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A B S T R A C T   

Background: The new immunotherapies have not only changed the oncological therapeutic approach but have 
also made it necessary to develop new imaging methods for assessing the response to treatment. Delta radiomics 
consists of the analysis of radiomic features variation between different medical images, usually before and after 
therapy. 
Purpose: This review aims to evaluate the role of delta radiomics in the immunotherapy response assessment. 
Methods: A systematic search was performed in PubMed, Scopus, and Web Of Science using “delta radiomics AND 
immunotherapy” as search terms. The included articles’ methodological quality was measured using the 
Radiomics Quality Score (RQS) tool. 
Results: Thirteen articles were finally included in the systematic review. Overall, the RQS of the included studies 
ranged from 4 to 17, with a mean RQS total of 11,15 ± 4,18 with a corresponding percentage of 30.98 ± 11.61 
%. Eleven articles out of 13 performed imaging at multiple time points. All the included articles performed 
feature reduction. No study carried out prospective validation, decision curve analysis, or cost-effectiveness 
analysis. 
Conclusions: Delta radiomics has been demonstrated useful in evaluating the response in oncologic patients 
undergoing immunotherapy. The overall quality was found law, due to the lack of prospective design and 
external validation. Thus, further efforts are needed to bring delta radiomics a step closer to clinical 
implementation.   

1. Introduction 

1.1. Immunotherapy 

Immunotherapy revolutionized the field and brought attention to 
new opportunities toward precision medicine [1]. Cancer immuno
therapy aims to reactivate a pre-existing stalled immune response or to 
elicit a de novo immune response [2]. Indeed, cancer cells send mo
lecular signals to prevent the immune system from attacking them [3]. 
In particular, T cells are negatively modulated with different checkpoint 

pathways and allowing for continued tumor growth. 
With the advent of new immunotherapies, the treatment paradigm in 

most malignancies has completely changed in the last 10–15 years. 
Immune checkpoint inhibitors (ICIs) can inhibit molecules produced by 
cancer cells that negatively regulate the immune response. The major 
targets of ICIs are anticytotoxic T-lymphocyte-associated antigen 4 
(CTLA-4) and anti-programmed cell death protein 1/programmed cell 
death ligand 1 (PD-1/PD-L1) which are overexpressed on different types 
of cancer. These types of drugs have also achieved satisfactory results in 
patients with advanced cancer [4]. 

Abbreviations: CTLA-4, Cytotoxic T-lymphocyte-associated antigen 4; PD-1, Programmed cell death protein 1; PD-L1, Programmed cell death ligand 1; RECIST, 
Response assessment criteria in solid tumors; RQS, Radiomics Quality Score; NSCLC, non-small-cell lung cancer. 
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Additionally, new immune control molecules are emerging such as 
the Ig domain V suppressor of T cell activation also called PD-1 homolog 
and ectonucleotidases that belong to the ribosyl cyclase family, which 
are giving promising results [5]. 

To date, biopsy is necessary to identify the presence of immuno
therapy targets. However, tissue biopsy is invasive and limited to a 
restricted portion of the tumor, therefore not addressing the temporal 
and spatial heterogeneity of the tumor [6,7]. 

For obtaining a personalized treatment based on the phenotypic and 
genomic changes of the tumor over time, it is necessary to find reliable 
biomarkers that objectively reproduce these tumoral changes over time, 
easily obtainable and reproducible. In an oncological setting, it is 
advisable to modulate the therapeutic choices based on tumor vari
ability, trying to prevent and predict the development of resistant tumor 
clones. 

1.2. Imaging state of the art and limits in immunotherapy drugs scenario 

Oncological imaging plays a pivotal role in the assessment of therapy 
response [8]. 

In 2000, response assessment criteria in solid tumors (RECIST) were 
introduced by an international working group. These criteria are aimed 
to standardize and simplify tumor response criteria [9], including defi
nitions of the minimum measurable lesion size, instructions on how 
many lesions to follow and the use of one-dimensional measures for 
assessing overall tumor burden [9]. The RECIST criteria has subse
quently been widely accepted, but with rapid technological innovations 
in imaging techniques, their revision has become necessary [10]. 

The main imaging-related changes in RECIST 1.1 were overall the 
number of target lesions, the assessment of pathological lymph nodes, a 
better definition of disease progression, a better definition of the un
equivocal progression of non-target lesions and finally the inclusion of 
18F-FDG PET in the detection of new lesions [10]. 

The introduction of new therapeutic options, such as immuno
therapy, has changed the scenario. 

In the early stages, immunotherapies may determine an inflamma
tory halo surrounding the tumor lesion reflecting the activation of the 
immune system and potentially mistaken for an increase in the overall 
size of the tumor [11]. Indeed, in patients with late responses to 
immunotherapy, assessment of therapy response based on RECIST may 
be erroneously considered positive, such as in a disease progression 
setting [12]. 

New immunotherapy drugs have changed imaging data as these new 
drugs have novel mechanisms of action and cause T-cell and immune 
activation, producing unusual response patterns resembling tumor 
growth to consider [13]. 

Therefore, a modified version of the WHO response criteria, the 
Immune-Related Response Criteria (irRC), was proposed in 2009 and 
then revised in 2013, promoting the use of one-dimensional measure
ments based on the RECIST original. Some recommendations were later 
published (referred to as irRECIST), but with poor reproducibility [13]. 

These criteria define different categories of response to therapy as 
unconfirmed progression (iUPD), progression confirmed (iCPD), com
plete response (iCR), partial response (iPR), and stable disease (iSD). 

However, these criteria have several limitations as the inability to 
detect tumor heterogeneity and genetic profiles [14,15] and the limited 
ability in predicting programmed cell death or unusual responses like 
pseudo-progression or dissociated response [16–18]. 

Hence, the study of circulating biomarkers and imaging tools are the 
most promising ways currently proposed to overcome these limitations 
[19]. 

1.3. Radiomics and delta-radiomics 

The role of medical imaging is rapidly evolving and becoming 
increasingly central in personalized precision medicine setting. Medical 

images contain numerous data not perceptible to the naked human eye, 
which may empower the diagnostic and prognostic evaluation of the 
patients far beyond the qualitative assessment [20,21]. 

Radiomics is based on the extraction from medical images of high- 
dimensional quantitative features, which has been widely used to 
develop predictive models [22,23]. 

Radiomic features may provide information about cancer’s pheno
type and indirectly also about cancer’s genotype, as well as on the tu
moral microenvironment [24–26]. 

Radiomic analysis could be used to correlate biological data with 
radiological images, possibly avoiding invasive procedures [27–30]. 
Furthermore, radiomics could also be useful in choosing the most suit
able therapeutic in settings where multiple therapeutic options are 
available [31]. 

Radiomics has consequently aroused much interest in the scientific 
landscape and has been also studied as an imaging biomarker able to 
predict response to various immunotherapies. 

Still, several limitations hinder the spread of radiomics, such as the 
lack of reproducibility and robustness [31,32]. Radiomics was 
commonly used to predict definite biological or clinical responses to 
treatment, but its potential role as a longitudinal biomarker of cancer 
response has yet to be fully explored [18,33,34]. 

Therefore, several studies have proposed a different method of 
analyzing image data, emphasizing the variations of radiomic features at 
different time points. This approach is a branch of radiomics defined as 
delta-radiomics [35]. 

Delta-radiomics has been proposed to predict the comparison of 
different timeline CT scans, by accessing changes in radiomic features 
over time [36] and, consequently, allowing assessment of changes that 
occurred during treatment after time or the introduction of external 
factors (e.g., chemotherapy or radiotherapy) [19]. 

At the same time, delta-radiomics is inherently more reproducible 
between different centres, with constant acquisition parameters [31]. 

This systematic review aims to investigate the role of delta-radiomics 
in the prediction of response to immunotherapy and to assess the current 
methodological quality of the radiomics-workflow. 

2. Materials and methods 

2.1. Literature search 

A systematic literature review was performed to identify all relevant 
studies addressing the potential role of delta radiomics in predicting 
response to immunotherapy. 

The examined electronic databases were Web Of Science, Scopus and 
PubMed. The search terms used to identify articles of potential interest 
were: "delta-radiomics AND immunotherapy". The selection of these 
terms was made to include all the articles addressing the potential role of 
delta-radiomics in immunotherapy response prediction. 

The results were exported to Rayyan, which is a cloud-based plat
form for screening citation data [37]. 

After an automated duplicate elimination, all the articles were 
initially screened by reviewing their titles and abstracts. Two authors (C. 
B. and R.F.) independently selected the titles of the identified articles. 
Two other authors (E.A. and S.C.F.) independently screened the titles 
and abstracts of studies that passed the title screening. The full texts of 
the titles of the articles that passed the selection of titles and abstracts 
were retrieved. The discussion served to overcome any disagreements in 
the selection process, allowing for mutual agreement to be reached. The 
filters applied in the search process have allowed the selection of only 
original articles published in English, before 06/04/2023. No re
strictions relating to the country of publication, study design or results 
were applied. The last search was done on 06/04/2023. 

The following characteristics were collected for the included articles: 
year of publications, study design, number of patients, clinical setting, 
imaging technique, journal type (radiological journal or other), features 
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type (first-order or more), radiomics-features analysis type (machine 
learning or others). 

2.2. Radiomics Quality Score 

The Radiomic Quality Score (RQS) according to Lambin et al. [38] 
was used to assess the methodological quality of the included articles. 
RQS is an assessment tool made up of 16 items, with different maximum 
scores according to their importance. The summed scores of all 16 items 
range from − 8 to 36. To calculate percentages, a score of 0 % was 
assigned to studies with summed scores from − 8 to 0, while a score of 
100 % was assigned to studies with a summed score of 36. Two re
viewers (C.B. and M.F.) independently rated the included papers. Dis
agreements between the two reviewers were resolved in consensus 
together with a third reviewer (S.C.F). RQS criteria and scores are shown 
in the Table 1. 

3. Results 

The flowchart of all the harvested papers is shown in Fig. 1. 
A total of 23 duplicates and 4 unrelated papers were removed. 

Overall, 13 articles were finally included in the review. The first 
included study to be issued was published in 2019, two studies in 2020, 
three in 2021, four in 2022, and finally three in 2023. All the articles 
were published in non-radiological journals and were retrospective 
studies. The mean patient number was 92,07 ± 61,28. The most 
frequently addressed clinical setting was the prediction of response to 
immunotherapy of non-small-cell lung cancer (NSCLC) (6/13, 46 %), 
followed by metastatic melanoma (3/13, 23 %). In the vast majority of 
papers, CT was used as the imaging technique (11/13, 84 %), while MRI 
and FDG-PET/CT were used in only one study each. Slightly under half 
of the included articles (6/13, 46 %) employed machine learning tech
niques for model building. Characteristics of the included articles are 
resumed in Table 2. 

Overall, the RQS of the included studies ranged from 4 to 17, with a 
mean RQS total of 11,15 ± 4,18 with a corresponding percentage of 
30.98 ± 11.61 %. The detailed RQS assessment for each of the included 
articles is reported in Table 3. 

As expected according to the scope of the review, most of the articles 
(11/13, 84.61%) performed imaging at multiple time-points, except in 
two studies where delta radiomics features were calculated between 
different acquisition phases and not between different exams. The same 
proportion of studies clearly reported the imaging protocol. Notably, all 
the included articles carried out feature reduction or adjustment for 
multiple testing, to reduce the risk of overfitting, and discussed the 
relationship between the delta radiomics-based signature and biology. 

Table 1 
Radiomics Quality Score items.  

Criteria Points  

1. Image protocol quality + 1 (if protocols are well-documented) 
+ 1 (if public protocol is used)  

2. Multiple segmentations – possible 
actions are: segmentation by different 
physicians/algorithms/software, 
perturbing segmentations by (random) 
noise, segmentation at different 
breathing cycles. Analyze feature 
robustness to segmentation 
variabilities. 

+ 1  

3. Phantom study on all scanners – detect 
inter-scanner differences and vendor- 
dependent features. Analyze feature 
robustness to these sources of 
variability. 

+ 1  

4. Imaging at multiple time points – 
collect individuals’ images at 
additional time points. Analyze feature 
robustness to temporal variabilities (e. 
g., organ movement, organ expansion/ 
shrinkage). 

+ 1  

5. Feature reduction or adjustment for 
multiple testing – decreases the risk of 
overfitting. Overfitting is inevitable if 
the number of features exceeds the 
number of samples. Consider feature 
robustness when selecting features. 

− 3 (if neither measure is 
implemented) 
+ 3 (if either measure is implemented)  

6. Multivariable analysis with non- 
radiomic features – is expected to pro
vide a more holistic model. Permits 
correlating/inferencing between 
radiomics and non-radiomics features. 

+ 1  

7. Detect and discuss biological correlates 
– demonstration of phenotypic 
differences (possibly associated with 
underlying gene–protein expression 
patterns) deepens understanding of 
radiomics and biology. 

+ 1  

8. Cut-off analyses – determine risk 
groups by either the median, a 
previously published cut-off or report a 
continuous risk variable. Reduces the 
risk of reporting overly optimistic 
results. 

+ 1  

9. Discrimination statistics – report 
discrimination statistics (e.g., C- 
statistic, ROC curve, AUC) and their 
statistical significance (e.g., p-values, 
confidence intervals). One can also 
apply a resampling method (e.g., 
bootstrapping, cross-validation). 

+ 1 (if discrimination statistic and its 
statistical significance are reported) +
1 (if a resampling method technique is 
also applied)  

10. Calibration statistics – report 
calibration statistics (e.g., 
Calibration-in-the-large/slope, cali
bration plots) and their statistical 
significance (e.g., p-values, confi
dence intervals). One can also apply 
resampling method (e.g., boot
strapping, cross-validation). 

+ 1 (if calibration statistic and its 
statistical significance are reported) +
1 (if a resampling method technique is 
also applied)  

11. Prospective study registered in a trial 
database – provides the highest level 
of evidence supporting the clinical 
validity and usefulness of the 
radiomics biomarker. 

+ 7 (for prospective validation on a 
radiomics signature in an appropriate 
trial)  

12. Validation – the validation is 
performed without retraining and 
without adaptation of the cut-off 
value, provides crucial information 
with regard to credible clinical 
performance. 

− 5 (if validation is missing) 
+ 2 (validation with same) + 3 (with 
another institute) + 4 (with 2 datasets 
from two distinct institutes) 
+ 4 (validates a published signature) 
+ 5 (validation with dataset from ≥3 
institutes)  

13. Comparison to ‘gold standard’ – assess 
the extent to which the model agrees 
with/is superior to the current ‘gold 

+ 2  

Table 1 (continued ) 

Criteria Points 

standard’ method (e.g., TNM-staging 
for survival prediction). This com
parison shows the added value of 
radiomics.  

14. Potential clinical utility – report on 
the current and potential application 
of the model in a clinical setting (e.g., 
decision curve analysis). 

+ 2  

15. Cost-effectiveness analysis – report on 
the cost-effectiveness of the clinical 
application (e.g., quality adjusted life 
years generated). 

+ 1  

16. Open science and data – make code 
and data publicly available. Open 
science facilitates knowledge transfer 
and reproducibility of the study. 

+ 1 (open-source scans) 
+ 1 (open-source ROI) 
+ 1 (open-source code) 
+ 1 (open-source calculated features)  
Total points (36 = 100 %) 

Abbreviations: AUC: area under the curve. 
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Records identified from:
PubMed (n = 15)
Scopus (n = 13)
Web of Science (n = 12)

Records removed before 
screening:

Duplicate records removed 
by automation tools (n = 23)

Records screened
(n = 17)

Records excluded (n = 2)
Lack of inherence (n = 1)
Not original article (n=1)

Reports sought for retrieval
(n = 15)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 15) Reports excluded (n = 2)

Lack of inherence (n = 2)

Studies included in review
(n = 13)

Identification of studies via databases

noitacifitnedI
gnineercS

dedulcnI

Fig. 1. Study selection process flowchart according to the PRISMA Statement 2020 [39].  

Table 2 
Characteristics of the included articles.  

First author Publication 
year 

Study design Number of 
patients 

Clinical setting Imaging 
technique 

Journal (Radiological or not 
radiological) 

Features (First 
order/more) 

ML (Yes/ 
No) 

Gong [40]  2022 Retrospective 224 NSCLCa CT Not Radiological More Yes 
Rundo [41]  2019 Retrospective 43 Bladder Cancer CT Not Radiological More Yes 
Ho [42]  2023 Retrospective 26 HCCa MRI Not Radiological More No 
Khorrami [43]  2020 Retrospective 139 NSCLC CT Not Radiological More No 
Xie [44]  2022 Retrospective 97 NSCLC CT Not Radiological More No 
Qu [45]  2023 Retrospective 76 Colorectal liver 

metastases 
CT Not Radiological More Yes 

Liu [46]  2021 Retrospective 197 NSCLC CT Not Radiological More No 
Guerrisi [47]  2021 Retrospective 78 Metastatic 

Melanoma 
CT Not Radiological More No 

Barabino [19]  2022 Retrospective 33 NSCLC CT Not Radiological More No 
Chen [48]  2021 Retrospective 50 Metastatic 

Melanoma 
CT Not Radiological More Yes 

Li [49]  2023 Retrospective 101 Gastric Cancer CT Not Radiological More No 
Wang [50]  2020 Retrospective 50 Metastatic 

Melanoma 
CT Not Radiological More Yes 

Tankyevych  
[51]  

2022 Retrospective 83 NSCLC FDG-PET/CT Not Radiological More Yes  

a NSCLC Non-small-cell lung cancer, HCC Hepatocellular carcinoma. 
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The delta radiomics-based models have been validated in 9 articles 
out of 13 (69%), but in only one study (7 %) the validation was based on 
external datasets. 

No study carried out phantom studies, prospective validation, deci
sion curve analysis, cost-effectiveness analysis or used publicly available 
code and data. 

4. Discussion 

With the advent of immunological therapies, the diagnostic, thera
peutic and clinical scenario in the oncological field has moved a step 
forward towards personalized medicine. The evaluation of responses to 
therapies, such as the phenotype and genotype of the tumor has become 
fundamental. However, the effectiveness of the rapidly evolving thera
peutic landscape in immuno-oncology largely depends on the develop
ment of imaging biomarkers for treatment response evaluation [52,53]. 
The possibility of extracting data not visible to the human eye from 
medical images and their consequent analysis has opened new diag
nostic and consequently therapeutic possibilities. Radiomics has shown 
promising results both in guiding the best therapeutic path for the pa
tient, in the early diagnosis of cancer, and in providing reliable prog
nostic data [54]. 

In this scenario, delta radiomics has become a priority for re
searchers, as highlighted by some of the results of the papers included in 
this systematic review. Delta-radiomics signatures were demonstrated 
able to effectively differentiate responders from non-responders in pa
tients with advanced NSCLC, metastatic bladder cancer and metastatic 
melanoma undergoing immunotherapy [40,55–58]. Similarly, Li et al. 
showed that DVintra_original_glszm_Zone Variance was an independent 
predictor for free-progression-survival in patients with advanced gastric 
cancer treated with ICIs [59]. This evidence was also observed with 
more complex treatment strategy, as in the study by Ho et al. where 
delta radiomics was able to predict response in patients with hepato
cellular carcinoma undergoing sequential trans-arterial chemo
embolization plus stereotactic body radiotherapy plus immunotherapy 
[60]. 

Delta radiomics may also represent a solution when conventional 
radiomics fails. Liu et al. failed to predict response to anti-PD-1 immu
notherapy in patients with advanced NSCLC using conventional radio
mics, while they were successful using a delta radiomics signature [61]. 

Similarly, Qu et al. demonstrated that dynamic radiomics features, i. 
e. delta radiomics features calculated between different acquisition 
phases, better predicted the efficacy of immunotherapy in patients with 
colorectal liver metastases compared to conventional radiomics [62]. An 
additional benefit may derive from the combination of the two ap
proaches, as shown by Chen et al. [63] who obtained more reliable re
sults in the prediction of treatment response in patients with metastatic 
melanoma when merging conventional and delta radiomics. 

Similarly, delta radiomics may be combined with clinical and path
ological patterns to develop predictive nomograms, which could lead 
toward precision treatment plans [44]. 

Delta radiomics may be also helpful in differentiating pseudo- 
progression (pPD) from progressive disease (PD). Barabino et al. [19] 
found that the variation of 27 features was predictive of the radiologic 
response of NSCLC patients to ICIs. A secondary relevant result of this 
study was that the delta-radiomics signature distinguishing pPD from PD 
differed from those distinguishing responders from non-responders. 

A better understanding of the correlation between delta radiomics 
signature and radiological response requires the investigation of the 
biological correlates of these features. Khorrami et al. [34] hypothesized 
that the increase of Gabor features [64] was associated with a higher 
number of inflammatory cells in the tumoral and peritumoral 
compartment [65], while the increase of Haralick features with hypoxia 
and acidosis [66], which are known to have an inhibitory effect on T 
cells and to weaken immunotherapy efficacy [67–70]. Variations in 
Laws and CoLlage features were correlated with peritumoral vascular Ta
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invasion, neovascularization, and changes in structural orientation [71, 
72]. 

The methodological quality of the articles included in this systematic 
review was assessed using the RQS [38]. The mean RQS percentage was 
30.98, which is far from ideal, but still slightly higher compared to the 
median of 21.00 calculated across all the systematic reviews using RQS 
calculated by the EuSoMII Radiomics Auditing Group [73]. The diver
gence narrows if, in the same review, we consider only the subgroup of 
systematic reviews addressing radiomics application in oncologic im
aging, which reached a median of 27.3 [73]. 

Despite the limited number of reviewers, which is a limitation of this 
study, the use of RQS allowed us to highlight some methodological is
sues in common among the included papers. First, the complete shortage 
of prospective studies and cost-effectiveness analysis, which sums up the 
current distance between delta radiomics and clinical practice. Second, 
the lack of external validation, which is pivotal to confirming the 
generalizability of the delta radiomics-based models. Third, no study 
made data and code publicly available, thus restraining the repeatability 
of these studies. However, also some strengths have emerged. In all the 
included papers the relationship between the delta radiomics signature 
and biological correlates was discussed, as well as a feature reduction 
technique was always reported. 

This means that a certain degree of standardization is finally being 
achieved in the scientific community in radiomics research methodol
ogy, and hopefully, this will become increasingly true with the intro
duction of a checklist addressing this topic [32,74]. 

In conclusion, the applications of delta radiomics in the assessment 
of treatment response are promising, but further studies with prospec
tive design and large-scale multicentric cohorts are needed to confirm 
these results. Unusual outcomes of immunotherapy as pPD are currently 
underinvestigated, and further research is required. The use of immu
notherapy drugs now involves many other types of cancers, and the role 
of delta radiomics must be confirmed in these clinical settings as well. 
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