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Abstract

ncer and its challenges as well as future prospects.
Objective: To review the application of radiomics in gastric ca
Data sources: A research for relevant studies were performed in PubMed with the terms of “radiomics,” “texture analysis,” and
“gastric cancer.” The search was updated until February 28th, 2019.
Study selection:All original articles regarding the investigation of texture analysis or radiomics in gastric cancer were retrieved. Only
papers written in English were included.
Results:A total of 17 original articles were selected in final. It is shown that radiomics has yielded moderate to excellent performance
in a spectrum of respects including differential diagnosis, assessment of histological differential degree, evaluation of tumor stage,
prediction of response to therapy, and prognosis in gastric cancer. Yet, a number of challenges are facing both radiomics itself and its
application in gastric cancer.
Conclusions: Radiomics holds great potential in facilitating decision-making in gastric cancer. With the standardization of work-
flow and advancement of machine learning methods, radiomics is expected to make great breakthroughs in precision medicine of
gastric cancer.
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Introduction bladder cancer, and gastric cancer.[7-17] This article briefly

reviews the application of radiomics in gastric cancer and

[18]
Gastric cancer is a major health burden, although its
incidence has decreased worldwide in recent decades. It
still serves as the third leading cause of malignancy-related
death worldwide. It is estimated that there were over
1,000,000 new gastric cancer cases and about 783,000
gastric cancer deaths globally in 2018.[1] In China, the
reported new gastric cancer cases and deaths were
respectively 6,791,000 and 498,000 patients in 2015.[2]

Imaging modalities play a crucial role in the diagnosis,
staging, and risk stratification of gastric cancer for optimal
therapeutic strategy selection and outcome improve-
ment.[3] Radiomics is an emerging field using a non-
invasive approach to extract numerous quantitative
features from medical images, especially parameters not
visible to the naked human eye or quantifiable by routine
analysis.[4-6] Radiomics has shown promise for gene
expression, pathological classification, tumor metastasis,
treatment response, and clinical outcomes in variable
cancers, such as lung cancer, breast cancer, rectal cancer,
hepatocellular carcinoma, nasopharyngeal carcinoma,
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challenges as well as future prospects.

Overview of Radiomics
The concept of radiomics was raised by Lambin et al in
2012 and subsequently refined by Kumar et al[19] as the
high-throughput extraction and analysis of large amounts
of advanced quantitative imaging features from medical
images obtained with computed tomography (CT),
positron emission tomography (PET) or magnetic reso-
nance imaging. The dominant advantage of radiomics is
that it enables the acquisition of numerable quantitative
features which could offer information on tumor pheno-
type and microenvironment which is unavailable by
traditional radiology.[5,18] Another major strength of
radiomics is the utilization of artificial intelligence or
machine learning approaches, which will transform the
mineable high-dimensional data to develop diagnostic,
predictive or prognostic radiomic models or signatures
to support personalized clinical decision making.[4,20]
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A radiomics study can be structured into the following four
phases: (1) Image acquisition: obtaining large-scale

texture features derived from pre-operative arterial phase
(47 patients) and portal phase (48 patients) images. They
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medical images with standard scanning and reconstruction
protocols is pivotal for eliminating unnecessary confound-
ing variability in radiomics; (2) Image segmentation:
regions of interest (ROIs) or volumes of interest (VOIs) of
the tumor, metastatic lesions, and normal tissues can be
segmented manually or semi-automatically for further
analysis; (3) Feature extraction and selection: high-
throughput extraction of quantitative imaging features
from ROIs or VOIs is the essence of radiomics. Commonly
used radiomics features can be categorized into shape and
size features, first-order histograms, second-order histo-
grams (textural), and fractal features.[6,21] Features that are
redundant or may not correlated with the given tasks
should be excluded for model construction. The least
absolute shrinkage and selection operator (LASSO),
maximum relevance and minimum redundancy, and
principal component analysis are frequently used feature
selection methods; (4) Model construction and validation:
identification of optimal machine-learning models based
on the clinical information and selected features is the
pivotal step. Support vector machine (SVM), random
forest, artificial neural networks (ANNs) and bootstrap-
ping are widely used machine-learning methods. The
selected model should be validated prior to its application
in scientific and clinical communities. Excellent models
should exhibit statistical consistency between the training
and validation sets.[5,6,19,21]

Application of Radiomics Approaches in Gastric Cancer
Data sources, study selection, and analysis

A research for relevant studies was performed in PubMed
databases with index terms of “radiomics,” “texture
analysis,” and “gastric cancer.” The search was updated
until February 28th, 2019. All original articles regarding
the investigation of texture analysis or radiomics in gastric
cancer were retrieved. Only papers written in English were
included. A total of 17 studies were selected in final. These
investigations have found that radiomics may be attribut-
able to the differential diagnosis (two studies), assessment
of histological differential degree (two studies), pathologi-
cal N stage (three studies), M stage (occult peritoneal
metastasis, one study), vascular invasion (one study),
response to chemotherapy (five studies) or radiotherapy
(one study), and prognosis of surgery (two studies). A
summary of these works was presented in Table 1.
Differential diagnosis

984
Primary gastric lymphoma, gastrointestinal stromal tu-
mor, and adenocarcinoma can frequently mimic each
other, yet with remarkably different management strate-
gies and prognoses.[22] The differential diagnosis remains
challenging based on routine CT characteristics. Two
studies have investigated the ability of radiomics for
differential diagnosis of gastric cancer. Quantitative
radiomics analysis is shown to be promise to supplement
conventional CT in the distinction of gastric cancer. The
work conducted by Ba-Ssalamach et al[22] analyzed the

1

found that VOI-based texture features from arterial phase
CT images can differentiate gastrointestinal stromal tumor
from lymphoma with 100% accuracy and can distinguish
adenocarcinoma from lymphoma with a misclassification
rate of 3.1%; the corresponding misclassification rate was
8% and 10% based on portal phase images, respectively.
Ma et al[23] collected the pre-operative portal phase images
of 40 patients with Bormann IV type gastric cancer and 30
cases with gastric lymphoma to carry out radiomics
analysis, and they reported that whole-lesion-based texture
features from portal phase CT images can differentiate
adenocarcinoma from lymphoma with an accuracy of
87%.

Prediction of histological grade
The histopathological features of gastric cancer signifi-
cantly influences treatment and prognosis of patients.[24]

Two studies have been performed to explore the values of
radiomics in the assessment of histological grade of gastric
cancer. The study by Liu et al[25] segmented the whole
lesions on the pre-operative arterial and portal phase
images of 107 patients. They identified that the radiomic
features were correlated with the histological grade
(r = �0.231 to �0.324) and Lauren type (r = 0.228–
0.321). Apparent diffusion coefficient (ADC) maps of 78
patients were collected by Zhang et al[26] and the whole
lesions were segmented. The extracted histogram param-
eters were found to be significantly different in lesions with
disparate histological grades. Nevertheless, the role of
these histogram parameters is likely to be limited in clinical
practice because the area under the curve (AUC) was less
than 70%.

Prediction of tumor stage
The accurate evaluation of tumor stage is a pre-requisite
for the selection of an appropriate therapeutic approach
and have prognostic significance.[24] Altogether five studies
were carried out to evaluate the role of radiomics in the
prediction of lymph node status, vascular invasion, and
occult peritoneal metastasis. Traditional method to
evaluate the lymph node is based on the size of the lymph
node. Diagnostic uncertainty frequently occurs as normal-
size nodes can be malignant yet inflammatory nodes may
be enlarged. The radiomics approach was shown to be
promising in assessment of tumor stage. Liu et al[27,28]

segmented the VOIs of lesions on ADC maps in
approximately 80 cases and found that whole-lesion-
based radiomic features can identify patients with positive
lymph node metastases with an accuracy ranging between
74% and 81%, but these signatures were not capable to
predict the T stage. Liu et al[29] evaluated the whole-
volume ADC-based entropy parameters in the pre-
operative assessment of gastric cancer’s aggressiveness in
64 patients. They found that four entropy related
parameters were obviously differed between patients with
and without perineural invasion. Feng et al[30] collected the
pre-operative portal phase images of 490 patients. A total
of 93 features were derived from the segmented ROIs. A
radiomics model was built using the modified recursive
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feature selection SVM method, which yielded an AUC of
0.824 in the training cohort and 0.764 in the test cohort in

Prognosis of neoadjuvant chemotherapy (NAC)

Chinese Medical Journal 2019;132(16) www.cmj.org
prediction of lymph node metastasis. Early detection of
peritoneal metastasis is pivotal for optimal treatment
selection and avoidance of unnecessary surgical proce-
dures. However, the specificity of conventional CT in the
detection of peritoneal metastasis is unsatisfactory only
around 50%. Dong et al[15] carried out a multi-center
study in which 554 subjects with occult peritoneal
metastasis were retrospectively analyzed. ROIs of both
the tumor and the peritoneal region nearest to the center of
the primary tumor were segmented. A total of 133 features
were extracted on each ROI of each patient. A nomogram
was constructed incorporating radiomics features
extracted from the tumor and the peritoneal region as
well as clinical factors. The nomogram yielded an excellent
performance in the prediction of occult peritoneal
metastasis with an AUC of 0.958 in the training set and
0.941, 0.928, and 0.920 in an internal and two external
validation sets.

Prediction of response to therapy and patient prognosis
The identification of pre-therapeutic predictive markers for
response and prognosis would be invaluable in individu-
alized patient treatment.

Prognosis of surgical resection
986
Tumor-node-metastasis staging systems are primary
prognostic factors, yet it is not uncommon that patients
with same stage exhibit heterogeneous outcomes. Two
studies evaluated the values of radiomics in the prediction
of prognosis after surgical resection. Giganti et al[31]

investigated the association between CT texture-derived
parameters and the overall survival (OS) in 56 patients
with resectable gastric cancer. In total, 107 features were
extracted from each VOI on pre-operative arterial phase
images. The study identified that features including
energy, entropy, maximum Hounsfield unit value,
skewness, root mean square, and mean absolute devia-
tion were significantly associated with a negative
prognosis with logistic relative risk ranged 3.25 to 5.96
and �4.22 to �2.66. The work carried out by Li et al[17]

included pre-operative portal phase CT images of 181
patients. They segmented both the ROI and VOI of the
tumor with the purpose to compare the performance
between two-dimensional and three-dimensional seg-
mentation. A total of 273 features were extracted from
eachROI and 485 featureswere extracted from eachVOI.
LASSO method was used for feature selection and a
LASSOCox regression model was built for the prediction
of OS. Both two-dimensional and three-dimensional
features were associated with OS in the training set;
however, no significant association for prediction of OS
was found by three-dimensional features in the test set. A
nomogram incorporated with the ROI-based radiomics
signature and clinical parameters was built which
provided better predictive accuracy for prognosis of
radial resection than either the radiomics signatures
(Harrel concordance index 0.82 vs. 0.71) or clinical
parameters (Harrell concordance index 0.82 vs. 0.74).

1

NAC is the mainstay for locally advanced cases, as it can
facilitate downgrading of the lesion and improve the
radical resection rate. However, not all patients could
benefit from the schemes. Individuals who were insensitive
to NAC may experience unnecessary drug-toxicity. Four
studies were published regarding the value of radiomics in
the prediction of response and prognosis of NAC until
now, the results of which indicated that radiomics may
provide incremental values in selection of appropriate
candidates for NAC. Giganti et al[32] included the pre-
treatment arterial phase images of 43 patients and
manually segmented the whole tumor. They found that
14 features were significantly different between the
responders and non-responders at univariate analysis.
Multivariate analysis revealed that entropy, range, root
mean square were independent predictors of responders
and non-responders with logistic odds ratio of 4.11, 3.67,
and 4.57, respectively. In another study with inclusion of
the pre-treatment arterial and portal phase images of 30
patients, Li et al[33] analyzed the values of ROI-based
radiomics features with 32 combinations of feature
selection and machine-learning methods. A total of
19,985 radiomics features were extracted in the arterial
and portal phase images of each patient. One machine-
learning method showed AUC >0.6 using features from
arterial phase images and 12 algorithms displayed AUCs
>0.6 based on features from portal phase images in
predicting the response to NAC. The largest study was
carried out by Jiang et al,[16] which was a multi-center
retrospective analysis with inclusion of the pre-operative
portal phase CT images of 1591 patients. A total of 269
features were extracted from each ROI. A LASSO Cox
regression model was used to build a prognostic classifier
and 19 potential predictors were selected. The study
revealed that the nomogram based on the combination of
clinical factors and radiomics signatures would facilitate
the prediction of disease-free survival (DFS) with hazard
ratios (HRs) of 2.98, 3.17, and 2.671 in the training set,
internal test set, and external test set, while the
corresponding HRs for predicting OS were 3.72, 3.415,
and 2.830, respectively. Additionally, a multi-center study
included PET-CT images of 214 patients was conducted by
Jiang et al.[34] Each ROI derived 80 features. A multiple-
feature-based radiomics signature was constructed for
predicting DFS. A nomogram was built based on the
radiomics signature and clinical predictors which were
shown to be a powerful predictor of OS (HRs were 3.354
and 2.398 in the training set and test set, respectively) and
DFS (HRs were 3.303 and 4.357 in the training and test
sets, respectively).

Prognosis of targeted chemotherapy with trastuzumab
Although a survival gain was observed for targeted therapy
with trastuzumab in patients with human epidermal
receptor 2 (HER2) over-expression, there are still patients
who are insensitive to this approach. There has been only
one study regarding radiomics in the prediction of targeted
chemotherapy with trastuzumab, which was conducted
by Yoon et al.[35] They enrolled 26 cases with HER2
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over-expression aimed at predicting the response to
trastuzumab treatment. A number of histogram and

features.[38] Mackin et al[39] reported that the bias of
features derived from multiple scanners was comparable to

Chinese Medical Journal 2019;132(16) www.cmj.org
gray-level co-occurrence matrices (GLCM) features were
derived from the manually delineated ROIs on portal
phase CT images. It is reported that GLCM features
including angular second moment, contrast, variance, and
correlation can differentiate responders from non-re-
sponders with AUCs ranging from 0.75 to 0.77. The
results supported that radiomics markers may provide
additional prognostic information for patient selection.

Prognosis of radiotherapy
Radiotherapy has been proved as effective treatment
strategy across a range of cancer, including gastric cancer.
Nevertheless, the response to radiotherapy is highly
individual.[35] Cases received yet insensitive to radiothera-
py may lead to a delay of the modification of treatment
plan. The works investigated the value of radiomics in the
differentiation between responder and non-responders to
radiotherapy were rare. Only Hou et al[36] segmented the
VOIs of the pre-treatment arterial phase images of 43
patients. A total of 1117 features were extracted from each
VOI. The study revealed that these signatures can predict
the response to radiotherapy with AUCs of 0.714 and
0.749 using the ANN and k-nearest neighbor methods in
the training set, respectively; the AUCs in the validation set
were both 0.816. The study suggested that radiomics may
serve as a valuable tool for early prediction of response to
radiotherapy in gastric cancer.

In a nutshell, it is evident that radiomics hold great promise
in facilitating differentiation diagnosis, evaluation of
histological degree and tumor stage, as well as response
to therapy and prognosis in gastric cancer.

Challenges and Future Prospects

Although radiomics holds the promise to empower the
next major breakthrough in precision medicine of gastric
cancer, it is still in its infancy. Challenges are facing both
radiomics itself and its application in gastric cancer.[5,6,37]

Each of the four process of radiomics has its unique

challenges

987
Image acquisition

The power of radiomic models is dependent on sufficient
patient population. Extracting a large number of imaging
features from a small dataset is likely to reduce its power
and increase the risk of overfitting. Robert et al[21]

recommended that at least ten patients are needed for
each feature in binary classifiers. Given the number of
radiomic features derived, patient population was rela-
tively small for the majority of the previous publications. In
addition, most of the investigations were retrospective
analyses based on images from more than one scanner,
variable slice thickness as well as multiple reconstruction
algorithms. Variations in image acquisition parameters
and reconstruction is likely to introduce alteration of the
features that are not caused by the underlying biologic
mechanisms, resulting in redundant or less reproducible

1

those extracted from one scanner. Kim et al[40] identified
that compared with inter-reader variability, bias caused by
variable reconstruction algorithms weights more. The
analysis by Midya et al[41] revealed that image acquisition
parameters such as tube current, noise index, and
reconstruction technique had strong influence in the
reproducibility of radiomics features. Smoother reconstruc-
tion algorithms and thinner slices are considered favorable
factors for improving the reproducibility of the extracted
features.[42] Given that non-standardized imaging protocols
are inevitable at the moment, extensive disclosure of the
imaging protocols is recommended to facilitate reproduc-
ibility and comparability of radiomics studies.[6]

Image segmentation
Variable manual and semi-automatic segmentation meth-
ods were used to derive ROI- or VOI-based features among
the radiomics investigations of gastric cancer. The
segmentation determines which voxels within an image
are analyzed and serves as one of the most critical steps in
the radiomics workflow. The variability in segmentation
can introduce bias into the derived features. Computer-
aided edge detection followed by manual curation is
currently considered the optimum segmentation method
for reproducibility. Amigration towards deep learning and
advanced neural network approaches may be more useful
and can compensate for the variability of manual
segmentation.[5] Although two-dimensional ROI-based
features are easier to obtain with less labor consumption
and faster calculations, it is assumed that these features
were unable to accurately reflect the heterogeneity of an
entire tumor.[43] The efficiency of three-dimensional VOI-
based features will be compromised due to larger partial
volume artifacts along the z-direction.[42] The work by Li
et al[17] reported that VOI based features pales in
comparison with ROI based features in predicting of the
prognosis of radical resection. The perspectives on whether
ROI-based features are superior in reproducibility and
implementation compared with VOI-based features
requires further studies.[42,44]

Feature extraction and selection
Various software and programs were utilized for feature
extraction in the radiomics studies of gastric cancer.
Filograna et al[45] called for the software used for feature
extraction to be open-sourced to facilitate external
validation and further optimize the constructed models.
What’s more, not all features extracted will be useful for
classifiers. The derived features should be exploited, and
those that lack robustness should be eliminated. The
performance of the radiomics model can be variable based
on different feature selection methods.[46] Avanzo et al[6]

advocated that the process of feature reduction or
exclusion needs to be documented clearly.

Model construction and validation
Different techniques are associated with distinct inherent
limitations.[47] The choice of modeling technique has been
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shown to affect prediction performance.[48] Nevertheless,
the prediction model is often a single technique selected

2. ChenW, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer
statistics in China, 2015. CA Cancer J Clin 2016;66:115–132. doi:
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according to the preference and experience of the
performers in almost all existing studies. The key point
of model selection is that the work is entirely reproduc-
ible.[42] Although validation is an indispensable compo-
nent of a complete radiomics analysis, only a sub-set of
prior studies was internally or externally validated.
Researchers must assess whether the model is predictive
for the target patient population or only for sub-sets of the
samples analyzed. Ideally, the models should be externally
validated.[19]

Future direction of radiomics in gastric cancer
Further development of radiomics in gastric cancer should
be focused on the following three respects. First, although
NAC is widely recommended, evidence-based studies of its
role in the improvement of long-term prognoses are still
absent.[49] Radiomics has been applied to predict the short-
term efficacy of NAC, yet its role in the prediction of long-
term survival after NAC has not been investigated and
future researches will be warranted. Second, the identifica-
tion of specific cancer sub-groups, such as cases of HER2
overexpression or programmed cell death-1 ligand 1-
positive cases, is of great clinical significance in the selection
of candidates for targeted chemotherapy or immunothera-
py.[24,50] Last but no least, nearly all published radiomics
studies focused on single modalities, yet hybrid images are
likely to hold more information and can develop a more
complete picture of the tumor.[19] Multimodality imaging-
based radiomics merits future study.

Conclusions
As a product of cooperation between medicine and
engineering, radiomics serves as the frontier of decision
making in gastric cancer by using advanced algorithms.
While radiomics is still in the early phases, a number of
details of its workflow need to be refined, and a large
amount of researches are urgently needed to be carried out.
It is convinced that with the continuous accumulation of
data and standardization of work-flow and improvement
of artificial techniques, radiomics will make great break-
throughs in precision medicine of gastric cancer.
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