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Abstract: Organic–inorganic nanocomposite fibers can avoid the agglomeration of single nanoparti-
cles and reduce the cost (nanoparticles assembled on the surface of nanofibers), but also can produce
new chemical, electrical, optical, and other properties, with a composite synergistic effect. Aromatic
polyimide (PI) is a high-performance polymer with a rigid heterocyclic imide ring and an aromatic
benzene ring in its macromolecular framework. Due to its excellent mechanical properties, thermal
stability, and easy-to-adjust molecular structure, PI has been widely used in electronics, aerospace,
automotive, and other industries related to many applications. Here, we report that TiO2 nanorods
were grown on polyimide nanofibers by hydrothermal reaction, and MoS2 nanosheets were grown on
TiO2 nanorods the same way. Based on theoretical analysis and experimental findings, the possible
growth mechanism was determined in detail. Further experiments showed that MoS2 nanosheets
were uniformly coated on the surface of TiO2 nanorods. The TiO2 nanorods have photocatalytic
activity in the ultraviolet region, but the bandgap of organic/inorganic layered nanocomposites can
redshift to visible light and improve their photocatalytic performance.

Keywords: nanofibers1; TiO2, MoS2; polyimide

1. Introduction

With the increases in social development and people’s living standards, environmen-
tal pollution has received more and more attention. Indoor and outdoor air, water, and
soil pollution have seriously affected people’s health and normal lives [1,2]. Using the
photocatalytic properties of semiconductor materials, organic pollutants in water or air can
be completely degraded into carbon dioxide and water. This method has been widely used
for the treatment of wastewater and gas, and has a significant advantage over the electro-
catalytic and wet catalytic techniques requiring high temperature for the decomposition of
refractory toxic organic compounds [3–5]. When the catalyst has a nanostructure, it pro-
duces significant surface and size effects. Nanocatalysts have a huge surface area relative to
the general size of the catalyst, which expands the surface of the atomic number. With the
reduction in size, the pore size channel becomes very short with a large number of edges
and steps, which increases the surface activity of the catalyst. However, it easily agglom-
erates, thereby affecting its dispersibility and utilization, and it is necessary to use carrier
materials as a template for uniform dispersion. The electrospun fibers have a small fiber
diameter, good flexibility, and ease of operation. Catalytic carriers can produce a strong
synergistic effect in the catalyst, which increases the catalytic performance. In addition,
some Pt, Au, and other precious metals are expensive as catalysts. The use of electrospun
fiber as a template of catalyst can effectively overcome the above shortcomings [6]. Studies
showed that the metal oxides made of nanoparticles have an increased quantum size effect,
the energy levels of the conduction band and valence band are separate, and they can be
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widened with a higher redox capacity. As the particle size decreases, the combination of
photogenerated electrons and holes reduces, the time of photo-generated electrons from
the crystal shortens, and the electron-to-hole separation effect improves, thus increasing
the photocatalytic efficiency. Additionally, the particle size of the semiconductor catalyst is
reduced, the surface area is increased, the ability of the adsorbed substrate is enhanced, and
the photocatalytic reaction can be promoted. Therefore, metal-oxide nanoparticles with
stronger catalytic ability can be supported on the electrospinning fibers to obtain a new
type of photocatalytic material, which is superior to traditional catalysts in terms of cat-
alytic efficiency and operability [7,8]. Titanium dioxide (TiO2) is a representative material
used for semiconductor photocatalysts for environmental purification applications [9,10]
and hydrogen generation [11–13]. Although TiO2 has a strong oxidizing property, high
strength, and good chemical stability, making it suitable as a photocatalyst, the main draw-
back is its wide band gap of 3.23 eV. This wide band gap means that it is only effective
in the ultraviolet region of the solar spectrum, which accounts for only 5% of the total
incident solar energy [14–18]. This can be remedied by sensitizing it with a narrow bandgap
semiconductor or by forming a new donor state below the TiO2 conduction band.

At present, 2D semiconductor materials have recently attracted attention, mainly due
to the excellent electrical properties of the two-dimensional structure of the thin layer of
atoms. Among the various inorganic 2D layered materials, molybdenum disulfide (MoS2)
has been studied by many researchers due to its good electrical, mechanical, optical, mag-
netic, and electrochemical properties. Furthermore, MoS2 nanosheets/nanomaterials can
be used in many applications in diverse fields, such as energy storage, gas-sensing, catalyst,
and microwave absorbers [19]. The inherent MoS2 is an n-type semiconductor with a band
gap in the range of 1.2–1.9 eV, as determined by the number of layers [20,21]. Recently,
theoretical and experimental studies have shown that MoS2 nanosheets can be used as
a good catalyst for the decomposition and degradation of pollutants by coupling with
semiconductor photocatalysts, such as CdS [22–24], C3N4 [25,26], ZnO [27], Bi2WO6 [28]
and ZnIn2S4 [29]. Therefore, it is thought that the combination of two-dimensional MoS2
nanosheets and one-dimensional titanium dioxide to form three-dimensional heterostruc-
tures can effectively utilize the synthesis advantages of TiO2 nanorods and MoS2 nanosheets
to form a photocatalyst with excellent properties. We expect the MoS2 nanosheets used in
heterostructures not only to promote charge separation, but also to provide more active
sites for photocatalytic reactions.

Electrospun polyimide (PI) nanofibers can be used as the skeleton of nanocatalysts.
Some nanoparticles/nanorods can be decorated on the surface of nanofibers by physi-
cal/chemical interactions (e.g., hydrogen bonds, electrostatic forces, and other interactions
between functional groups) [30–32]. In this study, an electrospinning technology and
hydrothermal method were used to develop a simple and effective strategy to prepare
highly dispersed TiO2 nanorods with good growth on electrospun PI nanofibers. The MoS2
nanoparticles were grown on the surface of the TiO2 nanorods by a hydrothermal method
to form nanocomposite fibers with heterostructure. This provided a high-level hybrid
structure for the manufacture of functionalized nanofibers for multiple purposes.

2. Experimental Section
2.1. Materials

Pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (4,4’-ODA) were of chemical
reagent grade and purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai,
China), and they were further purified by sublimation before use. Titania powder, hy-
drochloric acid (HCl), sodium molybdate (Na2MoO4·2H2O), thioacetamide (CH3CSNH2),
N,N-dimethylformamide(DMF), and anhydrous ethanol were purchased from Sinopharm
Chemical Reagent Shanghai Co., Ltd.
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2.2. Preparation of Polyimide

In this experiment, polyimide nanofibers were prepared by a two-step method. Both
3.97 g ODA and 4.33 g PMDA were reacted in 35 mL of N,N-dimethylformamide (DMF)
by polycondensation, with a solid content of 25%. The solution became highly viscous and
we stopped stirring after 8 h. The solution of the precursor of polyamide acid (PAA) was
obtained. The PAA nanofibers were prepared by electrospinning the PAA solution (15%)
at 15 kV with 15 cm from needle to collector. After electrospinning (KD Scientific 100 and
Tianjin Dongwen 30KVDC) the PAA solution, we obtained the electrospun polyamide acid
nanofibers, then polyamide acid nanofibers proceeded with thermal imidation. Finally,
polyimide nanofibers were prepared. Figure 1 illustrates the electrospinning process in the
present work.
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Figure 1. Synthesis of polyamic acid (PAA) solution and the process of electrospinning.

2.3. Synthesis of the PI/TiO2 Nanofibers

In the hydrothermal reaction autoclave, 33 mL water solution with 1 mol/L hydrochlo-
ric acid was added, then 0.04~0.05 g of titanium powders was added; finally, the polyimide
fibers (0.1 g) were added. We then sealed it and set it aside for 3 h. The reaction kettle was
put into the oven, heated to 160 ◦C, and reacted for 16 h. After the reaction, we removed
the product, washed it with deionized water, and dried it at 60 ◦C.

2.4. Synthesis of the PI/TiO2@MoS2 Nanofibers

A small amount of sodium molybdate and thioacetamide was added to the deionized
water, and the solution was stirred and put into to the hydrothermal reaction autoclave.
The PI/TiO2 fibers were then added into the autoclave reactor; the autoclave reactor was
sealed and put it in the oven heated to 200 ◦C and left to react for 24 h. Then, the product of
the reaction was washed with deionized water several times and put in the oven at 60 ◦C
to dry.

2.5. Characterization

The morphologies of the as-obtained samples were observed using field-emission
scanning electron microscopy (FE-SEM, Carl Zeiss Merlin Compact and Hitachi S4800).
The crystal structure of the products was characterized by X-ray diffraction (XRD, Bruker
D8 Advance diffractometer) using CuKa1 radiation (λ = 0.15406 nm). UV–Vis absorption
spectra were obtained using a UV–Vis spectrophotometer (UV-3600, Shimadzu, Japan).
FTIR spectra were recorded on a Varian 670-IR spectrometer. The UV lamp was from
Shanghai Guanghao ZF-2 (365 nm). The UV–Vis diffuse reflectance spectra (DRS) were
recorded using UV–V is spectrophotometer (V-650.Jasco). X-ray photoelectron spectroscopy
(XPS) measurements were carried out with an ESCALAB 250 Xi photoelectron spectrometer
using Al Ka radiation (ThermoFisher Scientific, Waltham, MA, USA).
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3. Results and Discussion
3.1. Characterization of the As-Prepared Photocatalysts

The morphology and nanostructure of the PI nanofibers were characterized by field-
emission scanning electron microscopy (FESEM) observations (Figure 2). The surface
morphology of the rod-like TiO2 with a length ranging from 800 to 1000 nm and a width
ranging from 50 to 200 nm could be clearly observed, as shown in Figure 3a,b. From the
figure, we can see that the TiO2 nanorods were very dense in the distribution of polyimide
fibers. Figure 3c,d show that MoS2 nanospheres were grown in situ on the surface of the
TiO2 nanorods. We can see that the MoS2 nanospheres were evenly distributed on the
surface of TiO2 nanorods, which notably increased the specific surface area.
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The PI/TiO2@MoS2 nanocomposite was characterized by powder X-ray diffraction
(XRD), as shown in Figure 4. Strong XRD diffraction peaks at 2θ = 27.45◦, 36.09◦, 41.23◦,
54.32◦, 56.64◦, and 69.01◦ were clearly observed, consistent with the (110), (101), (111), (211),
(220), and (301) faces, respectively, of rutile phase TiO2 indexed to the JCPDS card 21-1276
with a space group of P42/mnm (a = b = 4.593Å and c = 2.959Å), similar to the standard
spectrum of rutile TiO2. The hexagonal phase MoS2 was clearly shown. The diffraction
weak peaks could be assigned to the (002), (100), and (110) planes in the hexagonal phase
MoS2 (a = b = 0.316 nm, c = 1.230 nm, JCPDS card no. 37-1492), consistent with the findings
of previous studies [33].
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To further confirm the surface layer was MoS2, energy dispersive X-ray spectrometry
(EDS) mapping (Figure 5) analysis of the PI/TiO2@ MoS2 nanocomposites was conducted.
The EDS pattern of the TiO2@MoS2 nanorods heterostructures showed that the product
nanorods were composed of Ti, O, Mo, and S. The EDS elemental mapping supports our
argument that the outer layer was MoS2 nanosheets and the inner layer was TiO2 nanorods.
The above experimental results proved that only a few layers of MoS2 were wrapped on
the surface of the ultrafine TiO2 nanobelts to form TiO2@MoS2 nanorod heterostructures.

Polymers 2022, 14, x FOR PEER REVIEW 5 of 11 
 

 

standard spectrum of rutile TiO2. The hexagonal phase MoS2 was clearly shown. The dif-

fraction weak peaks could be assigned to the (002), (100), and (110) planes in the hexagonal 

phase MoS2 (a = b = 0.316 nm, c = 1.230 nm, JCPDS card no. 37-1492), consistent with the 

findings of previous studies [33]. 

 

Figure 4. XRD pattern of the as-prepared PI/MoS2, PI/TiO2 and PI/TiO2@ MoS2. 2θ. 

To further confirm the surface layer was MoS2, energy dispersive X-ray spectrometry 

(EDS) mapping (Figure 5) analysis of the PI/TiO2@ MoS2 nanocomposites was conducted. 

The EDS pattern of the TiO2@MoS2 nanorods heterostructures showed that the product 

nanorods were composed of Ti, O, Mo, and S. The EDS elemental mapping supports our 

argument that the outer layer was MoS2 nanosheets and the inner layer was TiO2 nano-

rods. The above experimental results proved that only a few layers of MoS2 were wrapped 

on the surface of the ultrafine TiO2 nanobelts to form TiO2@MoS2 nanorod heterostruc-

tures. 

     

Figure 5. EDS mapping results from PI/TiO2@MoS2. 

The chemical composition and valence state were characterized by X-ray photoelec-

tron spectroscopy (XPS). The full-range XPS spectra of PI/TiO2@MoS2 (0–1050 eV) are 

shown in Figure 6a. Figure 6b shows that the binding energies (BE) of Ti 2p3/2 and Ti 2p1/2 

were 459.3 and 464.7 eV, respectively, which we ascribed to the Ti4+ oxidation state. In 

Figure 6c, O1s is shown, and it is useful for identifying the core levels. In Figure 6d, the 

high-resolution XPS spectra show that the binding energy of Mo 3d3/2 and Mo 3d5/2 peaks 

in the TiO2@MoS2 heterostructures located at 229.5 and 232.8 eV, respectively, indicating 

that the Mo element was present in the Mo4+ chemical state. Figure 6e shows that the bind-

ing energies of S 2p3/2 and S 2p1/2 were 162.3 and 163.8 eV, respectively. By comparison to 

the NIST X-ray Photoelectron Spectroscopy Database, we identified the S element corre-

sponding to producing the material for MoS2. 

PAA was analyzed in our previous report [34]. The FTIR of PI is shown without the 

–OH peak in Figure 6f. The PI/TiO2 nanorods showed bands around 3426 and 1648 cm−1, 

corresponding to the stretching and bending vibrations of hydroxyl groups on the surface 

of the TiO2 nanorod surface, respectively (Figure 6f). The strong absorption band between 

800 and 400 cm−1 was attributed to the Ti-O and Ti-O-Ti vibrations. The strong character-

istic absorption peaks at 3426, 1720, 1648, and 1498 cm−1 in Figure 6f also indicated the 

presence of amide groups, while the absorption peak at 1648 cm−1 represented the tertiary 

Figure 5. EDS mapping results from PI/TiO2@MoS2.

The chemical composition and valence state were characterized by X-ray photoelectron
spectroscopy (XPS). The full-range XPS spectra of PI/TiO2@MoS2 (0–1050 eV) are shown in
Figure 6a. Figure 6b shows that the binding energies (BE) of Ti 2p3/2 and Ti 2p1/2 were 459.3
and 464.7 eV, respectively, which we ascribed to the Ti4+ oxidation state. In Figure 6c, O1s is
shown, and it is useful for identifying the core levels. In Figure 6d, the high-resolution XPS
spectra show that the binding energy of Mo 3d3/2 and Mo 3d5/2 peaks in the TiO2@MoS2
heterostructures located at 229.5 and 232.8 eV, respectively, indicating that the Mo element
was present in the Mo4+ chemical state. Figure 6e shows that the binding energies of
S 2p3/2 and S 2p1/2 were 162.3 and 163.8 eV, respectively. By comparison to the NIST
X-ray Photoelectron Spectroscopy Database, we identified the S element corresponding to
producing the material for MoS2.
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PAA was analyzed in our previous report [34]. The FTIR of PI is shown without the
–OH peak in Figure 6f. The PI/TiO2 nanorods showed bands around 3426 and 1648 cm−1,
corresponding to the stretching and bending vibrations of hydroxyl groups on the surface
of the TiO2 nanorod surface, respectively (Figure 6f). The strong absorption band between
800 and 400 cm−1 was attributed to the Ti-O and Ti-O-Ti vibrations. The strong charac-
teristic absorption peaks at 3426, 1720, 1648, and 1498 cm−1 in Figure 6f also indicated
the presence of amide groups, while the absorption peak at 1648 cm−1 represented the
tertiary amide, which indicated that imidization was completed. The peaks at 1405 and
725 cm−1 corresponded to the asymmetric stretching vibration of C–N and the deformation
of the imide ring, respectively, which create the characteristic peaks of polyimide groups.
The bands near 1648 and 1117 cm−1 were also assigned to the Ti-O and Ti-O-C stretching
modes, respectively. The FTIR results indicated that the TiO2 nanoparticles were success-
fully coated on the polyimide matrix. In MoS2, FTIR peaks exist in the range from 1008 to
1648, 2925, and 3426 cm−1. The strong O-H peak and water bonding are indicated by 3426
and 603 cm−1, respectively. The peaks situated at 1008 and 1243 cm−1 occurred due to the
formation of complex sulfur with the active sites in MoS2.

To evaluate the effects of MoS2 nanoparticles onto the TiO2 nanorod support on the
optical properties of PI/TiO2@MoS2 nanocomposite, UV–Vis diffuse absorbance spectra
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(DRS) analysis was performed. Figure 7a shows the corresponding UV–Vis DRS spectra
for the PI/TiO2@MoS2 samples. The absorption thresholds for the samples were obtained
from the UV–Vis DRS curves by extrapolating the tangent lies of the spectra. In general,
bare TiO2 nanoparticles show absorption in the UV region without any absorption in the
visible range owing to its wide band gap (~3.2 eV). As shown in Figure 7a, the threshold
wavelength for the synthesized PI/TiO2@MoS2 sample is about 450 nm. Compared with
pure TiO2, a red shift in the absorption edges toward the visible region was observed
in the nanocomposite. This was induced by the strong optical absorption of black MoS2
in the visible-light region, which illustrated that there were interactions between TiO2
and MoS2 on the interface. The band gap energies (Eg) of the samples were calculated
using the equation (Ahν)2 = K(hν−Eg), where hν is the energy of a photon (eV), A is the
absorption coefficient, K is a constant, and Eg is the band gap. The band gap was calculated
by extrapolating the linear part of the spectra in a diagram of (Ahν)2 versus the photon
energy (Figure 7b). The band gap energy value for the PI/TiO2@MoS2 nanocomposite was
calculated as 2.7 eV, implying that MoS2 nanospheres on a TiO2 nanorod support decreased
the optical band gap energy. Therefore, the electron–hole separation was relatively better
in the PI/TiO2@MoS2 nanocomposite.
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3.2. Photocatalytic Activity the As-Prepared Photocatalysts

The photocatalytic performance of PI/TiO2@MoS2 was evaluated for the photodegra-
dation of methylene blue (MB) at room temperature. The decay of the characteristic
absorption peak of MB at 663 nm was followed every 30 min by UV–Vis spectropho-
tometry. Before UV exposure, the solution was kept in the dark for 30 min to build the
adsorption/desorption equilibrium between the dye and surface. We found a gradual
decrease in the main absorption peak, because of the adsorption of MB molecules on the
surface of the sample. Usually, it is difficult to degrade pure MB and PI nanofiber in
UV [35,36]. Figure 8 (left) shows the UV–Vis spectra of MB (5 mg/L) after ultraviolet
light (λ = 365 nm) irradiation in the presence of PI/TiO2@MoS2 (0.02 g). With increas-
ing irradiation time, the intensity of the characteristic absorption band of MB at 663 nm
markedly reduced. In the meantime, the color of the solution changed, turning from blue
to colorless after 180 min with irradiation, thus indicating the gradual decomposition of
MB molecules during ultraviolet-light irradiation. The degradation efficiency is reported
as C/C0, where C is the absorption of the main peak at 663 nm of MB at time t, and C0
corresponds to the initial concentration (after achievement of adsorption/desorption equi-
librium (30 min)). As shown in Figure 8 (right), we observed that the dye degradation rate
of the prepared samples varied with the same irradiation rate of UV at the same time. The
results showed that PI/TiO2@MoS2 composites showed enhanced photocatalytic activity
compared with PI/TiO2 for the degradation of methylene blue under UV irradiation. The
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PI/TiO2@MoS2 composites decomposed about 95% methylene blue within 180 min under
UV irradiation. Compared with a single PI/TiO2 composite fiber or PAN nanofibers with
MoS2-TiO2 surface-loaded by vacuum filtration [37], a certain amount of molybdenum
dioxide increased the efficiency of photodegradation. It may promote the light absorption
efficiency of TiO2 particles that decreases the electron–hole recombination and enhances
the photogenerated charge separation.
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3.3. Possible Mechanism of the Experiment

Figure 9 shows a schematic diagram of the formation mechanism of TiO2 nanorods by
the “dissolve and grow” progress, which we describe using the following chemical reaction:

2Ti + 6HCl→ 2TiCl3 + 3H2(g)

Ti3+ + H2O→ TiOH2+ + H+

TiOH2+ + O−2 → Ti(IV)− oxo species + O−2 → TiO2
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Figure 9. Schematic diagram of the formation mechanism of TiO2 nanorods.

At the beginning, Ti powders react with H+ at high temperature and gradually dissolve
in the solution of HCL, continuously releasing the Ti(III) precursors into the reaction
solution. Due to the instability of Ti(III) in aqueous solution, Ti(III) is hydrolyzed to TiOH2+.
According to Fujihara et al. [38], TiOH2+ is oxidized to Ti(IV) by reacting with dissolved
oxygen. Therefore, the formation mechanism of rutile TiO2 nanorods using Ti(IV) complex
ions as growth units can be described as follows: For rutile TiO2, TiO6 octahedra are first
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formed by bonding Ti atoms and six oxygen atoms. Then, the TiO2 octahedron shares a
couple of opposite edges with the next octahedron, forming a catenarian structure. The
growth of rutile nanorods follows the sequence (110) < (100) < (101) < (001), because the
growth rate of different crystal planes depends on the number of coordinated polygon
body corners and edges. Therefore, rutile TiO2 nanorods grown in the [001] direction were
formed [39,40].

According to the previous experimental results, a promotional mechanism is shown
in Figure 10. Under UV-light irradiation, TiO2 absorbs photons and creates electron–hole
pairs. Because the conduction band (CB) of TiO2 is higher than that of MoS2 [41–43], the
photoelectrons generated by CB of TiO2 are easily transferred to MoS2, which improves the
separation of photogenerated electron–hole pairs and enhances the photocatalytic activity
of PI/TiO2@MoS2 heterostructures. The separated electrons react with dissolved O2 to
produce O2

.− radicals on the surface of MoS2 nanosheets. Next, they combine with H+ to
produce H2O2, and finally decompose into ·OH. In the meantime, the cumulative holes on
the surface of TiO2 are trapped by OH– or H2O to form hydroxyl radicals, ·OH. Finally, the
oxidation of organic dyes mainly occurs due to the involvement of holes, ·OH, and O2

.−

radicals. The main reactions in our study are described by equations:

TiO2 + hv→ TiO2
(
e− + h+)

TiO2
(
e− + h+)+ MoS2 → MoS2

(
e−

)
+ TiO2

(
h+)

e− + O2 → O.−
2

O·−2 + H2O→ HO·2 + OH−

HO·2 + H2O→ H2O2 + ·OH

H2O2 → 2·OH

h+ + OH− → ·OH

·OH/O.−
2 /h+ + dye→ CO2 + H2O
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4. Conclusions

PI/TiO2@MoS2 heterostructures were successfully fabricated by the assembly of MoS2
nanosheets and TiO2 nanorods on electrospun polyimide nanofibers using a simple hy-
drothermal method. Our innovation is in the successful structure of nanofiber–nanorod–
nanosheet multilevel nanostructure of PI/TiO2@MoS2 composite fibers. Compared with
the usual nanoparticles on the surface of electrospun nanofibers, the functionalized ap-
plication of composite nanofibers is expected. In this study, nanocomposite fibers with
a multistage structure were proposed, which improves the performance of a single com-
posite and can realize various functional applications. This multistage structure not only
improves photocatalytic performance, but also the choice of gas adsorption, gas separation,
supercapacitors, bi-sensing, etc. These nanocomposite fibers will have a wide range of
applications, which is our next research direction.
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