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Abstract: Various seaweed sulfated polysaccharides have been explored for antimicrobial application.
This study aimed to evaluate the antibacterial activity of the native Gracilaria fisheri sulfated galactans
(NSG) and depolymerized fractions against the marine pathogenic bacteria Vibrio parahaemolyticus and
Vibrio harveyi. NSG was hydrolyzed in different concentrations of H2O2 to generate sulfated galactans
degraded fractions (SGF). The molecular weight, structural characteristics, and physicochemical
parameters of both NSG and SGF were determined. The results revealed that the high molecular
weight NSG (228.33 kDa) was significantly degraded to SGFs of 115.76, 3.79, and 3.19 kDa by
hydrolysis with 0.4, 2, and 10% H2O2, respectively. The Fourier transformed spectroscopy (FTIR) and
1H− and 13C−Nuclear magnetic resonance (NMR) analyses demonstrated that the polysaccharide
chain structure of SGFs was not affected by H2O2 degradation, but alterations were detected at the
peak positions of some functional groups. In vitro study showed that SGFs significantly exerted a
stronger antibacterial activity against V. parahaemolyticus and V. harveyi than NSG, which might be due
to the low molecular weight and higher sulfation properties of SGF. SGF disrupted the bacterial cell
membrane, resulting in leakage of intracellular biological components, and subsequently, cell death.
Taken together, this study provides a basis for the exploitation and utilization of low-molecular-weight
sulfated galactans from G. fisheri to prevent and control the shrimp pathogens.

Keywords: low-molecular-weight sulfated galactans; Gracilaria fisheri; hydrogen peroxide; antibacterial
activity; V. parahaemolyticus; V. harveyi

1. Introduction

Many shrimp-producing countries have reported disease outbreaks that greatly affect
shrimp productivity, leading to widespread socioeconomic losses [1]. Vibrio parahaemolyticus
is an emerging pathogen that causes unusual acute mortality within 35 days after stocking
and causes early mortality syndrome (EMS) or acute hepatopancreatic necrosis syndrome
(AHPNS) in Pacific white shrimp and black tiger shrimp [2]. The wide distribution of
V. harveyi in the shrimp farming environment causes early larval mortality, resulting in enor-
mous losses in production and marketing [3,4]. Consequently, the control and prevention of
V. parahaemolyticus and V. harveyi is an essential component of the shrimp culture industry.

Antibiotics are vital for the prevention and treatment of bacterial infections in shrimp.
The use of antibiotics over time has led to an increase in the number of resistant strains,
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causing an imbalance in ecosystems, compromised immune systems, and even resulting in
the occurrence of antibiotic residues in aquatic animals [5]. To ensure that food-producing
shrimp are sustainable and safe for human consumption, alternative antibiotic treatment
methods are required. Studies have shown that natural products such as chitosan and
essential oils from microbes, red seaweed, plants, and animals exhibit capability to control
bacterial infections in white shrimp and tilapia [6–9].

The Food and Agriculture Organization (FAO), in 2021 [10], reported that about
96 percent of the total seaweed production was concentrated in East Asia and Southeast
Asia. In Thailand, seaweed productions are mainly from Gracilaria, Hypnea, Porphyra,
Acanthopora, and Caulerpa [11]. Among these, the red seaweed Gracilaria is considered
the most important species, which is intensively cultured and mainly used for human
consumption and agar production [12,13]. The discovery of other uses of seaweed and its by-
products besides food applications, including nutraceuticals and pharmaceuticals [14,15],
have contributed to the exponential demand for seaweed and their derivatives, and the
commercial expansion of seaweed farms.

Sulfated polysaccharides (SPs) extracted from Gracilaria fisheri have proven antivi-
ral properties [14] and possess a broad range of bioactivities [16]. Several studies have
shown that the bioactivities of polysaccharides are dependent on the molecular weight and
the composition of structural units such as monosaccharides, linkage patterns, branching
features, degree of polymerization, and sequence of sugar units [17,18]. Hence, the function-
ality and bioactivity of polysaccharides can be potentially enhanced through degradation
of their molecular integrity [19]. H2O2 is a chemical degradation method proven to be an
effective alternative for polysaccharide degradation [20] because it is easily accessible and
simple to use. It produces highly reactive -OH radicals that can enhance the degradation
process and is eco-friendly, subsequently decomposing into water and oxygen [21,22].
Furthermore, polysaccharide degradation by H2O2 has been demonstrated to have potent
antibacterial activity against various gram-positive and gram-negative bacteria [23,24].

In this study, we aimed to modify native sulfated galactans from G. fisheri (NSG)
using the H2O2 method of oxidative degradation to obtain small molecular weight (MW)
fragments of NSG, followed by structural characterization and evaluation of antibacterial
activity. The results of this study provide a possible utilization of sulfated galactans from
red seaweed as an alternative treatment for the prevention of V. parahaemolyticus and
V. harveyi infections.

2. Results
2.1. Physicochemical Properties of SGF

The physicochemical parameters of SGF and NSG including pH, MW, polydispersity
(PD), carbohydrate content, sulfate content, and degree of sulfation (DS) are presented
in Table 1.

Table 1. Properties of NSG and SGFs.

Treatment H2O2
Concentration (%) MW (kDa) PD pH Carbohydrate

Content (%)
Sulfate

Content (%) DS

NSG 0 228.33 a 1.29 6 66.95 ± 0.72 a 9.95 ± 0.19 a 0.74 ± 0.02 a

SGF0.4 0.4 115.76 b 1.08 5 62.88 ± 1.17 a 12.02 ± 0.12 b 0.99 ± 0.02 b

SGF2 2 3.79 b 1.04 4 58.97 ± 0.61 a 12.28 ± 0.92 b 1.03 ± 0.06 b

SGF10 10 3.19 b 1.19 4 58.40±3.38 a 12.33 ± 0.51 b 1.03 ± 0.06 b

Results with the means of three replicates ± SE; mean values with the same small superscripts in the same column
are not significantly different (p > 0.01). H2O2—hydrogen peroxide; MW—molecular weight; PD—polydispersity
(Mw/Mn); DS—degree of sulfation (the average number of O-sulfate groups per sugar residue).

NSG treated with different concentrations of H2O2 (0.4%, 2%, and 10%) produced
degraded MW products of SGF0.4, SGF2, SGF10 with yields of 7.0 ± 0.3%, 2.12 ± 0.1%, and
1.28 ± 0.1%, by NSG weight, respectively. The pH values of SGF0.4, SGF2, and SGF10 were
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5, 4, and 4, respectively, which were lower than NSG (pH 6). Analysis of the carbohydrate
content revealed there was no significant difference (p > 0.05) for NSG (66.95 ± 0.72%) and
SGF (62.88 ± 1.17%, 58.97 ± 0.61%, and 58.40 ± 3.38%, respectively, w/w). The sulfated
content of SGF (12.02 ± 0.12%, 12.28 ± 0.92%, and 12.33 ± 0.51%) was significantly higher
than that of NSG (9.95 ± 0.19%). The GPC profile of each polysaccharide fraction is shown
in Figure S1 (Supplementary Material). GPC analysis indicated an average MW for SGF0.4,
SGF2, and SGF10 of 115.76, 3.79, and 3.19 kDa, respectively, which was significantly lower
than that of NSG (228.33 kDa). Polydispersity values < 1.2 are regarded as narrow disperse
of the compounds, indicating that the polysaccharides SGFs are nearly homogeneous to
the monomer unit.

2.2. Structural Characterization and Morphology of SGFs

The FTIR–ATR spectra of NSG and SGFs are shown in Figure 1, and the assignments of
the characteristic bands from the FTIR–ATR are given in Table 2. Sulfated polysaccharides
typically have broad and strong absorption peaks in the range of 400–4000 cm−1. The peak
at 3292 cm−1 indicates the presence of -OH stretching vibrations in NSG and SGFs. The
peaks between 2840–2950 cm−1 indicate both symmetric and asymmetric CH stretching
vibrations in the polysaccharides of NSG and SGFs [25]. Absorbance at 2850 cm−1 detected
in SGF2 and SGF10 suggests that H2O2 degradation has produced opened symmetric CH
groups in both SGFs.
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Table 2. FTIR bands of the functional groups presented in the NSG and SGFs.

Functional Group Characteristic Vibration
(Wavenumber cm−1)

Fraction

NSG SGF0.4 SGF2 SGF10

OH group (3291.98) X X X X
Asymmetric CH group (2920.05) X X (+) X
Symmetric CH2 group (2850.71) Non Non X X

COOH of carboxylate group (1638.62) X (-) X (-)
C=O of carboxylate group (1409.05) X (-) (-) (-)

Sulfate ester (1366.87) Non X X X
S=O of sulfate group (1221.49) X (-) (-) (-)
C-O of pyranose ring (1148.12) X (-) (-) (-)
C-C of pyranose ring (1030.13) X X X (-)

C-O-C of 3,6-anhydro-L-galactose (933.08) X (+) (+) (+)
L-galactose-6 sulfate (890.73) X (-) (+) (+)
D-galactose-4 sulfate (857.54) X (-) (+) (+)

C-O-S of sulfate group (770.76) X X X X

Non—the vibration was not detected, (X)—the vibration was detected, (+)—the vibration was increased compared
with those of NSG, (-)—the vibration was decreased compared with those of NSG.

Interestingly, the 1638 cm−1 peak, which corresponds to COO- antisymmetric stretch-
ing vibration, and the 1409 cm−1 peak, which corresponds to C=O symmetric stretching
vibration [26], were decreased in both SGFs. As expected, carbohydrate structure vibrations
were detected in both the NSG and SGFs. Absorbance peaks at 1148, 1030, and 933 cm−1

correspond to C-OH, C-C, and C-O-C of the galactan’s structure [27,28].
However, 1148 cm−1 was slightly weaker and 933 cm−1 was slightly stronger in SGFs

compared with NSG. The peaks at 1366, 1221, 890, 857, and 770 cm−1 indicate the presence
of sulfate ester groups [14]. The peak at 1366 cm−1, attributed to vibration of the sulfate
ester, is seen in SGFs, which negatively correlates to the absorbance peak at 1221 cm−1,
attributed to vibration of S=O (sulfate group). Peaks at 890 and 857 cm−1 are attributed to
vibrations of galactose-6 sulfate and galactose-4 sulfate and are seen to be higher in SGF2
and SGF10, indicating the enhancement of sulfate ester by H2O2 degradation. In addition,
the peak at 770 cm−1, attributed to vibration of C-O-S (sulfate group), was detected in NSG
and SGFs. The results suggest that H2O2 degradation modification affects the sulfate ester
of SGFs.

The 1H–NMR spectra for NSG and SGF are shown in Figure 2. Resonance of α- and β-
anomers can be deduced from the chemical shift signals at 4.9–5.6 ppm and 4.41–4.81 ppm [29].
The chemical shift signals at 4.55, 3.63, 3.81, 4.14, 3.71, 3.83 ppm correspond to β-D-
galactose unit, whereas signals at 5.16, 4.14, 4.54, 4.67, 4.57, 4.22 correspond to 3,6-α-L-
anhydrogalactose unit, which were observed in NSG and SGFs. The chemical shift signal
at 5.34 ppm indicates the presence of (1→4) α-L-galactose-6-sulfate in NSG and all the
SGFs. The chemical shift signal at 5.34 ppm indicates the presence of (1→4) α-L-galactose-
6-sulfate (L6S) in NSG and all the SGFs. The signals at 5.37, 3.81, and 3.93 ppm of all the
SGFs are attributed to L6S-1, L6S-2, and L6S-3, respectively. In addition, the chemical shift
signal at 4.43 ppm in all the SGFs corresponds to β-D-galactose-linked to α-L-galactose-6-
sulfate. Interestingly, the chemical shift signal at 3.51 ppm, which was observed in SGF10,
corresponds to H-6 of β-D-galactose-linked to α-L-galactose-6-sulfate residue [30].

The 13C–NMR spectra of NSG and SGF are shown in the Figure 3. According to
the literature, the 90–110 ppm chemical shift signals correspond to the anomeric carbon
region [29,31]. The presence of β-D-galactose and 3,6-α-L-galactose in NSG and all the
SGFs are inferred from the occurrence of chemical shift signals at 102.9 ppm and 98.0 ppm.
The chemical shift signal at 103.7 ppm indicated the presence of β-D-galactose linked
to α-L-galactose 6-sulfate [30] and the chemical shift signals at 101.9 ppm, 81.7 ppm,
and 79.5 ppm indicated the presence of (1→3) β-D-galactose (1→4) α-L-galactose, 4-α-D-
anhydrogalactose, and 2-O-Me-3,6-anhydrogalactose, which were observed in NSG and
all the SGFs. The chemical shift signal at 78.9 ppm indicated the presence of (1→4) α-L-
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galactose-6-sulfate, which was observed only in SGF2 and SGF10. Moreover, the chemical
shift signal at 76.9 ppm indicating the presence of 3-β-D-Gal-4-sulfate was also observed
in NSG and all the SGFs. However, the chemical shift signals at 80.3, 78.0, and 75.3 ppm
attributed to C3, C4, and C5 of D-galactose-4-sulfate residues and at 69.8 attributed to C2
of α-L-galactose-6-sulfate residue were observed in SGF2 and SGF10.
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Scanning electron microscopy (SEM) was performed to compare the surface of NSG
with SGFs. The results revealed that NSG was more compact with a smooth dense surface
and distributed as individual filamentous particles (Figure 4(A1–A3)). SGF0.4 exhibited
loose irregular fragmentary aggregates with a rough, porous surface (Figure 4(B1–B3)),
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while SGF10 had a sheetlike appearance with a smooth surface and clear pores (Figure 4(C1–C3)).
SGF2 showed a similar morphology to those of SGF10 (data not shown). The SEM clearly
showed that the compact structure of NSG was degraded to small molecule polysaccharides.
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2.3. Degraded Fractions of SG Exhibited Greater Antimicrobial Activity

The antimicrobial activities of the SGFs were investigated using a disc diffusion assay
against V. parahaemolyticus (VP3HP and VPA3212) and V. harveyi (VH0-1114 and VHBAA-
1116). The results showed that SGF0.4, SGF2, and SGF10 significantly increased (p < 0.01)
the diameter of the inhibition zone in VP3HP and VPA3212 compared with NSG. However,
with VH0-1114 and VHBAA-1116, the SGF2 and SGF10 inhibition was greater than NSG
and dose dependent (Figure 5A). The turbidity assay showed a dose-dependent decrease in
bacterial proliferation of NSG and SGF0.4 for all bacterial strains (Figure 5B–E). At similar
concentrations, SGF0.4 produced a stronger antibacterial activity against all tested strains
than NSG. Increasing the concentration of SGF0.4 to 8 mg/mL suppressed the proliferation
of all bacterial strains, while treatment with SGF2 and SGF10 suppressed all bacterial
proliferation at a lower concentration of 2 mg/mL (Figure 5B–E).

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration
(MBC) values of NSG for all bacterial strains were 20 and 25 mg/mL, respectively. SGF0.4
had a lower MIC but similar MBC values to NSG. SGF2 and SGF10 had significantly
lower MIC and MBC values compared with NSG and SGF0.4 (Table 3). The EC50 values
of NSG and SGF0.4, SGF2, and SGF10 against the tested bacteria are shown in Table S1
(Supplementary Material).
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and VH0-1114 (A). Growth inhibition on the bacterial strains VP3HP (B), VPA3212 (C), VH0-1114 (D),
and VHBAA-1116 (E), using a liquid turbidity assay with an incubation for 24 h. Results are expressed
as a mean of three replicates ± SE. Mean values with different superscripts for each bacterium
(A) and each concentration (B–E) indicate a significant difference (p < 0.01).

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration
(MBC) values of NSG for all bacterial strains were 20 and 25 mg/mL, respectively. SGF0.4
had a lower MIC but similar MBC values to NSG. SGF2 and SGF10 had significantly
lower MIC and MBC values compared with NSG and SGF0.4 (Table 3). The EC50 values
of NSG and SGF0.4, SGF2, and SGF10 against the tested bacteria are shown in Table S1
(Supplementary Material).

Table 3. MIC (mg/mL) and MBC (mg/mL) of SGFs against V. parahaemolyticus (VP3HP and VP3212)
and V. harveyi (VH0-1114 and VHBAA-1116).

Bacteria VP3HP VPA3212 VH0-1114 VHBAA-1116

Fraction MIC MBC MIC MBC MIC MBC MIC MIC

NSG 20 25 20 25 20 25 20 20
SGF0.4 15 25 15 25 15 25 15 15
SGF2 5 5 2.5 10 2.5 2.5 10 10

SGF10 2.5 2.5 1.25 1.25 1.25 1.25 5 5
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2.4. Degraded Fractions of SG Inhibited the Growth of V. parahaemolyticus and V. harveyi

Since the MIC and MBC values of SGF0.4 were not much different from those of NSG,
the subsequent experiments were then performed using SGF2 and SGF10 to compare with
NSG. The time intervals for bacterial growth in the presence of NSG, SGF2, and SGF10 MICs
were plotted to further validate their growth-inhibiting effect against VP3HP, VPA3212,
VH0-1114, and VHBAA-1116 (Figure 6).

Mar. Drugs 2022, 20, x FOR PEER REVIEW 9 of 19 
 

 

NSG. The time intervals for bacterial growth in the presence of NSG, SGF2, and SGF10 
MICs were plotted to further validate their growth-inhibiting effect against VP3HP, 
VPA3212, VH0-1114, and VHBAA-1116 (Figure 6). 

 
Figure 6. Effect of SGFs on the growth of bacterial strains VP3HP (A), VPA3212 (B), VH0-1114 (C), 
VHBAA-1116 (D). Control: Bacteria without treatment. Results are expressed as a mean of three 
replicates ± SE. * indicates a significant difference compared with the respective control (p < 0.01). 

All bacterial strains grew normally in the control group, and the logarithmic growth 
stage was achieved within 10 h of incubation. When the bacteria were treated with the SG 
fractions (NSG, SGF2, and SGF10), they showed a substantially lower growth rate than 
that of controls. Moreover, after 5 h of incubation, no further growth of all the bacterial 
strains was observed in SGF2- and SGF10-treated groups while bacteria treated with NSG 
continued to grow, though at a lower rate than controls. 

Pearson’s correlation coefficients analysis revealed that the antimicrobial activity of 
SGF was significantly (p < 0.01) positively correlated (R2 = 0.847) with H2O2 concentration 
and significantly (p < 0.01) negatively correlated (R2 = −0.902) with MW. 

2.5. Degraded Fractions of SG Disrupted the Cell Membrane of V. parahaemolyticus and V. 
harveyi 

The membrane integrity of the bacteria was investigated to verify the ability of the 
degraded NSG fractions to damage the bacterial cell membrane. According to the growth-
inhibiting results, treatment with SGF2 and SGF10 MICs for 5 h significantly decreased 
bacterial growth compared with NSG and SGF0.4. The membrane integrity was then 
determined at 5 h and 10 h of incubation. After 5 h exposure to the MIC of NSG, SGF2, 
and SGF10, the leakage of cytoplasmic content averaged 59.2%, 88.7%, and 92.6%, 

Figure 6. Effect of SGFs on the growth of bacterial strains VP3HP (A), VPA3212 (B), VH0-1114 (C),
VHBAA-1116 (D). Control: Bacteria without treatment. Results are expressed as a mean of three
replicates ± SE. * indicates a significant difference compared with the respective control (p < 0.01).

All bacterial strains grew normally in the control group, and the logarithmic growth
stage was achieved within 10 h of incubation. When the bacteria were treated with the SG
fractions (NSG, SGF2, and SGF10), they showed a substantially lower growth rate than
that of controls. Moreover, after 5 h of incubation, no further growth of all the bacterial
strains was observed in SGF2- and SGF10-treated groups while bacteria treated with NSG
continued to grow, though at a lower rate than controls.

Pearson’s correlation coefficients analysis revealed that the antimicrobial activity of
SGF was significantly (p < 0.01) positively correlated (R2 = 0.847) with H2O2 concentration
and significantly (p < 0.01) negatively correlated (R2 = −0.902) with MW.
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2.5. Degraded Fractions of SG Disrupted the Cell Membrane of V. parahaemolyticus and V. harveyi

The membrane integrity of the bacteria was investigated to verify the ability of the
degraded NSG fractions to damage the bacterial cell membrane. According to the growth-
inhibiting results, treatment with SGF2 and SGF10 MICs for 5 h significantly decreased
bacterial growth compared with NSG and SGF0.4. The membrane integrity was then
determined at 5 h and 10 h of incubation. After 5 h exposure to the MIC of NSG, SGF2,
and SGF10, the leakage of cytoplasmic content averaged 59.2%, 88.7%, and 92.6%, respec-
tively. Further incubation of all the compounds for 10 h did not significantly induce more
leakage (Figure 7).
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and V. harveyi, VH0-1114 (C) and VHBAA-1116 (D), after treating within MIC of NSG, SGF2, and
SGF10. Results are expressed as a mean of three replicates ± SE. Different superscripts in each time
frame indicate a significant difference (p < 0.01).

Scanning electron microscopy was used to investigate the potential damage to the
cell membrane of V. parahaemolyticus (VP3HP) and V. harveyi (VH0-1114) by SGF10. SEM
micrographs revealed that the normal morphology of VP3HP (Figure 8(A1–A3)) is a rod-
shaped cell with a comparatively flat exterior surface and intact cell membrane. The
normal VH0-1114 cell (Figure 8(C1–C3)) showed a regular, short rod-shaped morphology,
with a smooth and intact cell surface. Following treatment of VP3HP and VH0-1114
cells with SGF10 MIC for 5 h, the cells became distorted, deformed, and shriveled shaped.
Furthermore, many of the cells ruptured and the cytoplasm leaked out, resulting in blurring
of cell edges Figure 8(B1–B3) and (D1–D3)).
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3. Discussion

Sulfated polysaccharides (SP) possess a broad range of bioactivities [16]. However,
the high molecular weight of many SPs limits some certain bioactivities and their pharma-
ceutical application. Numerous methods such as acid hydrolysis, oxidation, and enzymatic
techniques have been used to degrade the polysaccharides, which have then been shown to
enhance biological activity of the natural polysaccharides. Degradation by H2O2 oxidation
is a commonly accepted method for polysaccharide modification and changing polysac-
charide’s functional role [20]. Therefore, in the present study, the H2O2 oxidation method
was used to hydrolyze the native sulfated galactans (NSG) extracted from red seaweed
G. fisheri to obtain the degraded fractions (SGF) and evaluate their antibacterial activity
against shrimp pathogenic bacteria.

Free radicals are primarily responsible for H2O2’s ability to reduce polysaccharide
MW [32]. Hydroperoxide anion are easily broken down into highly reactive hydroxyl radi-
cals. Generation of large quantities of the hydroxyl radicals allows them to easily access the
glycosidic linkages and break the MW of polysaccharides, leading to their degradation [33].
Our study showed that the rate of NSG degradation into SGFs significantly depends on
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the concentration of H2O2. The high-molecular-weight NSG (228.33 kDa) hydrolyzed
with 0.4%, 2%, and 10% H2O2 was degraded to notably lower molecular weight SGFs of
115.76, 3.79, and 3.19 kDa, respectively. In studies with high concentrations of H2O2, the
resulting high acidity was found to enhance degradation efficiency, which might be due to
a high quantity of hydroxyl radicals [34]. However, our study showed that increasing the
concentration of H2O2 from 2% to 10% did not cause much further degradation. Previous
research had reported that increasing the H2O2 concentration from 3% to 15% degraded
the G. lemaneiformis SP (622 kDa) to 6.14 and 2.42 kDa, respectively [35]. This suggested
that H2O2 at 2–3% may degrade high-MW sulfated polysaccharide to less than 10 kDa.
H2O2 reduces the size of polysaccharides via its ability to produce potent oxidizing agents
(hydroxyl radicals) that can break down the glycosidic linkages of polysaccharides [36],
leaving the main chain structure of the polysaccharide unaltered [35]. This is consistent
with our finding that H2O2 did not generate distinctive structural alterations of the main
chain structure of SGFs but affected the side groups of the polysaccharides [37]. This is
demonstrated by the similar profiles of FTIR–ATR spectra of NSG and SGFs, with dif-
ferences only in the peak intensity. The NSG and SGFs revealed the−σ* and/or π−π*
transitions in functional groups such as amine, carboxyl, carbonyl, and ester [38].

In addition, 1H- and 13C-NMR analyses were employed to investigate the SGFs’
structural configurations. The results also indicated that the β-D-galactose and 3,6-α-L-
galactose units, the main chain structures of G. fisheri sulfated galactans [14], were observed
and unaffected after H2O2 degradation. The appearance of increased sulfate ester chemical
shift signals (at 5.37, 4.43, 3.93, 3.81, and 3.51 ppm by 1H- analysis and at 80.3, 78.9, 78.0, and
75.3 ppm by 13C-NMR analysis) in SGFs indicated the functional groups that were altered
after H2O2 degradation [35,39]. It has been reported that the substitution of the sulfate
groups on the polysaccharide backbone affects biological activity of the L configuration of
3,6 anhydro- derivatives of polysaccharides [40]. SGFs had a considerably (p < 0.01) higher
degree of sulfation than NSG, which may be the result of free radical effects of H2O2 on the
structure of polysaccharides [41]. SGF2 and SGF10 had an increase in sulfation at galactose-
6-sulfate and galactose-4-sulfate, which may contribute to their superior antibacterial
activity. This is consistent with a previous study, which showed that higher sulfate content
in degraded SP from brown seaweed Laminaria japonica promotes antibacterial activity
against Escherichia coli [42]. Moreover, SGF10 has a sheetlike structure with pores, which
may allow for better interaction with the bacteria and subsequent increase in antibacterial
activity. Our data agree with an earlier study, which showed that the sulfated derivatives
have stronger antibacterial activity compared with the natural polysaccharides [43].

We tested the antibacterial activity of NSG and the degraded NSG against V. parahaemolyticus
and V. harveyi and found that MIC of NSG (228.33 kDa) was as high as 20 mg/mL while MW
SGF2 and those of SGF10 MIC’s were 4-16 times lower (1.25–5 mg/mL). In addition, bacterial
growth in the presence of SGF2 and SGF10 MICs was completely suppressed at 5 h, while
NSG-treated bacterial growth increased with time but at a lower rate than the control
bacteria. We observed that SGF2 and SGF10 (3.19 and 3.79 kDa, respectively) at 2 mg/mL
completely suppressed the proliferation of VP3HP, VPA3212, VH0-1114, and VHBAA-1116.
However, SGF0.4 (115.76 kDa) required a higher concentration (8 mg/mL) for suppression.
Statistically, the antimicrobial activity of different fractions of the sulfated galactans was
significantly (p < 0.01) negatively correlated (R2 = −0.972) with MW. The overall data
indicate that the smaller-sized SGF2 and SGF10 have a stronger antibacterial effect.

The previous studies have reported that the antimicrobial mechanism of action of sul-
fated polysaccharides is binding to the bacterial surface, which produces membrane break-
down, resulting in leakage of protein and vital nutrients and, ultimately, cell death [23,42].
In the present study, SGF10 (3.19 kDa), which have the least molecular weight and
higher sulfation, exhibited a greater ability to disrupt the V. parahaemolyticus (VP3HP) and
V. harveyi (VH0-1114) cell membrane, which has been witnessed. Our data agree with
previous studies in which the lower molecular weight and higher sulfation of galac-
tans from Eucheuma serra and G. verrucosa, and fucoidan from Laminaria japonica and
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Sargassum polycystum, produced a damaging effect on the cell membrane of Escherichia coli,
Staphylococcus aureus, and Pseudomonas aeruginosa [42,44,45]. This suggests that the small-
size SGF2 and SGF10 and the presence of negatively charged groups such as -COOH,
-SO4 might be the important structural features to enhance bacterial membrane damage.
However, it is still unclear through what mechanism negatively charged polysaccharides
destroy the membrane structure of bacteria. We have hypothesized that SGF may interact
with the positively charged molecules on bacterial cell surface such as some sugar moieties
or cell membrane receptor, the interactions of which finally led to the loss of bacterial
barrier function and cell lysis. Future studies should therefore aim to gain a comprehensive
understanding of the mechanisms of interaction between SGF and bacterial cells, and, in
particular, the mechanisms by which SGF disrupts the bacterial membrane.

4. Materials and Methods
4.1. Native Sulfated Galactans (NSG) and NSG Degradation

Depigmented G. fisheri powder (10 g) was extracted in distilled water (40 ◦C) to obtain
NSG as previously described [14]. Previously, we reported the structure of NSG (Figure S2,
Supplementary Material) consisting of a linear chain of alternating units of 3-linked-β-D-
galactopyranose (G) and 4-linked 3,6-anhydro-α-L-galactose (LA) or α-L-galactose-6-sulfate
(L6S) with partial methylation (CH3) at C-2 of LA and C-6 of G, and sulfation of C-4 and
C-6 of D-galactose units (G4S and G6S). HPLC analysis of NSG showed 90% purity [14].
NSG degradation was performed using H2O2 hydrolysis following the method described
by Guo et al. [35]. Briefly, 10 mL of NSG (10 mg/mL) were heated to 40 ◦C for 15 min and
H2O2 solution was quickly added to make various H2O2 concentrations at 0.4%, 2%, and
10%. The degradation reaction was allowed to proceed for 2 h at 90 ◦C. SG fractions with
different molecular weights (SGF0.4, SGF2, and SGF10) were obtained. The NSG and SGF
fractions were purified by anion exchange chromatography. Fractions were dissolved in
distilled water, centrifuged at 10,000× g for 10 min, and the supernatant was collected for
loading onto a DEAE-Sepharose fast flow column [46]. A DEAE-Sepharose fast flow bead
solution was loaded into the column and then equilibrated with distilled water three times;
then, the fraction solution was loaded onto the top of the column. The column containing
the NSG/SGF solution was slowly washed with distilled water three times. The column
was eluted with a stepwise ionic strength increment of NaCl (0.25–2.00 M) and a flow rate
of approx. 0.5 mL/min. The eluted fractions containing NSG or SGFs were pooled, desalted
using a dialysis membrane (NSG, 10,000 Da; SGF, 100–500 Da), freeze-dried, and kept at
−20 ◦C until further use.

4.2. Sulfate and Carbohydrate Contents

The sulfate content of the NSG/SGFs was determined using K2SO4 as a standard
(0–0.2 mg/mL) [47]. Briefly, 1 mg of SGF was hydrolyzed in 250 µL of 0.5 mol/L HCl,
vortexed, and the mixture was incubated for 3 h at 100 ◦C in a digital dry bath. The
supernatant was transferred to a new microtube and centrifuged at 13,400× g for 15 min at
room temperature (RT). Twenty microliters of the hydrolyzed sample were added to each
well in a transparent polystyrene microplate that already contained 140 µL of HCl solution
(0.5 mol/L HCl). Barium-chloride-gelatin reagent (40 µL) was added to the solution, mixed,
and incubated at RT for 20 min. The absorbance was measured at 405 nm, and sulfate
content in each sample was calculated using the regression equation (y = 0.2054x − 0.0019;
R2 = 0.9849) from the standard K2SO4. The following equation was used to calculate degree
of sulfation (DS):

DS = [(1.62 × S%)/(32 − 1.02 × S%)] (1)

where DS is the average number of O-sulfate groups per sugar residue and S is the
sulfate content.

The phenol sulfuric acid method was used to determine the carbohydrate content of
NSG and SGFs, using D-galactose (0–1 mg/mL) as a standard [14]. Briefly, 100 µL SGF
(1 mg/mL) was mixed with 100 µL 5% phenol, incubated at RT for 10 min, followed by an
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addition of 500 µL of concentrated sulfuric acid, vortexed, and left for 10 min at RT. The
absorbance was measured at 490 nm, and the carbohydrate content was calculated using
the regression equation (y = 4.2142x + 0.1279; R2 = 0.9841) from the standard D-galactose.

4.3. Molecular Weight Determination

The average molecular weight (MW) of SGF was determined by gel permeation chro-
matography (GPC, Agilent 1260 Infinity II, Santa Clara, CA, USA) [48]. SGF was dissolved
(1 mg/mL) in deionized water and 20 µL of the sample solution was examined for each run.
A Shimadzu LC-20AD with an LC-20A oven column and a RID-10A detector equipped
with a TSKgel Guard PWH size exclusion column (mobile phase: deionized water) was
used. The flow rate was 0.5 mL/min and the column temperature was 60.0 ◦C ± 0.1 ◦C.
Dextran standards (DS-5000; DS-12,000; DS-50,000; DS-80,000; DS-150,000; and DS-270,000
(Sigma-Aldrich, St. Louis, MO, USA) were used to calibrate the column. The MW was
determined using Shimadzu Class VP software to estimate the MW of the SGFs.

4.4. Fourier Transform Infrared (FTIR) Spectroscopic Analysis

Fourier transform infrared spectroscopy—attenuated total reflectance (ATR) spectra
of the SGFs were acquired using an ALPHA FT-IR spectrometer with an ATR platinum
diamond (Bruker, Hong Kong). Measurements from 500 to 4000 cm−1 (4 cm−1 resolution)
were performed at room temperature (referenced against air) using 30 scans.

4.5. Nuclear Magnetic Resonance (NMR) Spectroscopy Analysis

The deuterium oxide (D2O, 0.7 mL) was used to dissolve NSG and SGF (40 mg) in
NMR tubes (5 mm diameter). 1H– and 13C–NMR spectra were recorded using a Bruker
(AVANCE NEO, Billerica, MA, USA) 600 MHz NMR spectrometer at 80 ◦C. The chemical
shifts of the 1H– and 13C–NMR were measured in parts per million (ppm) relative to the
internal reference D2O at 4.7 ppm for 1H–NMR and at 0 ppm for 13C–NMR.

4.6. Bacterial Culture

V. harveyi (strains BAA-1116 and VH0-1114) and V. parahaemolyticus (strains 3HP and
A3212) were kindly provided by the Center of Excellence for Shrimp Molecular Biology
and Biotechnology (CENTEX Shrimp), Mahidol University, Thailand. The bacteria were
cultured after inoculation of a single colony of bacteria in a 15-mL centrifuge tube containing
5 mL of Mueller Hinton broth (MHB, 3% NaCl). Every single isolate was incubated
overnight in an incubator shaker at 30 ◦C and 200 rpm before being used in experiments.

4.7. Antibacterial Activity

Antibacterial activity was determined using the standard disc diffusion assay [49]
and the turbidimetric measurement method [44]. For disc diffusion method, bacterial
inoculums were spread on agar plates using a sterile glass spreader. Sterile Whatman No. 1
filter paper discs (6 mm diameter) were prepared and placed on the inoculated agar plate.
The SGFs (100 µL, 5 mg/mL) were added to the discs. The cultures were then incubated
upside down for 24 h at 30 ◦C. The same amount of distilled water was used as a negative
control, and norfloxacin (50 µg/mL) was used as a positive control. The inhibition zone
around the test paper disc indicated the absence of bacterial growth, which was reported to
be positive. The absence of a zone was considered negative.

For the turbidimetric measurement, the final SGF concentrations of 2, 4, 6, and
8 mg/mL were prepared separately in a sterile microfuge tube containing 400 µL MHB,
500 µL SGFs, and 500 µL of previously prepared bacterial suspension (adjusted to Mc-
Farland standard of 0.5, which was equal to 1 × 106 CFU/mL) and incubated for 24 h at
30 ◦C. The absorbance was measured at 600 nm using a microplate reader (VersaMaxTM,
Molecular Devices, San Jose, CA, USA).
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4.8. MIC and MBC

The MIC and MBC of the SGFs were determined as described by the National Com-
mittee for Clinical Laboratory Standards [50], with slight modifications. The SGFs were
dissolved in sterilized distilled water to a concentration of 25 mg/mL, and serial dilutions
(15.0, 10.0, 5.0, 2.5, 1.25, 0.62, 0.31, and 0.15 mg/mL) were prepared for both MIC and
MBC tests. A sterile microplate containing 100 µL of MHB was inoculated with 20 µL of
a previously prepared bacterial suspension (1 × 106 CFU/mL) and filled with 100 µL of
SGF. Water and norfloxacin (50 µg/mL) were tested in a similar manner as the negative
and positive controls, respectively. The plates were incubated at 30 ◦C for 24 h, and tur-
bidity absorbance was measured at 600 nm. The MIC was determined as the lowest SGF
concentration at which no bacterial growth was detected after 24 h incubation, whereas the
MBC represented the lowest SGF concentration that showed no growth in the culture after
incubation at 30 ◦C for 24 h. EC50 was calculated.

4.9. Bacterial Growth Curve

The effects of SGFs on the growth of bacterial pathogens were assessed using
V. parahaemolyticus and V. harveyi [51]. The SG corresponding to MIC was dissolved in
distilled water (40 µL) and added to 4 mL MHB medium. After mixing, 40 µL of the
prepared bacterial culture (1 × 106 CFU/mL) was added and incubated at 30 ◦C with
shaking at 200 rpm. The absorbance of the bacterial sample (100 µL) was measured at
600 nm every 5 h for 25 h using a spectrophotometer (Eppendorf BioPhotometer, Hamburg,
Germany). The mean and standard error of the mean (SE) for each sample were calculated
for each time point of the growth curve.

4.10. Integrity of Cell Membrane

When the cell membrane of bacteria is damaged, leakage of intracellular material
occurs. Extruded bioendogenous UV-absorptive substances, which mainly include proteins,
DNA, and RNA, can be measured to assess the integrity of cell membranes by detecting
the UV absorbance at 260 nm [51]. The NSG/MIC and SGF/MIC (200 µL) were added
to a 50-mL conical tube containing 10 mL of MHB medium. After mixing, 200 µL of the
prepared bacterial culture (1 × 106 CFU/mL) was added and incubated at 30 ◦C with
shaking at 200 rpm. Control was the untreated bacteria. The bacterial sample (1 mL)
was collected at 5 and 10 h of incubation, transferred into a tube containing 4 mL of
distilled water, and centrifuged at 5000 rpm for 10 min. The absorbance of the supernatant
containing the intracellular leakage was measured at 260 nm (Eppendorf BioPhotometer,
Hamburg, Germany). The percent of intracellular material leakage was calculated using
the following equation:

% Leakage = [(Control Absorbance/Treatment Absorbance) × 100] (2)

4.11. Scanning Electron Microscopy

Surface morphologies of the NSG and SGFs were determined using scanning elec-
tron microscopy (SEM, Hitachi SU-8010, Tokyo, Japan). An equal quantity of NSG and
SGFs were kept on the surface of the stubs. These samples were prepared by platinum
sputtering using a sputter coater and examined by a scanning electron microscope (Hi-
tachi, Tokyo, Japan) with a 10 kV acceleration voltage. In addition, the effect of SGF10
on the cell membranes of V. parahaemolyticus (3HP) and V. harveyi (VH0-1114) was investi-
gated following the previously described method [8]. Briefly, 4 mL of bacterial suspension
( 1 × 106 CFU/mL) was mixed with SGF10 at MIC (3HP, 2.5 mg/mL and VH0-1114,
1.25 mg/mL) for 5 h at 30 ◦C and centrifuged at 5000 rpm for 10 min. Subsequently,
cells were washed three times with 0.1 M sodium cacodylate buffer solution (pH 7.4) and
centrifuged. The bacterial pellets (100 µL) were mounted over a poly L-lysine (0.01%)
coated cover slip and dried for 24 h at RT. Dried bacterial cells were prefixed with 2.5%
glutaraldehyde for 4 h and postfixed with 1% osmium tetra oxide for 2 h in 0.1 M sodium
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cacodylate buffer at 4 ◦C. The cells were serially dehydrated in ethanol (30, 50, 70, 80, 90,
95, and 100%), dried by critical point drying (CPD), and sputter-coated with a thin layer of
platinum palladium. Finally, the cells were observed under a scanning electron microscope
(Hitachi, Tokyo, Japan).

4.12. Statistical Analysis

Data were expressed as the mean ± SE of at least three individual experiments. The
statistical significance of the differences between the control and treatment groups was
determined by one-way ANOVA using SPSS (version 26) followed by Tukey’s HSD test.
Pearson’s correlation coefficients (r) were obtained for different properties of the SGFs.
p < 0.05 was considered statistically significant.

5. Conclusions

NSG degradation with H2O2 generated low-MW SGFs while maintaining the discrete
structure of the polysaccharide chain. The low MW and high negative charge of SGFs pro-
duces superior antibacterial and bactericidal activities against V. parahaemolyticus (VP3HP
and VPA3212) and V. harveyi (VH0-1114 and VHBAA-1116), unlike NSG, by interacting
with the cell wall and membrane, which resulted in leakage of intracellular biological
components. The EC50 value against the tested bacteria of SGF10 (about 1 mg/mL) was
far less than that of NSG (about 5–7 mg/mL) (Table S1) suggesting the greater efficacy
of the small MW SGF10 over NSG. Our findings highlight a potential opportunity for
SGF10 to be used as an antimicrobial drug and provides a basis for their utilization in
the prevention and control of shrimp pathogens. Furthermore, this study suggests that
large-scale aquaculture of G. fisheri may be of use in the exploitation of a variety of food
and nonfood enterprises.

Supplementary Materials: The following supporting information can be downloaded at: https:
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