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Abstract

Preference for uninfected mates is presumed beneficial as it minimizes one’s risk of contracting an

infection and infecting one’s offspring. In avian systems, visual ornaments are often used to indi-

cate parasite burdens and facilitate mate choice. However, in mammals, olfactory cues have been

proposed to act as a mechanism allowing potential mates to be discriminated by infection status.

The effect of infection upon mammalian mate choice is mainly studied in captive rodents where ex-

perimental trials support preference for the odors of uninfected mates and some data suggest

scent marking is reduced in individuals with high infection burdens. Nevertheless, whether such ef-

fects occur in nonmodel and wild systems remains poorly understood. Here, we investigate the

interplay between parasite load (estimated using fecal egg counts) and scent marking behavior in a

wild population of banded mongooses Mungos mungo. Focusing on a costly protozoan parasite of

the genus Isospora and the nematode worm Toxocara, we first show that banded mongooses that

engage in frequent, intensive scent marking have lower Isospora loads, suggesting marking behav-

ior may be an indicator trait regarding infection status. We then use odor presentations to demon-

strate that banded mongooses mark less in response to odors of opposite sexed individuals with

high Isospora and Toxocara loads. As both of these parasites are known to have detrimental effects

upon the health of preweaned young in other species, they would appear key targets to avoid dur-

ing mate choice. Results provide support for scent as an important ornament and mechanism for

advertising parasitic infection within wild mammals.
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One of the major costs of social behavior is the risk of pathogenic in-

fections, including those caused by parasites (Loehle 1995; Altizer

et al. 2003). As such, a variety of behavioral mechanisms have

evolved to minimize parasite exposure and to avoid infection

(Kavaliers et al. 2005b), and hence parasites are now considered to

play major roles in social organization including breeding dynamics.

Here parasitic infection can have an important influence on sexual

selection as infectious pathogens have the potential to affect not

only host growth, survival, and health (Coltman et al. 1999), but

also behavior (Poulin 1994; Poulin 1995; Klein 2003). This may in

turn affect a hosts’ ability to locate, attract, and/or copulate with po-

tential mates. Therefore, mechanisms to detect and avoid highly par-

asitized mates are assumed advantageous across species.

In avian systems, there is a wealth of research into the ability of

bright and conspicuous plumage to advertise health and fitness

(Hamilton and Zuk 1982; Petrie 1994; Hale et al. 2009), although
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the evidence for this hypothesis is mixed (Hamilton and Poulin

1997). Female choice based upon such traits selects for healthier

mates including those of low parasite burden (Loehle 1997; Roulin

et al. 2001; Buchholz 2004; Moreno-Rueda and Hoi 2011). This

may benefit females not only directly by reducing their likelihood of

contracting costly parasitic infections (Loehle 1997), but also indir-

ectly by providing offspring with genes for parasite resistance if this

trait is heritable (Hamilton and Zuk 1982; Moller 1990). There is

also evidence that males prefer visually ornamented females, such as

in the barn owl Tyto alba, where spotty plumage indicates lower

parasite loads (Roulin et al. 2001).

Mammals tend not to possess such elaborate visual ornaments,

although there are exceptions such as secondary sexual coloration of

primates which are believed to function in mate choice (Waitt et al.

2003). However, when tested in mandrills Mandrillus sphinx, nei-

ther facial coloration nor rump swellings appeared related to para-

site load despite being sexually selected traits (Setchell et al. 2006,

2009, 2011). Nevertheless, mate choice based directly upon infec-

tion status does still occur. Laboratory and captive rodents are con-

sistently observed to avoid mating with individuals infected with

parasitic nematodes, viruses, and other microorganisms (Penn and

Potts 1998b; Zala et al. 2004; Kavaliers et al. 2005a). In rodents, ol-

factory signals appear to allow mate discrimination on the basis of

infection (Penn and Potts 1998 a, 1998b; Gosling and Roberts 2001;

Arakawa et al. 2011). This is unsurprising considering the predom-

inant role of odor signals within mammalian communication

(Kavaliers et al. 2005b; Wyatt 2014). In one example Zala et al.

(2004) showed that male wild-derived (but captive) mice infected

with Salmonella enterica bacteria have reduced marking rates and

their scent appears less attractive to females. This suggests that scent

marking behavior may act as an indicator of infection whilst the

scent itself also encodes infection status.

Unfortunately, caveats of previous research include an almost ex-

clusive focus on laboratory or captive rodents with little taxonomic di-

versity or consideration of wild systems. Odor presentations also tend

to be choice-tests in experimental arenas that may not accurately re-

flect scent marking behavior as it would occur in the wild (Hurst et al.

1994) which makes it difficult to extrapolate findings to natural situ-

ations. Additionally, some frequently cited examples of parasitic

avoidance focus on bacteria (Zala et al. 2004, 2015) or viruses (Penn

and Potts 1998a). Although these organisms have important health

implications and may also constitute parasites in the broad sense, the

mechanisms by which they influence scent composition and marking

behavior will likely differ from gastrointestinal parasites (Kavaliers

et al. 2005a, 2005b). This is an important discrimination to make be-

cause wild mammals, particularly carnivores, are often heavily in-

fected by gastrointestinal parasites (Pedersen et al. 2007) suggesting

these pathogens could have considerable impacts upon social and sex-

ual behavior including mate choice (Poulin 1994).

We aim to overcome these limitations by investigating whether

scent communication can encode parasitic information in the banded

mongoose. This cooperative breeder provides a novel opportunity for

such research as the wild focal population can be sampled for gastro-

intestinal parasites (via fecal sampling) and is habituated to human

presence allowing targeted odor presentations to be conducted with-

out disturbing natural behavior. Despite both sexes exhibiting mate

choice (Nichols et al. 2010; Cant et al. 2013), banded mongooses are

sexually monomorphic, lack visual ornaments, and thus appear lim-

ited in terms of visual cues advertising quality. However, both sexes

do participate in extensive olfactory marking (Jordan 2009; Jordan

et al. 2010) providing a potential mechanism through which parasitic

infection status may be encoded. Scent marking events, such as la-

trines, are common occurrences (Müller and Manser 2007; Jordan

2009) and previous research suggests scent is likely utilized for

within-group communication (Jordan et al. 2010), particularly intra-

sexual competition (Müller and Manser 2007, 2008; Jordan et al.

2011a). However, it is currently not known whether odor cues also

contain fitness-related information such as parasitic infection status,

which could assist in mate choice.

To address whether scent marking behavior is influenced by

parasitic infection in the banded mongoose, we first investigated

whether fecal egg counts of 2 common parasites (Isospora and

Toxocara) correlated with scent marking behavior during natural

marking bouts. We then investigated whether the parasites may be

detected via scent by presenting individuals with odors from differ-

entially parasitized opposite sex group members. We predicted that:

1) if parasite load impacts marking behavior, then more heavily in-

fected individuals should engage in fewer social marking bouts and

deposit fewer scent marks; and (2) if parasite burdens are detectable

via scent, behavioral aversions should occur in response to the odors

of highly parasitized individuals.

Materials and Methods

Field site and study species
The banded mongoose is a small (<2 kg) diurnal carnivore, common

throughout sub-Saharan Africa, which lives in large mixed-sex

groups of 5–40 individuals, mean 29 (Cant et al. 2013). Groups con-

tain a ‘core’ of �1–5 dominant breeders of each sex, which repro-

duce regularly (up to 4 times per year), but younger subordinates

breed alongside dominants when environmental conditions are good

(Nichols et al. 2012). Within social groups, reproduction is

synchronized; females come into estrous within a week of each other

and give birth together, on the same night in more than 60% of

breeding attempts (Hodge et al. 2009) . The resulting litters are

raised communally by the group, with both breeders and non

breeders contributing to pup care (Cant et al. 2013). During estrus,

dominant males attempt to mate-guard females, following them

closely and chasing off rivals. However, females are able to refuse

unwanted matings and also to evade their mate-guard and mate

with other males (Cant 2000). For further details of banded mon-

goose reproduction, behavior and demography, see Cant et al.

(2013).

In banded mongooses, scent is primarily used for within-group

communication, rather than for territory defense (Jordan et al.

2010). Previous studies, focused on over-marking behavior, found

that scents are sexually dimorphic (Jordan et al. 2011a). Both male

and female adults are more likely to over mark the scents of same-

sex individuals, suggesting that over marking may be involved in

intrasexual competition (Jordan et al. 2011a). Supporting this idea,

Jordan et al. (2011b) found that males that over marked more had

greater mating success.

The current study used a wild but habituated banded mongoose

population in Queen Elizabeth National Park, Uganda (0�120S;

27�540E). This population has been monitored continuously since

1995 under licenses from the Ugandan Wildlife Authority, Ugandan

National Council for Science and Technology. All experimental pro-

cedures have been approved by the University of Exeter’s Ethical

Review Committee. Full details of the population, habitat, and cli-

mate are described elsewhere (Cant 2000). All mongooses are habi-

tuated to close (<5 m) human observation and identified by unique

shaves in their fur (for full details see Cant 2000). Shaves are
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maintained during routine trapping events where individuals are

caught by trained field staff in baited Tomahawk traps and anaes-

thetized with isoflurane (Jordan et al. 2010). No fatalities or health

concerns have arisen from trapping procedures across the long-term

study’s duration. Every effort is made to minimize stress during the

trapping process, but it is likely that capture raises stress levels. Due

to this, no observations or scent presentations were made on a group

within 24 h of the capture of any group members. Pups are first

trapped at around 4 weeks of age and, under anesthetic, are given a

unique identifier (a passive integrated transponder (PIT) tag or, pre

2001, a tattoo) and are sexed by examination of the genital region

(Gilchrist 2008; Jordan et al. 2010). Groups are visited by trained

observers approximately every 2 days meaning accurate ages, group

compositions, and life history information is available.

Parasite analysis
Fecal samples for parasite analysis were obtained between May and

August 2014. Samples were collected directly after deposition by

scooping the feces up in a clean plastic bag. The sample was then

homogenized and half returned to the field to avoid disturbing nat-

ural scent marking. The remaining half was transferred into a 50 mL

falcon tube containing approximately 20 mL of 5% formalin and

stored at room temperature. Fecal samples were analyzed by a modi-

fied MacMaster technique (Dunn and Keymer 1986; Coles et al.

1992; Cringoli et al. 2004) which involves several wash stages and a

final suspension within 15 mL of saturated saline. A 0.3 mL aliquot

of the resulting solution was transferred to a McMaster slide. Eggs

per gram (EPG) of feces were calculated as (15/0.3)Y/X, where Y

represents the sum of all ova counted across the 2 chambers of the

Macmaster slide and X represents the total weight of fecal matter

from which the ova were obtained (Dunn and Keymer 1986). Ova

were identified using the veterinary parasitology literature (Frenkel

and Smith 2003; Adl et al. 2005; Bowman 2014; Leclaire and

Faulkner 2014).

Faecal egg count is a commonly used method to assess parasite

loads in the wild, yet the method has well-known limitations. For

example, fecal egg counts often face criticism as a measure of para-

site load due to high variability within individuals sampled

(Villanua et al. 2006; Gasso et al. 2015). Egg shedding loads can

vary with the life stage of the parasite, coinfection, environmental

conditions, and the physiological condition of the host (Dorchies

et al. 1997; Villanua et al. 2006; Jolles et al. 2008; Raharivololona

and Ganzhorn 2010). This may be a particular issue for nematode

worms, as the counts in feces reflect not only the number of mature

worms, but also their fecundity and patterns of shedding ova.

Furthermore, ova can migrate and mature in other tissues besides

the intestine, which may further decouple ova counts from worm/

larvae numbers (Urquhart et al. 1996). However, assessing the vari-

ation in egg counts provide a method to compare the relative para-

site loads in a system where true parasite burdens are impossible to

assess (Gillespie 2006); it would not have been feasible for us to sac-

rifice individuals to gain comprehensive adult parasite counts from

the gastrointestinal tract. Furthermore, for the purpose of this study,

fecal egg count is a direct indication on the parasite ova shedding

pattern of a particular individual. It, therefore, indicates the infec-

tiousness of the individual in question; the more eggs in feces, the

more contagious that individual is. The number of eggs in feces is

therefore very relevant, at least in terms of direct avoidance of infec-

tion, even if less so in terms of sexual advertising of an individual’s

capability to resist or fight off infection.

We took several measures to maximize the usefulness of our fecal

egg counts. First, we used average ova counts which are likely to

minimize the effect of within-individual fluctuations in egg counts

owing to parasite fecundity and provide a comparable estimate of

parasite load across individuals for this short-term period. Second,

as exact exposure levels may vary between social groups due to vari-

ation in territories and proximity to humans and other animals, we

controlled for group identity in all analyses. Finally, for the duration

of the study (May to August 2014) climate remained consistently

warm and dry with negligible rainfall, and all groups patrolled con-

sistent territories. Thus, the effect of weather fluctuations, abnormal

foraging patterns, territory shifts, or other known stressors on aver-

age fecal egg counts is also expected to be minimal. Nevertheless, we

emphasize the correlative nature of our results and that we cannot

dismiss the possibility that exposure levels may also differ between

individuals within social groups.

In this study, we focused on 2 pathogens that are both common

in banded mongoose fecal samples and also have demonstrated

negative effects in other species 1) a coccidian of the genus Isospora,

and 2) a Toxocara nematode species. Isospora were present in

100% and Toxocara in 61% of samples collected during this study

period. Isospora are spore-forming protozoans of the subclass

Coccidia. In other species, their resulting infection (coccidiosis)

damages the cells lining the gut wall, leading to diarrhea and dehy-

dration (Urquhart et al. 1996) which may consequently compromise

reproductive success (Hill et al. 2005; Hakkarainen et al. 2007),

body condition (Hill et al. 2005), and survival (Alzaga et al. 2007).

Toxocara are nematode worms which reside in the host’s small in-

testine where they may cause anemia and malnutrition, and in many

host mammals Toxocara ova can migrate to other tissues including

the lungs, liver, and uterus (Urquhart et al. 1996). The latter is par-

ticularly problematic for breeding females as ova are able to infect

developing fetuses, causing chronic and often fatal infections after

birth (Lee et al. 2010). Indeed, the most severe effects of both para-

sites are felt by pre-weaned young (Eustis and Nelson 1981;

Urquhart et al. 1996; Lindsay et al. 1997; Kirkpatrick 1998; Mateo

2003; Mundt et al. 2006; Bowman 2014). Therefore, Isospora and

Toxocara would appear key parasites to avoid during mate choice in

terms of safeguarding reproductive success and offspring fitness.

Is natural scent marking behavior correlated with parasite burdens

in the banded mongoose?

Behavioral data collection. To investigate whether scent marking be-

havior reflects parasitic infection, we observed social marking events

within 2 geographically separated social groups (known as 1B and

1H). Marking bouts were filmed on a handheld camera (Panasonic

5 Access Hybrid O.I.S, Full HD) for the first 2 h of foraging (as the

group left the den) during 2 separate mornings per-week between 28

May and 31 July 2014. From these films, three key measures of

marking behavior were recorded: 1) the frequency of marking bouts

where a mongoose was present at the marking site but did not de-

posit a scent mark (termed “present but inactive”); 2) the frequency

of marking bouts where a mongoose was present and actively sniff-

ing or deposited at least one scent mark but fewer than 5 scent

marks (termed “active”); and 3) the frequency of marking bouts

where an individual deposited 5 or more scent marks (termed “in-

tense marking”). The upper quartile of marks deposited in the same

bout is 5 marks. A scent mark was defined as any behavior that ap-

peared capable of depositing an olfactory cue. Such behaviors

included chin or anal-rubbing, defecating, urinating, chewing,

scratching, and licking but not sniffing. Parasites are known to have
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variable effects upon host behavior (Poulin 1994), and thus the 2

former parameters (presence and activity at marking bouts) were

included to evaluate whether parasitic infection influences general

behavioral patterns such as presence at social marking bouts. We

focused on intense marking behavior, as previous studies of other

mammals including primates and prosimians (Irwin et al. 2004;

Droscher and Kappeler 2014), mustelids (Clapperton 1989; Begg

et al. 2003), and ungulates (Gosling 1987; Brashares and Arcese

1999) find that social marking events appear to be attended by

group members indiscriminately of age, sex, or dominance factors,

and that individual differences generally appear when considering

the frequency and intensity of marking behaviors (Rich and Hurst

1998; Brashares and Arcese 1999; Rich and Hurst 1999; Begg et al.

2003). Preliminary observations in the banded mongoose found that

the vast majority of group members attended and partook in mark-

ing events. Intensive scent marking (>5 marks per bout), however,

displayed much greater individual variability. Although 47% of

banded mongooses deposited >5 scent marks per bout on more

than 2 occasions, only 31% did so on more than 4 occasions, and

only 22% on more than 6 occasions. Thus, intensive scent marking

appears restricted to a subset of the population, and therefore may

incur metabolic or opportunity costs.

Female banded mongooses become sexually mature around 7–8

months, first giving birth as early as 9 months old. Males have poor

reproductive success until around 2 years of age due to competitive

exclusion by older individuals (Nichols et al. 2010), however young

males do show interest in estrous females (Cant 2000). We, there-

fore, excluded individuals less than 6 months from the analyses as

they are unlikely to be using scent to assess potential mates. The

final dataset comprised 20 individuals aged >6 months from each

social group (40 individuals in total), which were observed more

than a total of 102 marking events (61 in group 1B, 41 in group

1H).

Parasite data collection. To accompany behavioral data, weekly

fecal parasite samples for each of the 40 individuals were collected

during the study period (May to July 2014). These samples were

used to calculate the mean EPG count of Isospora oocytes and

Toxocara ova for each individual within the 2 focal groups. Note

that parasite loads were unknown at the time of film scoring, so all

marking data were collected blind to the infection status of

individuals.

Statistical analysis. To test the effect of mean parasite load upon

scent marking behavior, models were constructed in R (version

3.0.2). In total, 3 models were constructed per parasite, with the re-

sponse variables as the frequency of marking bouts where an indi-

vidual was either 1) present but inactive, 2) active, or 3) intensely

marking. Parasite load, rank, sex, and group were fitted as explana-

tory terms and all second-order interactions were included in initial

models. Banded mongooses appear to have an age-based dominance

hierarchy, with the oldest group members of each sex generally

being dominant over younger individuals (Cant et al. 2013). Rank

was, therefore, included as a proxy measure for dominance. The old-

est member of each sex within each group was assigned the rank of

1, the next oldest 2 and so on. Models were fitted in full and were

then simplified using the step-wise method of sequentially removing

each nonsignificant term (P>0.05). To model Isospora load,

General Linear Models (LMs) were constructed using the package

lme4 (Bates et al. 2008). Models were fitted with a maximum likeli-

hood convergence criteria and Gaussian error distribution. The

Toxocara data did not conform to normal distributions and thus

was multiplied by 1,000 and analyzed by a model fit by penalized

quasi-likelihood (glmPQL) with a negative binomial error distribu-

tion, built within the MASS package (Venables and Ripley 2002).

Can parasitic infection be detected via odor cue?

Odor collection. During the course of our study, anal-gland secre-

tions (AGS) were the most commonly deposited odor cues, suggest-

ing they are a good candidate to encode important information

regarding behavioral decision-making. Furthermore, previous stud-

ies (Jordan et al. 2010, 2011a, 2011b) have found AGS to encode in-

formation such as sex and individual identity. AGS were collected

between 29 May and 31 July 2014 during routine trapping events,

following the methods of Jordan et al. (2010). Briefly, individuals

were anaesthetized and the anal region was cleaned with cotton

wool. A glass vial was placed over each of the 2 gland openings in

turn and the gland was gently squeezed to express �150 mL of li-

quid. Secretions were collected in 2 mL snap-cap glass vials that

were cleaned by soaking for several hours in methanol, air-drying

then soaking in detergent and warm water (1:1,000 dilution), rins-

ing and allowing to air dry again. Secretions were vortexed to mix,

labeled, and transferred to liquid nitrogen for storage. To avoid con-

tamination, sterile nitrile gloves were worn and changed between in-

dividual banded mongooses. The examiner’s fingers never came into

contact with the secretion nor the top of the glass vials. We cannot

exclude the possibility that anesthetization impacted on the compos-

ition of the AGS, but as all samples were collected in the same way,

the effect if there is any, should be the same in all individuals, and

therefore is not expected to influence or bias results.

Odor presentations. Between 1 June and 2 August 2014, 84 odor

presentations were conducted in the field to test whether banded

mongooses respond differently to the scent of opposite sex group

members based upon Isospora or Toxocara infection. Presentations

were conducted within 2 well-habituated study groups (1B and 1H)

and to maintain relevance to mate choice, individuals were always

presented with AGS from the social group to which they belong.

AGS samples were transferred to a thermos flask of ice on the morn-

ing of the presentation. Samples were fully defrosted directly before

presentations, spread upon a clean ceramic tile using an autoclaved

cotton swab, and presented directly to the recipient individual.

Presentations were conducted when the recipient was at least 1 m

away from other conspecifics and was actively foraging. No odors

were presented during resting periods, aggression, social bonding, or

interactions between groups. After a predator alarm or social mark-

ing event involving the recipient, or over half the group, observers

waited at least 20 min to ensure presentations were not influenced

by these events. If an intergroup interaction occurred, all presenta-

tions were abandoned for at least 24 h, or longer if the animals were

still showing unusual behavior such as increased vigilance behavior,

failure to forage, or increased scent marking.

Responses to the presentations were filmed using a handheld

camera (Panasonic 5 Access Hybrid O.I.S, Full HD) and scored after

the field session. To address whether olfactory cues may encode in-

formation pertaining to parasite infection, 3 measures of response to

odor presentations were considered. “Duration” represented the

time before mongooses returned to normal behavior (ceased vigi-

lance, left 1 m radius around presentation, and returned to foraging

or group activity). “Contact” referred to the duration a mongoose

remained within 30 cm of the tile on which the odor was presented.

Finally, “Vicinity Marking” referred to the number of scent marks
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recipients deposited around the odor (within 30 cm of the tile), but

not directly on top. Marking response was categorized this way as

previous research suggests that when odors are used for mate choice

and self-advertisement, scent marks are placed adjacent to, rather

than directly over the original marks (Wolff et al. 2002). This is

believed to maximize the identities of both scent markers, whereas

direct over marking can obliterate the original scent and is thus gen-

erally considered to function in competition (Rich and Hurst 1999;

Wolff et al. 2002). Indeed, previous work on banded mongooses

suggests that over marks are used for intersexual competition, hence

may not be important for mate advertisement (Jordan et al. 2010,

2011a). In addition, Jordan et al. (2011a) investigated responses to

2 banded mongoose scents on the same site and found that the sex

of the top or most recent scent was more important than that of the

bottom or original scent in determining over marking response, indi-

cating that over marks do to some extent mask the scents below.

Parasite data collection. For each odor donor, fecal samples (3–6

per individual) were collected per individual within a 7-day-window

either side of AGS odor sample collection. This allowed the calcula-

tion of mean EPG Isospora and Toxocara loads for each odor donor.

As fecal ova counts are often variable within individuals (Gasso

et al. 2015), this was considered the most robust method for gener-

ating comparable Isospora counts. Measures of odor donor parasite

load were assessed upon return from the field and thus were un-

known during fieldwork and odor presentations, which removed the

risk of observer and expectation biases. All fecal samples were col-

lected in the mornings, reducing the impact of circadian rhythm on

oocyte shedding, hence increasing the comparability of our samples

between individuals (Martinaud et al. 2009).

Statistical analysis. Due to the distribution of average Isospora and

Toxocara load, their effects upon marking behavior were analyzed

within models fit by glmPQL with a binomial error distribution built

in the MASS package of R version 3.0.2 (Venables and Ripley

2002). The 3 response terms were the duration of the response (dur-

ation), the duration a mongoose remained within 30 cm of the odor

(contact), and the number of scent marks recipients deposited

around the odor (vicinity marking). In separate models, the EPG

load of each parasite was multiplied by 1,000 (to create full, positive

integer values) and fitted as an explanatory variable alongside the

sex, age, and rank of odor donors as parasite loads may vary with

such life history parameters. The identity and group of the odor

donor was included as a random factor as certain animals yielded

larger AGS samples that could be split and used in multiple presen-

tations. Specifics of the recipient did not require inclusion as all

were sexually mature adults of opposite sex and familiar to their

odor donors. Initial models included all second-order interactions,

however, nonsignificant terms were removed using the backward

step-wise method of model simplification.

Results

Is natural scent marking behavior correlated with

parasite burdens in the banded mongoose?
Group marking events occurred on average every 17 min in the first

2 h of foraging. In 49% of these bouts, every group member over 6

months of age was present at the marking site and was either sniff-

ing or actively scent marking.

Whilst we did not find a significant relationship between Isospora

load and presence or activity within marking bouts, Isospora load

did impact intensive marking behavior (>5 marks per bout) in inter-

actions with both sex (LM: t¼2.462, P¼0.019, Table 1, Figure 1)

and social group (LM: t¼4.203, P¼0.0002, Table 1, Figure 1). In

support of our predictions, the frequency of intense marking was sig-

nificantly higher in individuals of lower Isospora load, with the ex-

ception of female individuals within 1 of the 2 social groups (group

1H), among which no individual attended intensive marking bouts

more than 3 times (Figure 2). The interactions of Isospora load with

both sex and group identity seem, therefore, likely to reflect proper-

ties of the dataset and “missing” datapoints owing to the lowered

marking activity of females in this group.

Individuals with higher Toxocara ova burdens were significantly

more likely to be present but inactive at marking bouts (LM:

t¼2.942, P¼0.003) compared with individuals with lower levels of

infection. Although a nonsignificant trend suggests highly infected

individuals are less active in marking bouts (LM: t¼�1.879,

P¼0.06), there was no significant difference in marking activity or

intense marking relating to Toxocara burdens. In models for both

Isospora and Toxocara, female banded mongooses were present but

inactive in significantly more bouts than males, whilst males were

more likely to be scent marking and intensively marking than fe-

males (Table 1). Note that there was no correlation between

Toxocara and Isospora loads (LM: t¼0.124, P¼0.902).

Can parasitic infection be detected via odor cue?
Scent marking behavior in response to opposite sex odor presenta-

tions was correlated significantly with the parasite burdens of odor

donors (Table 2). In initial models, the Isospora load and age of the

odor donor interacted to significantly predict marking response

(GLMM: effect size¼1.889�10�9, SE¼9.269�10�10, t¼2.038,

P¼0.042). Here, vicinity marking declined as the odor donor’s in-

fection status increased, however the effect was skewed by 1 older

odor donor with a very high Isospora burden. When this outlier was

removed, the interaction dropped out, however results still maintain

a significant negative correlation between Isospora load and mark-

ing behavior (GLMM: t¼�1.990, P¼0.047, Table 2, Figure 2). In

fact, the scent of all individuals with high Isospora loads (>250

EPG) received fewer than 10 scent marks. This supports our predic-

tions that recipients should show less interest in the odors of heavily

parasitized conspecifics.

The sex and Toxocara load of odor donors also interacted to in-

fluence marking behavior (GLMM: t¼ 2.190, P¼0.029, Table 2,

Figure 3). Fewer vicinity marks were deposited over male odors (by

females) as their Toxocara load increased but this trend was not ap-

parent when considering female odors.

Female odors provoked lower contact durations in both datasets

and less scent marking than male odors within in the Isospora data-

set (Table 2). The odors of top ranking donors received significantly

more marks than those of lower ranked individuals in both datasets,

and individuals who were relatively young for their rank also

received more marks (Table 2). Finally, no factors included in the

models had significant effects upon the duration before returning to

normal foraging behavior.

Discussion

Results suggest that in the banded mongoose, natural scent marking

behaviors are influenced by parasite burden, with highly infected in-

dividuals being less likely to mark intensively. This supports our first
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prediction that scent marking behavior may encode information re-

garding donor infection status. Furthermore, our scent presentation

experiments found that behavioral aversions in the form of reduced

vicinity marks occurred in response to the odors of highly parasi-

tized individuals, supporting our second prediction that odor may

communicate parasite infection status. Our study provides novel evi-

dence of odor-based parasite discrimination in a wild, nonmodel

species.

Banded mongooses that frequently deposited more than 5 scent

marks per bout (intensive scent marking) showed significantly lower

Isospora loads than conspecifics that marked less. This suggests that

scent marking may be considered as an indicator trait signaling

lower Isospora burdens. Olfactory advertisement of quality may

function in a similar way to elaborate plumage which often signals

parasite resistance in birds (Petrie 1994; Hale et al. 2009). For ex-

ample, in house sparrows, females preferentially mate with males

who have larger wing bars. Such males also have larger uropygial

glands which are involved in resistance against chewing lice, a com-

mon parasite of this species (Moreno-Rueda and Hoi 2011). Thus,

choice based on an attractive advert allows females to select better

quality mates. Indeed, male banded mongooses who mark most fre-

quently also secure more mating opportunities (Jordan 2009,

2011a). Our results enrich this finding as intense scent marking ap-

pears to act as an indicator trait for reduced Isospora infection, thus

providing a trait by which scent marking can inform mate choice.

An exception to this trend were females from group 1H, which

showed no decrease in intensive marking activity, stressing the im-

portance of controlling for social and life history factors when con-

sidering behavioral reactions to odor presentations. However, the

lack of correlation in this group seems to reflect differences in be-

havior and parasite load, rather than a different effect: these individ-

uals show overall lower frequencies of intensive marking behavior

and low Isospora loads (very few individuals had more than 500

EPG; see Figure 2) .Overall, based on our results intensive scent

marking, therefore, appears limited to banded mongooses of low

Isospora load. This suggests scent marking may be used to signal

low parasitic infection status to potential mates.

Individuals with higher Toxocara burdens were present but not

marking in significantly more bouts than individuals of lower infec-

tion levels and activity at marking bouts declined (nonsignificantly)

with increasing Toxocara infection. However, in contrast to

Isospora results, there was no correlation between Toxocara load

and intense marking. It may be that Toxocara has fewer immediate

effects upon host behavior, indeed Toxocara ova can lie dormant

Table 1. The relationship between Isospora and Toxocara burdens and marking behavior at social marking bouts

Model testing Fixed effect Effect size Estimate (SD) t value P value

Frequency of bouts present but inactive Intercept 2.727 0.481

Sex (female) 2.323 0.697 3.335 0.002

Social group (1H) �1.179 0.246

Rank 0.307 0.761

Isospora load �0.616 0.542

Intercept 0.944 0.131

Toxocara load 5.30 x 1026 1.80 x 1026 2.942 0.003

Sex (female) 0.502 0.174 2.895 0.003

Social group (1H) �0.859 0.390

Rank 0.307 0.759

Frequency of bouts active Intercept 21.359 1.514

Sex (female) �5.464 1.779 �3.072 0.004

Social group (1H) �7.172 1.779 �4.033 2.0 x 1024

Rank �1.514 0.140

Isospora load �0.361 0.720

Intercept 3.080 0.099

Sex (female) �0.361 0.124 �2.912 0.004

Social group (1H) �0.473 0.123 �3.850 1.0 x 1024

Rank 0.924 0.356

Toxocara load �1.879 0.060

Frequency of bouts intensively marking(5þ marks deposited) Intercept 7.194 0.553

Rank �1.125 0.269

Isospora load �0.042 0.008 �5.145

Sex (female) �3.042 0.717 �4.245

Social group (1H) �3.980 0.694 �5.733

Isospora load: Sex 0.024 0.010 2.462 0.019

Isospora load: Social group 0.038 0.009 4.203 2.0 x 1024

Intercept 1.727 0.145

Sex (female) �0.827 0.222 �3.721 2.0 x 1024

Social group (1H) �0.824 0.215 �3.833 1.27 x 1024

Rank 0.290 0.772

Toxocara load �1.042 0.298

The sample size was 40 individuals more than 6 months of age, living in 2 social groups. A total of 102 marking bouts were observed. Full models considered the

relationship between marking behaviors and EPG parasite load, sex, group, and all second-order interaction between fixed effects. Bold text denotes terms re-

maining significant within the minimal model. The table details the intercept of the minimal model and the P values upon which fixed effects were removed during

the backward step-wise process of model simplification. Effect sizes are not reported when there is no significant effect of the variable, as the variable is not

included in our final models.
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in bodily tissues for several years before causing notable health

concerns (Urquhart et al. 1996). Therefore, the impact on the

host, and possibly effects on odor cues, may vary with the stage

of infection. Furthermore, tolerance to these parasites may also

differ.

Differences in the possible impacts of Isospora and Toxocara

may also occur due to the differing reliability of ova counts to reflect

actual parasite burdens. In protozoan, single-cell parasites including

Isospora, oocysts shed in feces directly represent the number of

sexually reproducing parasites, whereas the ova of nematode worms

may be shed at differing intensities dependent of the life stage and fe-

cundity of the parasite as well as condition of the host (Villanua

et al. 2006; Gasso et al. 2015; Rafalinirina et al. 2015). Toxocara

ova can also migrate and mature in other tissues besides the intestine

which temporarily decouples ova counts from worm/larvae numbers

(Urquhart et al. 1996) meaning ova counts may not be as reliable an

indicator of parasitic infection as Isospora oocytes. A more contro-

versial explanation would be to suggest that Toxocara parasites are

able to manipulate host behavior for their own benefits (Poulin

1994). Indeed, attending social events such as marking bouts should

increase parasite transmission due to contact with multiple individ-

uals. However, under this assumption one would also expect

Toxocara burdens to be higher in active and intensive scent markers,

which is not the case.

In support of our second prediction, odor presentation results

suggest that banded mongooses are able to discriminate infection

status via scent. Recipients significantly reduced vicinity marking

around odors of increasing parasite burdens when considering both

Toxocara and Isospora infections. This is an exciting result as, to

the best of our knowledge, it provides the first evidence that a wild,

nonmodel mammal can discriminate odors on the basis of infection.

However, note that, due to being carried on a wild population, our

results are correlative so cannot conclusively demonstrate cause and

effect. Future work would benefit from using antiparasitics to ex-

perimentally manipulating parasite levels in this species, and hence

reveal any causal link.

As vicinity marks are often used in mate choice and

self-advertisement (Wolff et al. 2002), reduced vicinity marking be-

havior toward highly parasitized opposite sex odors suggests that

parasites may play a part in mate choice in the banded mongoose.

Avoiding highly parasitized mates should provide direct fitness

benefits to both sexes as it is likely to minimize the risk of contract-

ing an infection through close contact. Additional fitness benefits to

avoiding heavily parasitized mates may arise if susceptibility to para-

site infection is heritable. In several species including feral Soay

sheep Ovis aries (Smith et al. 1999), barn swallows Hirundo rustica

(Moller 1990), and kittiwakes Rissa tridactyla (Boulinier et al.

1997) significant heritable variation for parasitic resistance has been

shown. Although we do not currently have the data to test this possi-

bility in the banded mongoose, future studies considering the herit-

ability of endoparasitic resistance in this species will allow more

detailed investigations into the benefits of choosing less infected

mates.

For Isospora, reduced marking toward the odours of highly par-

asitized individuals was evident across the dataset. However, when

considering Toxocara infection, male odors received significantly

fewer vicinity marks as their infection status increased, yet male re-

actions to female odors did not change with female infection status.

The responsiveness of females but not males to infection status could

occur due to the potential costs of females becoming infected with

Figure 1. The relationship between Isospora load and intensive marking be-

havior. Points show raw data (circles¼male, triangles¼ female). Lines (green

for social group 1B females, orange 1B males, purple for 1H females and pink

for 1H males) were calculated by linear regression of Isospora load upon the

frequency of depositing>5 marks per bout. Results were based upon 102 ob-

servations of group marking events within 2 social groups containing 40 indi-

vidual banded mongooses aged>6 months. In general, individuals with

lower Isospora loads engaged in intense marking (>5 marks per bout) signifi-

cantly more frequently than individuals of higher Isospora load. The excep-

tion to this is females within group 1H (purple line, triangular points).

Figure 2. The relationship between Isospora load and marking behavior to

presented odors. Recipients deposited fewer marks toward opposite sex

odors as the Isospora load of the odor donor increased. Points show average

EPG Isospora counts for each odor donor, and lines were fit by linear regres-

sion of EPG load against scent marking.
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Toxocara. Several species of Toxocara can lie dormant in uterine tis-

sue and infect offspring during gestation (Urquhart et al. 1996),

causing chronic and often fatal infections after birth (Lee et al.

2010). Females may, therefore, benefit from avoiding highly infected

males as mates. Alternatively, these sex differences could be due to

differences in the variation in parasite burden between the sexes,

which may also reflect the differential costs of infection depending

on sex. Toxocara burdens show greater variability within male

donors suggesting female aversion toward higher infection burdens

could be a biologically relevant response to avoid highly parasitized

males. However, there was less variation in female Toxocara counts

so it is possible that discrimination of female odors on the basis of

parasite load may not be behaviorally possible or necessary. In most

research investigating the ability of scent cues to encode infections,

the animals have been experimentally infected (Kavaliers et al.

2003, 2005a, 2014; Roberts et al. 2014; Zala et al. 2015). This

allows greater variation between infected and uninfected individuals

meaning any parasite-mediated aversion to their scent cues should

be more obvious. However, experimental manipulations of parasite

load, for example through experimentally infecting individuals, may

result in levels of infection not found in the wild, and so may not be

biologically relevant.

While banded mongooses appear to respond to differences in

parasite infection level based on odor, the mechanism by which they

may do this is not currently clear. In birds, several coccidian para-

sites are recognized to reduce plasma protein levels and significantly

decrease internal pH (Chapman 2014). Protein and pH differences

are likely to alter the chemical profile of odors (Drea et al. 2013)

providing a way for individuals to discriminate between the infec-

tion status of donors. It is, therefore, possible that banded mon-

gooses are using similar cues to detect the parasite burden of odor

donors directly. Alternatively, as parasite burden affects intensive

marking behavior (at least for Isospora), it is possible that banded

mongooses gain information about the parasite load of their group

mates from their marking behavior and respond accordingly when

presented with their scents. Indeed, previous studies (Jordan et al.

2011a, 2011b, 2011c) found that banded mongoose scents are indi-

vidually identifiable through chemical analysis and also by banded

mongoose group members, providing a means to recognize group

mates from scents deposited during marking bouts. Furthermore,

males who intensely scent marked had greater mating success

(Jordan et al. 2011b), suggesting that banded mongooses may adjust

their mating behavior in accordance with scent encounter rate.

Future studies involving both the chemical analysis of scents and of

Table 2. The relationship between odor donor Isospora and Toxocara burdens and recipient responses to presented odors

Model testing Fixed effects Effect size Standard error Z value P value

Duration before return to normal behavior Intercept (Isospora model) 3.478 0.962

Donor sex (Female) 0.282 0.258 1.092 0.275

Donor Isospora count 0.418 0.676

Donor rank �0.315 0.753

Donor age (in days) �0.704 0.481

Intercept (Toxocara model) 3.870 0.878

Donor sex (female) 0.261 0.250 1.041 0.298

Donor Toxocara count �0.357 0.721

Donor rank �1.319 0.187

Donor age (in days) �0.863 0.388

Duration of contact Intercept (Isospora model) 3.149 1.133

Donor sex (female) �0.632 0.301 �2.100 0.036

Donor age (in days) �0.959 0.338

Donor Isospora count 1.300 0.194

Donor rank 0.482 0.630

Intercept (Toxocara model) 2.828 0.338

Donor sex (Female) �0.503 0.243 �2.070 0.039

Donor age (in days) �1.582 0.114

Donor Toxocara count �0.467 0.641

Donor rank �0.841 0.401

Vicinity marking Intercept (Isospora model) 5.411 1.052

Donor Isospora count �1.057 3 1025 5.311 3 1026 �1.990 0.047

Donor sex (female) �0.676 0.283 �2.394 0.017

Donor age (in days) �8.716 3 1024 3.326 3 1024 �2.620 0.009

Donor rank �0.534 0.145 �3.675 2.00 3 1024

Intercept (Toxocara model) 7.071 0.990

Donor sex (female) �0.583 0.337 �1.730

Donor Toxocara count �1.460 x 1025 5.726 3 1026 �2.550

Donor age (in days) �1.318 3 1023 2.794 3 1024 �4.718 2.39 3 1026

Donor rank �0.821 0.148 �5.552 2.83 3 1028

Toxocara count*Donor sex �5.706 3 1025 2.605 3 1025 �2.190 0.029

The output of GLMMs testing the relationship between the response of opposite sexed conspecifics to presented odors and parasite burden, odor sex, age, and age

rank. Toxocara results were based upon 85 odor presentations to familiar opposite sex conspecifics. The Isospora dataset included 81 presentations as 1 odor

donor, used in 4 presentations, was excluded from the analysis on the basis of his extremely high Isospora burden. All second-order interactions were included in

original models but if nonsignificant, they were removed during the backward simplification process. Nonsignificant fixed effects are presented alongside the

P values upon which they were removed from the models. All intercepts refer to minimal models. Effect sizes are not reported when there is no significant effect of

the variable, as the variable is not included in our final models.
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presentations of scents of differentially parasitized unfamiliar indi-

viduals will allow us to determine whether parasite load could be

identified chemically or via previous association in the banded

mongoose.
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Scent marking in wild banded mongooses: 3. Intrasexual overmarking in fe-

males. Anim Behav 81:51–60.

Kavaliers M, Choleris E, Pfaff DW, 2005a. Genes, odours and the recognition

of parasitized individuals by rodents. Trends Parasitol 21:423–429.

Kavaliers M, Choleris E, Pfaff DW, 2005b. Recognition and avoidance of the

odors of parasitized conspecifics and predators: differential genomic correl-

ates. Neurosci Biobehav Rev 29:1347–1359.

Kavaliers M, Colwell DD, Cloutier CJ, Ossenkopp K-P, Choleris E, 2014.

Pathogen threat and unfamiliar males rapidly bias the social responses of fe-

male mice. Anim Behav 97:105–111.

Kavaliers M, Fudge MA, Colwell DD, Choleris E, 2003. Aversive and avoid-

ance responses of female mice to the odors of males infected with an ecto-

parasite and the effects of prior familiarity. Behav Ecol Sociobiol

54:423–430.

Kirkpatrick CE, 1998. Epizootiology of endoparasitic infections in pet cats

and dogs presented to a veterinary teaching hospital. Vet Parasitol

30:113–124.

Klein SL, 2003. Parasite manipulation of the proximate mechanisms that me-

diate social behavior in vertebrates. Physiol Behav 79:441–449.

Leclaire S, Faulkner CT, 2014. Gastrointestinal parasites in relation to host

traits and group factors in wild meerkats Suricata suricatta. Parasitology

141:925–933.

Lee AC, Schantz PM, Kazacos KR, Montgomery SP, Bowman DD, 2010.

Epidemiologic and zoonotic aspects of ascarid infections in dogs and cats.

Trends Parasitol 26:155–161.

Lindsay DS, Dubey JP, Blagburn BL, 1997. Biology of isospora spp. from

humans, non-human primates and domestic animals. Clin Microbiol Rev

10:19–34.

Loehle C, 1995. Social barriers to pathogen transmission in wild animal popu-

lations. Ecology 76:326–335.

Loehle C, 1997. The pathogen transmission avoidance theory of sexual selec-

tion. Ecol Model 103:231–250.

Martinaud G, Billaudelle M, Moreau J, 2009. Circadian variation in shedding

of the oocysts of Isospora turdi (Apicomplexa) in blackbirds

(Turdusmerula): an adaptative trait against desiccation and ultraviolet radi-

ation. Int J Parasitol 39:735–739.

Mateo JM, 2003. Kin recognition in ground squirrels and other rodents.

J Mammal 84:1163–1181.

Moller AP, 1990. Effects of a haematophagous mite on the barn swallow

Hirundo rustica: a test of the Hamilton and Zuk hypothesis. Evolution

44:771–784.

Moreno-Rueda G, Hoi H, 2011. Female house sparrows prefer big males with

a large white wing bar and fewer feather holes caused by chewing lice.

Behav Ecol 23:271–277.

Müller CA, Manser MB, 2007. 0Nasty neighbours0 rather than 0dear enemies0

in a social carnivore. Proc Biol Sci 274:959–965.

Müller CA, Manser MB, 2008. Scent-marking and intrasexual competition in

a cooperative carnivore with low reproductive skew. Ethology

114:174–185.

Mundt HC, Joachim A, Becka M, Daugschies A, 2006. Isopspora suis: an ex-

perimental model for mammalian intestinal coccidosis. Parasitol Res

98:167–175.

Nichols HJ, Amos W, Bell MBV, Mwanguhya F, Kyabulima S et al., 2012.

Food availability shapes patterns of helping effort in a cooperative mon-

goose. Anim Behav 83:1377–1385.

Nichols HJ, Amos W, Cant MA, Bell MBV, Hodge SJ, 2010. Top males gain

high reproductive success by guarding more successful females in a coopera-

tively breeding mongoose. Anim Behav 80:649–657.

Pedersen AB, Jones KE, Nunn CL, Altizer S, 2007. Infectious diseases and ex-

tinction risk in wild mammals. Conserv Biol 21:1269–1279.

Penn DJ, Potts WK, 1998a. Chemical signals and parasite-mediated sexual se-

lection. Trends Ecol Evol 13:391–396.

Penn DJ, Potts WK, 1998b. How Do Major Histocompatibility Complex

Genes Influence Odor and Mating Preferences? California: Academic Press.

Petrie M, 1994. Improved growth and survival of offspring of peacocks with

more elaborate trains. Lett Nat 317:598–599.

Poulin R, 1994. Meta-analysis of parasite-induced behavioural changes. Anim

Behav 48:137–146.

Poulin R, 1995. "Adaptive" changes in the behaviuor of parasitized animals: a

critical review. Int J Parasitol 25:1371–1383.

Rafalinirina HA, Aivelo T, Wright PC, Randrianasy J, 2015. Comparison of

parasitic infections and body condition in rufous mouse lemur Microcebus

rufus at Ranomafana National Park, Southeast Madagascar. Madagascar

Conserv Dev 10:6066.

Raharivololona BM, Ganzhorn JU, 2010. Seasonal variations in gastrointes-

tinal parasites excreted by the gray mouse lemur Microcebus murinus in

Madagascar. Endang Sp Res 11:113–122.

Rich T, Hurst JL, 1998. Scent marks as reliable signals of the competative abil-

ity of males. Anim Behav 56:727–735.

Rich T, Hurst JL, 1999. The competing countermarks hypothesis: reliable as-

sessment of competative ability by potential mates. Anim Behav

58:1027–1037.

246 Current Zoology, 2017, Vol. 63, No. 3



Roberts SA, Davidson AJ, Beynon RJ, Hurst JL, 2014. Female attraction to

male scent and associative learning: the house mouse as a mammalian

model. Anim Behav 97:313–321.

Roulin A, Dijkstra C, Riols C, Ducrest A, 2001. Female and male specific sig-

nals of quality in the barn owl. J Evol Biol 14:255–266.

Roulin A, Riols C, Dijkastra C, Ducrest A, 2001. Female plumage spottiness

signals parsite resistance in the barn owl Tyto alba. Behav Ecol

12:103–110.

Setchell JM, Charpentier MJE, Abbott KM, Wickings EJ, Knapp LA, 2009. Is

brightest best? Testing the Hamilton - Zuk Hypothesis in mandrills. Int J

Primatol 30:825–844.

Setchell JM, Charpentier MJE, Bedjabaga I-B, Reed P, Wickings EJ et al.,

2006. Secondary sexual characters and female quality in primates. Behav

Ecol Sociobiol 61:305–315.

Setchell JM, Vaglio S, Abbott KM, Moggi-Cecchi J, Boscaro F et al., 2011.

Odour signals major histocompatibility complex genotype in an Old World

monkey. P Roy Soc Lond B: Biol 278:274–280.

Smith JA, Wilson K, Pilkington JG, Pemberton JM, 1999. Heritable variation

in resistance to gastro-intestinal nematodes in an unmanaged mammal

population. P Roy Soc Lond B: Biol 266:1283–1290.

Urquhart GM, Armour J, Duncan JL, Dunn AM, Jennings FW, 1996.

Veterinary Parasitology. Oxford: Blackwell Science.

Venables WN, Ripley BD, 2002. Modern Applied Statistics with R. 4th edn.

New York: Springer.

Villanua D, Perez-Rodriguez L, Gortazar C, Hofle U, Vinuela J, 2006.

Avoiding bias in parasite excretion estimates: the effect of sampling time

and type of faeces. Parasitology 133:251–259.

Waitt C, Little AC, Wolfensohn S, Honess P, Brown AP et al., 2003.

Evidence from rhesus macaques suggests that male coloration plays a role in

female primate mate choice. P Roy Soc Lond B: Biol 270(2 Suppl):

S144–S146.

Wolff JO, Mech SG, Thomas SA, 2002. Scent marking in female prairie voles:

a test of alternative hypotheses. Ethology 108:483–494.

Wyatt TD, 2014. Pheromones and Animal Behaviour. Cambridge: Cambridge

University Press.

Zala SM, Bilak A, Perkins M, Potts WK, Penn DJ, 2015. Female house mice

initially shun infected males, but do not avoid mating with them. Behav

Ecol Sociobiol 69:715–722.

Zala SM, Potts WK, Penn DJ, 2004. Scent-marking displays provide honest

signals of health and infection. Behav Ecol 15:338–344.

Mitchell et al. � Scent and parasites in banded mongooses 247


	zox003-TF1
	zox003-TF2



