change in
FIGURE 4 | Inhibition of transcription leads to diminished levels of transfer RNA
(tRNA)-mapped reads. The sumof readsmapped to ribosomal RNA (rRNA) genes
(open circles) and the sumof readsmapped to tRNA genes (open squares) during
isoleucine starvation are shown as the log2-fold change relative to their pre-
starvation levels (L-valine addition denoted by *). Immediately after the last
isoleucine starvation sample was harvested at 80min, 300 mg/ml rifampicin was
added to the culture to block transcription initiation. Samples were harvested 10,
15, 25, and 45min after rifampicin addition.
FIGURE 5 | Total messenger RNA (mRNA) levels decrease during starvation.
Reads mapping to 129 noncoding RNAs [ribosomal RNA (rRNA), transfer
RNA (tRNA), small regulatory RNAs, and the RNA component of RNase P]
were removed from the filtered Supplementary Data Sheet 1 to yield the
mRNA dataset (Supplementary Table S4). The sum of reads mapped to the
3.919 mRNA genes during isoleucine starvation are plotted relative to the
average of their pre-starvation levels.
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RNAs that change in the same direction as the very abundant
RNA, and iii) overestimate the magnitude of the change in RNAs
that change in the opposite direction of the very abundant RNA.

Transcriptome-Wide Response to Amino
Acid Starvation Induced by L-Valine
The sequencing results for individual genes are available in
Supplementary Data Sheet 1 (RPKSP-normalized) and
Supplementary Data Sheet 2 (RPKM-normalized) as the RNA
abundance levels (normalized reads per gene) for each time point
as well as the log2–fold difference in RNA abundance levels at
each time point of starvation and rifampicin treatment, relative
to the average of the three steady-state samples. Supplementary
Tables S5 and S6 are alphabetic lists of RPKSP- and RPKM-
normalized genes, that are up- or down-regulated more than
two-fold at the 80-min starvation time point relative to the
average of the three steady-state time points. Finally,
Supplementary Tables S8 and S9 report the 100 RPKSP-
normalized genes most strongly activated and repressed,
respectively, upon isoleucine starvation.

The difference in the outcomes of the two normalization
methods for L-valine-induced isoleucine starvation was assessed
by plotting the 10 and 80 min time points relative to the average
of the three steady-state samples (Figures 6A, B). We apply a
two-fold regulatory threshold (Wren and Conway, 2006) to ease
comparison between our data sets and the most relevant
literature (Traxler et al., 2011; Sanchez-Vazquez et al., 2019).
As shown in Figure 6, RPKM normalization underestimates the
number of down-regulated genes in the stringent response
compared to normalization to the spike-in reads (RPKSP).
This effect is more pronounced as starvation progresses. RPKM
normalization fails to detect 40% of the ≥ 2.0 fold down-
regulated genes at 80 min post starvation, which are detected
with RPKSP normalization (Figure 6). By contrast, RPKM
overestimates the number of genes induced ≥2 fold by >40% at
the 80 min time point, compared to RPKSP normalization
(Figure 6B). While the number of genes that qualify for the ≥2
fold up- or down-regulation cut-off clearly differ substantially
between the two normalization methods, we emphasize that the
identity of the most strongly regulated genes is independent of
the normalization method. Thus, the 970 genes that could be
Frontiers in Genetics | www.frontiersin.org 9
identified as ≥2-fold down-regulated in the RPKM-normalized data
set despite the tendency for this method to overestimate gene
expression late in starvation relative to the steady state, form the
most strongly down-regulated subset of the 1642 genes that were
identified as ≥2-fold down-regulated after application of the RPKSP
correction, and vice versa for the up-regulated genes
(Supplementary Tables S5 and S6). From this result, it is evident
that the method of normalization is critical for the interpretation of
changes in RNA levels when cells experience a shift in growth
condition. In the remainder of the manuscript, we therefore focus
on the RPKSP-normalized data set as we analyze the transcriptomic
response to amino acid starvation induced by L-valine.

Two Temporal Profiles Account for the
Majority of Gene Expression Changes
To explore trends in the transcriptome response to isoleucine
starvation in general terms, a principal component analysis
(PCA) was carried out. PCA is a statistical procedure that uses
linear transformations of the original data (relative abundance of
each RNA at the seven time points, see Materials and Methods)
to define a set of new, orthogonal variables that reduce the
number of variables needed to describe the data set. We found
that the first two components of the analysis account for 69% of
the variability of the data. The temporal profile of these two
components (PC1 and PC2) are shown in Figures 7A, B
respectively, and PC1 and PC2 scores for each individual gene
is provided in Supplementary Table S7. The PC1 vector, which
accounts for 48% of the variability, describes genes that do not
show variation among the three steady-state samples, change
abruptly in response to the addition of L-valine, and remain at
the new level throughout the duration of the starvation. An
example of a gene with a high positive PC1 score is uspB,
encoding the universal stress protein B, which is known to be
induced by starvation (Farewell et al., 1998). Like PC1, the PC2
vector describes genes that do not vary among the three steady-
state samples, and change abruptly in response to the addition of
L-valine. But in contrast to PC1, the RNA level for genes with a
high positive PC2 score show a surge at the 5 min time-point
followed by a drop as starvation continues. An example of such a
gene is crp, encoding the cAMP-binding global transcriptional
regulator CRP. Figure 7C shows all 4,048 genes in the
FIGURE 6 | Applying the spike-in methodology alters the proportions of up- and down-regulated genes observed during isoleucine starvation. Normalization was
done by two different methods; RPKM (Reads Per Kilobase Million) and RPKSP (Reads Per Kilobase of gene per 10 kilobase of spike-in). RNAs that showed >2-fold
change at (A) 10 min and (B) 80 min after starvation relative to the average of the three samples harvested immediately before isoleucine starvation are denoted in
orange bars (≥ 2.0 fold up-regulated) and blue bars (≥ 2.0 fold down regulated). Genes that were < 2.0-fold regulated genes are shown in dark gray bars. N/A: not
included in the analysis either because the reads in the triplicate steady state samples were filtered out (see Materials and Methods), or gene reads were not
detected in either steady-state growth or starvation (light gray bars).
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transcriptome analysis plotted according to their PC1 and PC2
scores (colored dots). The temporal profiles for selected values of
PC1 and PC2 are shown as eight inserts at the corresponding
positions on the graph. For example, the insert at position (−4;0)
depicts a gene with a temporal profile that is strongly negatively
correlated with the PC1 profile shown in Figure 7A. An example
of such a gene is carB, encoding a component of carbamoyl
phosphate synthetase, which is involved in arginine biosynthesis
from ornithine (see also Figure 8C). The gene arnA encoding a
key enzyme in outer membrane lipid A modification (Williams
et al., 2005), is an example of a gene with a negative correlation to
the PC2 profile. Specifically, arnA mRNA was quite abundant
during steady-state growth, dropped 15-fold at 5 minutes after
starvation, and returned to steady-state levels after 40 min of
starvation. The temporal profile of uspB, crp, carB, and arnA
were confirmed by qRT-PCR and show similar relative
expression profiles as the RPKSP-normalized sequencing data
(Supplementary Figure S3).

To explore whether general trends could be discerned in
terms of the biological processes associated with temporal
profiles defined in the PCA, we used the enrichment tool
available on the EcoCyc webserver (Keseler et al., 2017) to
identify gene ontology (GO) terms that were statistically over-
Frontiers in Genetics | www.frontiersin.org 10
represented in the four subsets of genes that scored among the
10% highest or lowest for PC1 or PC2 (see Materials and
Methods). Among the tens to hundreds of GO terms that were
significantly enriched in each subset, we focused on broad
categories (parent GO terms) to highlight the general trends in
the dataset, rather than focus on specific metabolic pathways or
regulons. The 10% of genes that had the highest PC1 scores were
enriched (p-value 3*10−7) for the parent GO term “response to
stress” (Figure 7C, red dots). By contrast, the 10% of genes that
had the lowest PC1 scores were highly enriched (p-value 7*10−13)
for the broad GO term “biosynthetic process” (Figure 7C, green
dots). Meanwhile, the 10% of genes that had the highest PC2
scores were enriched (p-value 2*10−4) for “regulation of
transcription, DNA-templated” (Figure 7C, blue dots), while
those with the 10% lowest PC2 scores did not yield a significantly
enriched broad category. While there are naturally many outliers
within these broad categories, this analysis illustrates that general
temporal profiles can be recognized in the stringent response that
distinguish biosynthesis genes which generally remain down-
regulated during starvation (low PC1), and stress response genes
which generally remain up-regulated (high PC1), from the
transcriptional regulators whose expression spikes during the
growth transition followed by a recovery period (high PC2).
FIGURE 7 | Two distinct temporal profiles account for the majority of gene expression changes in the stringent response transcriptome. (A) Temporal profile of the
PC1 vector. The three steady-state samples are artificially displayed between time −20 and 0 to better illustrate the shape of the vector. Units on the y-axis are
arbitrary units of normalized RNA levels, as described in Materials and Methods. (B) Temporal profile of the PC2 vector; (C) 4,048 genes plotted according to their
PC1 and PC2 values. Inserts show temporal profiles at the corresponding coordinates, e.g., the top left insert shows the profile for PC1 = −3 and PC2 = 3. Vertical
blue lines indicate the cut-off values for genes in the subset with 10% highest and lowest PC1 values used for enrichment analysis. Horizontal blue lines indicate the
same for the PC2 values. Each data point corresponds to a gene and is colored according to the parent GO term it belongs to. Since some genes belonged to more
than one category, the coloring was layered so that the final graph displays the smallest category the data point belongs to: all data points (4,048 points) light gray;
biosynthetic process (975 points) green; response to stress (578 points) red; regulation of transcription, DNA-templated (349 points), blue. The points corresponding
to the genes mentioned in the main text are highlighted with black open circles and labeled with the gene names.
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Downregulation of Biosynthesis
The “Omics Dashboard” software tool available on the EcoCyc
webserver (Paley et al., 2017) was used to further explore the
transcriptomic changes that occurred in response to L-valine
addition. The tool combines data on the expression level of
individual genes into a hierarchy of cellular systems and
subsystems. As expected in response to amino acid starvation,
and as indicated in the PCA analysis, genes responsible for the
major biosynthetic processes (e.g., nucleotide, carbohydrate, fatty
acid, lipid, and aminoacyl-tRNA synthesis) are generally down-
regulated (Figure 8A). Amino acid biosynthesis genes are
reportedly up-regulated under the stringent response, which
could help E. coli overcome starvation (Cashel et al., 1996),
and this has been observed to varying extents in previous
transcriptome-wide analyses (Cashel et al., 1996; Durfee et al.,
2008; Traxler et al., 2008; Sanchez-Vazquez et al., 2019). We
found that amino acid biosynthetic genes were generally down-
regulated in response to L-valine (Figure 8B). For example, while
seven of the 12 genes ascribed to arginine biosynthesis were up-
regulated within 5 min of ppGpp production in a recent study
where a constitutively active RelA variant was induced to
produce ppGpp in the absence of starvation (Sanchez-Vazquez
et al., 2019), none of the arginine biosynthetic genes were up-
regulated in our study (Figure 8C). We expect that the key
difference between the two experiments is that all amino acids
were supplied in the growth medium in the study conducted by
Sanchez-Vazquez and coworkers, so at the outset of the
experiment, arginine biosynthetic operons would be repressed
by the arginine-bound ArgR repressor (Caldara et al., 2006).
What is then measured is a positive regulatory effect of ppGpp on
some of these repressed promoters. In our study, the growth
medium did not contain any amino acids prior to the addition of
L-valine, so the amino acid biosynthetic operons were already
de-repressed when ppGpp production was induced by L-valine-
mediated isoleucine starvation. We suspect that the reduced rate
of protein synthesis that occurs upon isoleucine starvation results
in a build-up of the residual amino acids, including arginine,
which would lead to repression of the arginine biosynthesis
pathway by arginine-bound ArgR.

Differential Response of the RpoS and
Lrp Regulons
In most bacterial systems, the stringent response includes a
robust general stress response mediated by the stationary phase
sigma factor RpoS (sS or s38), which is regulated at the level of
transcription, translation as well as at the level of protein stability
both directly and indirectly by ppGpp (Lange and Hengge-
Aronis, 1994; Landini et al., 2014). The RpoS regulon has been
studied extensively and is known to control >140 genes in
response to diverse stress conditions (Lacour and Landini,
2004; Weber et al., 2005), including isoleucine starvation
(Traxler et al., 2011). In the study by Traxler and coworkers,
they analogously applied isoleucine starvation on the conditional
auxotrophic E. coli K-12 strain, but contrasting our experiments,
the cells in their experimental set-up gradually exhausted
isoleucine in media containing all other amino acids. They
Frontiers in Genetics | www.frontiersin.org 12
show that the levels of ppGpp calibrate and co-regulate the
RpoS-dependent stress response and the Lrp-dependent regulon
(leucine responsive protein), which mostly includes genes for
metabolic enzymes. The Lrp-dependent response occurred prior
to and at lower ppGpp concentrations than the RpoS-dependent
response (Traxler et al., 2011). We employed the definitions of
the RpoS and Lrp regulons used by Traxler et al., and
investigated the isoleucine starvation response of these two
regulons in our experimental set-up. As seen in Figure 9A, the
majority of the RpoS-dependent genes are induced after 40 min
of L-valine-mediated isoleucine starvation, in agreement with the
slow but robust induction of the regulon reported in the previous
study. However, under the condition tested here, E. coli did not
significantly induce the Lrp regulon apart from genes involved in
alanine metabolism (dadAX) (Figure 9B). In fact, the lrpmRNA
itself was three-fold down-regulated at the end-point of the
starvation. In line with this finding, the small regulatory RNA
GcvB was among the top 10 up-regulated transcripts in our
experiment (Supplementary Table S8), and GcvB is known to
regulate the lrp mRNA negatively (Holmqvist et al., 2012; Lee
and Gottesman, 2016; Lalaouna et al., 2019). It is unknown to us
how valine-induced isoleucine starvation could trigger high
expression levels of GcvB but we suggest that the induction of
GcvB could be the main reason for the missing Lrp response in
this particular experimental set-up.

A Specific Transcriptional Response to
L-Valine-Induced Isoleucine Starvation
The only gene which was up-regulated more strongly than GcvB
5 min after starvation was alaE, encoding an L-alanine exporter
(Hori et al., 2011), which showed an average increase of
transcript levels during starvation >300-fold compared to pre-
starvation levels (Supplementary Table S8). alaE transcription
was recently shown to be positively regulated by ppGpp
(Sanchez-Vazquez et al., 2019), supporting the up-regulation
seen here. Although not included in the Lrp regulon defined in
(Traxler et al., 2011), alaE is also predicted to be up-regulated by
Lrp. Similarly, dadA and dadX which are identified here as the
only clearly up-regulated genes in the curtailed Lrp-regulon
(Figure 9B) were identified to be transcriptionally activated by
ppGpp in the same study (Sanchez-Vazquez et al., 2019). We
suggest that the prominent up-regulation of alaE, dadA, dadX,
and gcvB results directly from cellular metabolic consequences of
the addition of L-valine rather than the resulting starvation for
isoleucine. The physiological role of AlaE is to export L-alanine
(and possibly alanine dipeptide) to avoid intracellular toxic-level
accumulation of L-alanine (Kim et al., 2015). The excess L-
valine, together with pyruvate as substrate, can be converted to L-
alanine by avtA, one of three major alanine-synthesizing
transaminases in E. coli (Hori et al., 2011). The avtA mRNA
was not up-regulated during starvation, but it was highly
expressed during unrestricted growth under our conditions
(Supplementary Data Sheet 1), suggesting that the
transaminase protein it encodes is abundant at the onset of
starvation. According to this model, overabundant levels of L-
alanine is exported out from the cell by AlaE. In addition, surplus
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L-alanine can be converted by the alanine racemase dadX to D-
alanine (Wild et al., 1985), which in turn is the substrate for the
D-amino acid dehydrogenase dadA in the inner membrane to
yield ammonium and pyruvate (Franklin and Venables, 1976).
This further fuels the conversion of L-valine to L-alanine (Figure
10). Evidently, excess L-valine gave rise to high levels of L-
alanine that is countermeasured by upregulating the mRNA
encoding the alanine exporter, clearly envisaged in this
transcriptome. Moreover, elevated levels of D-alanine in the
cells might be utilized and directed to cell wall synthesis. Some
cell structure biosynthetic genes were de-repressed as starvation
progressed (Figure 8A), especially genes involved in UDP-
MurNAc-pentapeptide biosynthesis (e.g., ddlB and murD/F)
and peptidoglycan maturation (mtgA) (Supplementary
Table S10).
DISCUSSION

The stringent response to amino acid starvation is in many
respects a model system for studies of bacterial stress responses,
and has been the subject of intense study for decades, including
several transcriptome-wide studies (Durfee et al., 2008; Traxler
et al., 2008; Traxler et al., 2011). Here, we combined RNAseq
Frontiers in Genetics | www.frontiersin.org 13
with spike-in-cell normalization of the sequencing depth to
obtain an adjusted view of the stringent response that is
independent of any assumptions about the total RNA content
of the cells. The methodology allowed us to quantify the changes
in total rRNA and total mRNA per OD unit of bacterial culture
over the first 80 min of starvation for isoleucine. In accordance
with other reports (Ben-Hamida and Schlessinger, 1966;
Jacobson and Gillespie, 1968; Maruyama and Mizuno, 1970;
Zundel et al., 2009; Piir et al., 2011; Fessler et al., 2020), we find
that the stability of rRNA is compromised upon nutrient
starvation, resulting in a drop in rRNA per OD unit to 70% of
the pre-starvation level within the first 80 min of an amino acid
starvation. Because rRNA constitutes the vast majority of cellular
RNA, this drop affects the quantification of all other RNA species
in the cell if the RNAseq data is normalized solely to the
sequencing depth of the samples in the conventional way
(referred to here as RPKM-normalization, Figure 6). One
important outcome of our work is therefore that ~40% more
mRNAs are down-regulated, and ~40% fewer are up-regulated
by more than two-fold, compared to what a conventional
RNAseq study would suggest. We remark that the problem
associated with normalizing solely to sequencing depth is not
solved by depletion of rRNA prior to RNA-seq, because the
rRNA-depleted transcriptome also is subject to the
FIGURE 9 | Heat maps of the RpoS and Lrp regulons in cells starved for isoleucine. The time points into isoleucine starvation is indicated below each heat map.
(A) The ppGpp/RpoS regulon and (B) the ppGpp/Lrp regulon. Genes listed in each regulon were defined in a previous study by Traxler and coworkers (Traxler
et al., 2011).
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transcriptional consequences of a change in growth conditions.
For example, the activity of RNA polymerase is reduced at
elevated ppGpp levels, giving rise to lower RNA levels and the
RNA chain growth rate is decreased (Kingston and Chamberlin,
1981; Kingston et al., 1981; Sørensen et al., 1994; Vogel and
Jensen, 1994; Roghanian et al., 2015).

This study highlights that although the stringent response of
E. coli to amino acid starvation has a set of defining
characteristics, most notably a surge in ppGpp levels and
reduced transcription of genes encoding the protein synthesis
machinery, the particular growth conditions employed give
notable differences in the transcriptome-wide response at the
detailed resolution of an RNAseq experiment. Most notably, in
contrast to a previous study (Traxler et al., 2011) the extensive
Lrp regulon was not activated in response to isoleucine limitation
in this study, and amino acid biosynthesis was not generally
induced although many operons encoding amino acid
biosynthesis genes are activated in response to ppGpp under
other growth conditions (Sanchez-Vazquez et al., 2019). We used
principal component analysis combined with enrichment
analyses to identify broad functional classes of genes that
responded similarly to the growth transition. Besides these, the
data set also contains many smaller gene categories that will be of
interest to specific research sub fields. For example, mRNA of the
conserved BluR-repressed operon ycgZ-ymgABC, which were
completely repressed during steady-state growth, were among
the genes most strongly up-regulated upon starvation
(Supplementary Table S8), suggesting an unidentified
regulatory mechanism that is unrelated to the known BluR
signals; blue light and low temperature, for the YcgZ regulator
of OmpF porin expression and the Ymg biofilm modulators
(Tschowri et al., 2012; Duval et al., 2017). Finally, at least four
(alaE, gcvB, dadA, dadX) of the 20 genes that respond most
strongly in our dataset are likely responding to the sudden
Frontiers in Genetics | www.frontiersin.org 14
addition of L-valine rather than the starvation for isoleucine
(Figure 10).

The methodology also allowed us to quantify changes in total
mRNA levels under starvation (Figure 5), and the result
underlines that overall mRNA production is substantially
reduced upon amino acid starvation. The rapid reduction of
the total mRNA pool demonstrated here supports the model
previously proposed to explain why the initial surge in ppGpp
levels upon amino acid starvation levels off on a timescale of a
few minutes, namely that the initial surge of ppGpp in response
to the onset of starvation should taper off due to a reduction in
the number of RelA-associated stalled ribosomes, resulting from
the reduced availability of mRNA (Sørensen et al., 1994; Tian
et al., 2016).
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FIGURE 10 | Export pathway for excess L-valine. The synthesis of L-alanine requires pyruvate and is catalyzed by the valine-pyruvate aminotransferase avtA. The
predominant alanine racemase in the cell, dadX, is degradative and catalyzes the conversion of L-alanine to D-alanine. The respiratory-chain-associated dadA can
further catabolite D-alanine to pyruvate which can enter the central metabolism, or in this case be used as substrate to further convert high concentrations of L-valine
to L-alanine. alaE, an alanine-proton antiporter, facilitates the export of L-alanine out from the cytosol in exchange of a proton. ddlA/B, murD/F, and mtgA are all
involved in biosynthesis of cell wall structural elements. PG, peptidoglycan; IM, inner membrane). Up-regulated genes in the pathway are represented in red.
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