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Abstract: A novel bio-based flame retardant designated AVD has been synthesized in a one-pot
process via the reaction of 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO), vanillin
(VN), and 2- aminobenzothiazole (ABT). The structure of AVD was confirmed using Fourier transform
infrared spectroscopy (FTIR), and 1H and 31P nuclear magnetic resonance spectroscopy (NMR). The
curing process, thermal stability, flame retardancy, and mechanical properties of the epoxy resin
(EP) modified with AVD have been investigated comprehensively. The extent of curing, the glass
transition temperature and the crosslinking density of the blend decreased gradually with increasing
AVD content. The thermogravimetric analysis (TGA) was used to demonstrate that the presence of
AVD reduced the thermal decomposition rate for EP and enhanced the formation of carbon residue
during resin decomposition. A blend of 7.5 wt% AVD (0.52% phosphorus) displays a UL-94V-0 rating
and a LOI of 31.1%. Reduction of the peak heat release rate, total heat release rate and total smoke
production was 41.26%, 35.70%, and 24.03%, respectively, as compared to the values for pure EP. The
improved flame retardancy of the flame retardant epoxy (FREP) may be attributed to the formation
of a compact and continuous protective char layer into the condensed phase as well as the release of
non-combustible gases and phosphorus-containing radicals from the decomposition of AVD in the
gas phase. AVD is a new and efficient biobased flame retardant for epoxy with great prospects for
industrial applications.

Keywords: epoxy resin; bio-based; flame retardancy; lower phosphorus content; mechanism

1. Introduction

Epoxy resin (EP), as an important thermosetting resin which displays characteristics
of chemical resistance, low curing shrinkage, outstanding adhesion, and great electrical
insulation. It has been widely applied in aerospace, coatings, adhesives, and microelec-
tronics [1–3]. However, intrinsic flammability restricts its applications in many high-tech
areas. It is accordingly urgent to improve the flame retardancy of EP [4,5]. Traditional
halogen-containing flame retardants (FRs) produce toxic gases such as dioxins during
combustion, which are hazardous to human health and also have a negative effect on the
environment [6]. Consequently, halogen-containing FRs have been forbidden in many
applications, and the development of halogen-free FRs has become imperative. Recently,
9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO) has become a promising
phosphorus-based FR due to its non-toxic properties and high phosphorus content. Never-
theless, a satisfactory flame retardant effect is achieved only at high DOPO content in epoxy
resin [7–9]. The presence of DOPO at these levels caused a deterioration of the mechanical
properties of the resin. Fortunately, the highly reactive P-H bond of DOPO permits the
introduction of other flame-retardant elements into its molecular structure, including nitro-
gen [10,11], sulfur [12,13], silicon [14,15], boron [16,17], etc. These DOPO-based derivatives
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display better flame retardant efficiency for EP due to cooperative effect of multiple flame
retardant elements.

To reduce dependence on petroleum resources and to reduce toxicity, new biobased
flame retardants are being rapidly developed [18]. Some biobased materials have received
much attention for the preparation of epoxy resin flame retardants, such as vanillin [19],
isosorbide [20], tartaric acid [21], chitosan [22], furans [23], crop-based phenolics [24],
glycerol/adipic acid hyperbranched poly (ester)s, [25] etc. All of the above biobased raw
materials have great potential for application in the development of biobased phosphorus
flame retardants. Daniel et al. [26] converted renewable isosorbide into the corresponding
diacrylate and used it to synthesize four phosphorus-containing compounds that showed
good flame retardant properties in epoxy resins. Two of them are stable at temperatures
close to 400 ◦C and may be suitable flame retardants for polymers processed at high
temperatures. Among them, vanillin is a promising starting material for the preparation
of flame retardants due to the high reactivity of its aldehyde and the presence of phenolic
hydroxyl group. A biobased reactive FR (VDG) has been synthesized in a one-pot reaction
involving DOPO, vanillin, and 3,5-diamino-1,2,4-triazole flame retardant (VDG). A high
LOI value of 37.0% and UL-94 V-0 rating were observed for the cured EP system containing
2.0 wt% VDG. This material also exhibits antibacterial effects toward E. coli. [27].

It has previously been demonstrated that the N/S-containing thiazole has great poten-
tial for the construction of efficient FRs [28–30]. A novel bio-based FR (marked as AVD) has
synthesized from the reaction of DOPO, vanillin, and 2-aminobenzothiazole. The chemical
structure of AVD was characterized using Fourier transform infrared spectroscopy (FTIR),
and 1H and 31P nuclear magnetic resonance spectroscopy (NMR). EP/AVD thermosets with
different AVD loading levels were produced and their curing behaviors, thermal stability,
flammability and combustion behaviors were evaluated. Moreover, a flame retardant mode
of action for AVD in EP has been proposed.

2. Experimental
2.1. Materials

Epoxy resin with the epoxy value of 0.51 mol/100 g (commercial name: E-51) was pur-
chased from CNOOC Changzhou Coating Chemical Research Institute Co., Ltd. (Changzhou,
China). DOPO, vanillin (VN, 99%), 4,4′-Diaminodiphenyl methane (DDM, 98%) were acquired
from Aladdin Reagents Co., Ltd. (Shanghai, China). 2-Aminobenzothiazole was purchased
from Jiangsu Qiangsheng Functional Chemical Co., Ltd (Nanjing, China). Absolute ethanol
was supplied by Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). All raw materials
were not purified and were used directly.

2.2. Synthesis of AVD

The AVD was one-pot synthesized, and the synthetic route is illustrated in Scheme 1.
To a 250 mL three-necked flask equipped with magnetic stirrer and reflux condenser,
vanillin (VN) (0.06 mol, 9.129 g), 2-aminobenzothiazole (ABT) (0.06 mol, 6.0084 g) and
anhydrous ethanol (100 mL) were added. After reacting at 80 ◦C for 5 h, DOPO (0.06 mol,
9.129 g) was added and stirred continuously for another 12 h. The crude product was
collected by filtration, washed three times with anhydrous ethanol, and then the product
was dried to constant weight in a vacuum oven at 70 ◦C. The pale-yellow powder was
obtained (Yield: 76%, melting temperature: 205 ◦C).
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Scheme 1. Synthesis of AVD.

2.3. Preparation of EP and Flame Retardant EPs (FREPs)

The mole ratio of the amino group to epoxy group was 1:1 for all samples, and
the formulations were shown in Table 1. Firstly, a transparent EP/AVD solution was
obtained under magnetic stirring at 130 ◦C, and then cooled to 90 ◦C. Afterwards, DDM
was introduced and kept stirring until it was completely dissolved. The mixture was then
dumped into the preheated silicone rubber mold and cured at 100 ◦C for 2 h and 150 ◦C for
3 h. The Pure EP/DDM thermoset was prepared with the above-mentioned procedure.

Table 1. The formulations of EP and FREPs.

Sample EP (g) DDM (g) AVD (g) AVD (wt%) P (wt%)

EP 40 10.11 0 0 0
FREP-5 40 9.54 2.61 5 0.34

FREP-7.5 40 9.36 4.00 7.5 0.52
FREP-10 40 8.92 5.43 10 0.69

2.4. Characterization

FTIR spectra were obtained using a Perkin Elmer instrument (Waltham, MA, USA)
over a spectral range of 4000–400 cm−1. All samples were milled with KBr and pressed
into tablets.

1H NMR and 31P NMR spectra were collected on a Bruker Advance III-500 NMR
spectrometer (Bruker, Waltham, MA, USA) using the DMSO-d6 as deuterated solvent.

Differential scanning calorimetry (DSC) analysis was carried out on a Perkin-Elmer
DSC 8000 (PE, Waltham, MA, USA) at different heating rate from 30 ◦C to 250 ◦C under N2
atmosphere. The weight of all samples was fixed at about 5 mg.

Thermogravimetric analysis (TGA) was performed on a Perkin-Elmer TGA 4000
(Waltham, MA, USA) with a nitrogen flow rate of 20 mL·min−1. The specimen (about
8 mg) was placed in an alumina crucible and heated from 30 to 700 ◦C at a heating rate of
10 ◦C·min−1.

The vertical burning (UL-94) test was measured by a CZF-3 instrument (Shine Ray
Instrument Co. Ltd., Nanjing, China) according to ASTM D3801 standard.

The limited oxygen index (LOI) value was measured using an HC-2 oxygen index
meter (Jiang Ning Co. Ltd., Nanjing, China) according to ASTM D2863.
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The combustion behaviors were tested on a FTT cone calorimeter (Fire Testing Tech-
nology, East Grinstead, UK) according to the ISO 5660-1 standard at an external heat flux of
35 kW·m−2. Three replicates with dimensions of 100 × 100 × 3 mm3 and weight of about
36.5 g were tested, and their average values were collected as each point data.

The microscopic morphologies of residual char were observed by a SUPRA55 scanning
electron microscope (SEM) with an acceleration voltage of 5 kV.

X-ray photoelectron spectroscopy (XPS) was determined by an ESCALAB 250Xi sys-
tem (Thermo Fischer Scientific, Waltham, MA, USA), using Al Kα excitation radiation
(hν = 1486.6 eV).

Raman spectroscopy was collected through a DXR2xi laser Raman spectrometer (LRs)
(Thermo Fischer Scientific, Waltham, MA, USA) in the range of 500–3000 cm−1 with an
excitation wavelength of 532 nm.

TG-IR spectroscopy was conducted using a combination system of a TGA 4000 thermo-
gravimetric analyzer and a Spectrum II FTIR spectrophotometer. The sample (around 20 mg)
was heated from 30 to 700 ◦C at 10 ◦C·min−1 with a nitrogen flow rate of 20 mL/min.

A dynamic mechanical analysis (DMA) was carried out on a Perkin-Elmer DMA8000
(PE, Waltham, MA, USA). A three-point bending mold with an amplitude of 20 µm and a
frequency of 1 Hz was selected. The experimental temperature interval was 30–260 ◦C at a
rate of 10 ◦C·min−1. (Dimensions of all samples: 40 × 6 × 3 mm3).

3. Results and Discussion
3.1. Characterization of AVD

The FTIR spectra of the target product (AVD) and raw materials (VN, ABT, and DOPO)
are presented in Figure 1. With respect to the FTIR spectrum of AVD, the absorption peak at
3413 cm−1 is assigned to the stretching vibration of -OH in VN, and the disappearance of the
characteristic absorption peak of -CHO observed at 1667 cm−1 indicates a complete reaction
between VN and ABT [28]. Meanwhile, the typical P-H stretching vibration absorption
peak of DOPO at 2437 cm−1 [29] disappears in the spectrum of AVD, and the double
peaks (3396 cm−1 and 3272 cm−1) of -NH2 in ABT shifts to a single peak (3227 cm−1)
of -NH in AVD [31]; the peak at 1377 cm−1 is ascribed to the stretching vibration of
C-N [29]. All of these phenomena confirm that the addition reaction between the Schiff-
base intermediate and DOPO proceeds successfully. Additionally, the absorption peaks at
1598 cm−1, 1449 cm−1, 1238 cm−1, and 1210 cm−1 are attributed to the benzene ring, C=N
in the thiazole ring, P=O, and P-O-C stretching vibrations, respectively [28]. The above
results confirm the initial chemical structure of AVD.

Materials 2022, 15, x FOR PEER REVIEW 4 of 19 
 

 

The combustion behaviors were tested on a FTT cone calorimeter (Fire Testing Tech-

nology, East Grinstead, UK) according to the ISO 5660-1 standard at an external heat flux 

of 35 kW·m−2. Three replicates with dimensions of 100 × 100 × 3 mm3 and weight of about 

36.5 g were tested, and their average values were collected as each point data. 

The microscopic morphologies of residual char were observed by a SUPRA55 scan-

ning electron microscope (SEM) with an acceleration voltage of 5 kV. 

X-ray photoelectron spectroscopy (XPS) was determined by an ESCALAB 250Xi sys-

tem (Thermo Fischer Scientific, Waltham, MA, USA), using Al Kα excitation radiation (hν 

= 1486.6 eV). 

Raman spectroscopy was collected through a DXR2xi laser Raman spectrometer 

(LRs) (Thermo Fischer Scientific, Waltham, MA, USA) in the range of 500–3000 cm−1 with 

an excitation wavelength of 532 nm. 

TG-IR spectroscopy was conducted using a combination system of a TGA 4000 ther-

mogravimetric analyzer and a Spectrum II FTIR spectrophotometer. The sample (around 

20 mg) was heated from 30 to 700 °C at 10 °C·min−1 with a nitrogen flow rate of 20 mL/min. 

A dynamic mechanical analysis (DMA) was carried out on a Perkin-Elmer DMA8000 

(PE, Waltham, MA, USA). A three-point bending mold with an amplitude of 20 μm and a 

frequency of 1 Hz was selected. The experimental temperature interval was 30–260 °C at 

a rate of 10 °C·min−1. (Dimensions of all samples: 40 × 6 × 3 mm3) 

3. Results and Discussion 

3.1. Characterization of AVD 

The FTIR spectra of the target product (AVD) and raw materials (VN, ABT, and 

DOPO) are presented in Figure 1. With respect to the FTIR spectrum of AVD, the absorp-

tion peak at 3413 cm−1 is assigned to the stretching vibration of -OH in VN, and the disap-

pearance of the characteristic absorption peak of -CHO observed at 1667 cm−1 indicates a 

complete reaction between VN and ABT [28]. Meanwhile, the typical P-H stretching vi-

bration absorption peak of DOPO at 2437 cm−1 [29]disappears in the spectrum of AVD, 

and the double peaks (3396 cm−1 and 3272 cm−1) of -NH2 in ABT shifts to a single peak 

(3227 cm−1) of -NH in AVD [31] ; the peak at 1377 cm−1 is ascribed to the stretching vibration 

of C-N [29]. All of these phenomena confirm that the addition reaction between the Schiff-

base intermediate and DOPO proceeds successfully. Additionally, the absorption peaks 

at 1598 cm−1, 1449 cm−1, 1238 cm−1, and 1210 cm−1 are attributed to the benzene ring, C=N 

in the thiazole ring, P=O, and P-O-C stretching vibrations, respectively [28]. The above 

results confirm the initial chemical structure of AVD. 

 
Figure 1. FTIR spectra of DOPO, VN, ABT and AVD.



Materials 2022, 15, 3155 5 of 18

Both 1H NMR and 31P NMR spectra were performed to further check the chemical
structure of AVD. As shown in the 1H NMR spectrum of AVD (Figure 2a), the chemical
shifts at 5.66 and 5.80 ppm are attributed to the hydrogen atom on the chiral carbon
attached to the DOPO group [31]. The chemical shifts at 6.66–6.75 ppm, 6.85–8.18 ppm, and
9.05 ppm are assigned to N-H, p.roton hydrogen on the benzene ring (Ar-H), and the signal
of -OH, respectively. The integral area ratio of the different proton chemical environments
is in agreement with the theoretical values. Furthermore, the 31P NMR spectrum of AVD
(Figure 2b) presents two signal peaks at 28.78 and 30.25 ppm. It indicates that the P element
in AVD is in two different chemical environments, which might be due to the presence of
the chiral carbon atom. Based on the above analysis, it is concluded that the target product
AVD was synthesized successfully.
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3.2. Curing Behaviors

To investigate the effect of incorporation of AVD on the curing process of epoxy resin,
the non-isothermal curing kinetics of the epoxy systems at different heating rates were
performed by DSC, and the resultant DSC curves are shown in Figure 3a–d. As can be seen,
the TP values of all samples shift toward higher temperatures as the heating rate increases.
Moreover, the TP values gradually become greater with increasing AVD content at the
same heating rate. This effect is mainly due to the steric hindrance of the rigid groups such
as DOPO and benzothiazole in the AVD structure reduces the reactivity of ring-opening
curing of epoxy resin.
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The apparent activation energy (Ea) of the epoxy systems are further calculated
according to the Kissinger’s (Equation (1)) and Ozawa’s methods (Equation (2)) [32] and
the fitted curves of ln

(
β/T2

P

)
and lnβ versus 1/TP × 103 are illustrated in Figure 3e,f, and

the results are summarized in Table 2.

ln
(
β/T2

P

)
= ln(AR/Ea)− Ea/RTP (1)

lnβ = ln(AEa/R)− 1.052Ea/RTP − 5.331 (2)

wherein β is the heating rate, TP is the curing peak temperature, A is the pre-exponential
factor and R is the ideal gas constant (8.314 J K−1 mol−1).

Table 2. Ea values calculated from non-isothermal DSC curves.

Sample Kissinger’s Method Ea (kJ mol−1) Ozawa’s Method Ea (kJ mol−1)

EP 49.27 53.71
FREP-5 53.36 57.63

FREP-7.5 55.14 59.31
FREP-10 55.14 59.33

All of the Ea values calculated from both Kissinger’s and Ozawa’s methods increase
with the increasing of AVD content. It suggests that the addition of AVD enhances the energy
barrier of the curing reaction, which further verifies the presence of the steric hindrance.
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3.3. Thermal Stability

The thermal stability of the pure EP and FREPs under nitrogen atmosphere was
evaluated by TGA. The corresponding TG and DTG curves are depicted in Figure 4, and
the related data are summarized in Table 3. Obviously, the AVD gives lower T5% (272.8 ◦C)
and greater CR700 (30.1%) than the pure EP. With the addition of AVD, the T5% and Tmax of
the cured FREPs decrease with the increase of AVD content, which suggests that the AVD
promotes the decomposition of the epoxy matrix on advance. However, the Rmax decreases
from 18.8%·min−1 for pure EP to 10.7%·min−1 for FREP-10, indicating that the presence of
AVD delays the decomposition of the EP at a higher temperature. Meanwhile, the FREP-10
sample gives a CR700 of 24.5%, which is greater than that of the pure EP (19.7%). It implies
that the incorporation of AVD improves the carbon formation ability of the cured FREPs.
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Table 3. Thermal stability parameters of EP and FREPs.

Sample T5% (◦C) Tmax (◦C) Rate (%·min−1) CR700 (wt%)

EP 382.3 399.0 18.8 19.7
FREP-5 359.1 391.0 12.5 21.7

FREP-7.5 349.5 388.7 10.7 23.3
FREP-10 346.3 388.3 10.7 24.5

AVD 272.8 279.3, 410.6 3.5, 2.7 30.1
T5%: initial decomposition temperature; Tmax: maximum decomposition temperature Rmax: maximum decompo-
sition rate; CR700 char residue at 700 ◦C.

3.4. Flame Retardancy of EP and FREPs

LOI and UL-94 measurements were carried out to assess the flame retardancy, and the
resultant LOI values and UL-94 rating are listed in Table 4. Apparently, the pure EP is a
combustible polymer with the LOI value of 25% and fails to pass the UL-94 vertical burn
testing. With the incorporation of 5 wt% AVD, the FREP-5 sample presents an LOI value of
30% and UL-94 V-1 testing. Furthermore, the FRSP containing 7.5 wt% AVD (the P content
is 0.52 wt%) achieves the LOI value up to 31.3% and UL-94 V-0 rating. The results reveal
that the AVD has high flame retardant efficiency for epoxy resin.

Table 4. UL-94 Flammability Ratings and LOI Values for EP Composites.

Sample P (wt%) LOI (%)
UL-94, 3 mm bar

(b) t1 + t2 (s) Dripping Rating

EP 0 25 ± 0.1 (a) BC Yes No
FREP-5 0.34 30.0 ± 0.2 5.6 + 5.8 No V-1

FREP-7.5 0.52 31.3 ± 0.1 4.3 + 2.7 No V-0
FREP-10 0.69 32.5 ± 0.3 2 + 2 No V-0

(a): BC indicates burn to clamp; (b): t1, t2 are the average of the primary and secondary combustion times of the
five sample strips, respectively.
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3.5. Analysis of Fire Behaviors

The cone calorimetry test (CCT) is one of the most effective methods used in the
laboratory to evaluate the combustion behavior of materials [33,34]. This method can
provide a series of important parameters about material flammability, including time
to ignition (TTI), peak heat release rate (PHRR), total heat release (THR), total smoke
release (TSP), fire growth rate index (FIGRA), average effective combustion heat burn
(av-EHC), average CO yield (av-COY), average CO2 yield (av-CO2Y) and char residue
after combustion, all of which are summarized in Table 5. Figure 5 depicts some important
curves, which include the heat release rate (HRR), total heat release (THR), total smoke
release (TSP), smoke release rate (SPR), CO2 production rate, and residue mass over time.

Table 5. Combustion data obtained from CCT.

Sample EP FREP-5 FREP-7.5 FREP-10

TTI (s) 91 ± 2 73 ± 5 68 ± 3 56 ± 1
PHRR (kW/m2) 1453 ± 20 708 ± 14 658 ± 9 568 ± 16
THR (MJ/m2) 67.3 ± 2.1 59.7 ± 1.9 57.4 ± 2.4 55.8 ± 2.2

FIGRA (kW/m2·s) 11.2 ± 0.3 4.57 ± 0.6 4.11 ± 0.2 3.44 ± 0.4
TSP (m2) 24.1 ± 0.7 23.8 ± 0.3 23.1 ± 0.8 20.4 ± 0.5

av-EHC (MJ/kg) 22.1 ± 1.1 15.0 ± 0.7 14.3 ± 0.9 12.7 ± 1.3
av-COY (kg/kg) 0.28 ± 0.05 0.52 ± 0.07 0.58 ± 0.1 0.62 ± 0.04
av-CO2Y (kg/kg) 1.80 ± 0.07 1.36 ± 0.03 1.29 ± 0.08 1.27 ± 0.02
Char residue (%) 18.1 ± 0.1 20.1 ± 0.7 22.5 ± 0.3 23.1 ± 0.4
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As compared with the pure EP, the FREPs have greater TTI values which tend to
increase with the increasing AVD content. This can be ascribed to the fact that the presence
of AVD advances the earlier decomposition of the EP matrix. This result is consistent with
that of the TGA test.

The heat release rate (HRR) is one of the key parameters to assess the burning intensity.
As shown in Table 5, the PHRR and THR values of the pure EPare 1452.5 kW·m−2 and
67.3 MJ·m−2, respectively. The combustion intensity decreases significantly with increasing
AVD content. For instance, the PHRR and THR values are 657.6 kW·m−2 and 57.4 MJ·m−2

for the FREP-10 sample, which are reduced by 54.7% and 14.7% with comparison to the
pure EP, respectively. This demonstrates that the incorporation of AVD can effectively
suppress the combustion intensity of epoxy composites. In addition, the fire growth rate
index (FIGRA) was commonly used to assess the rate of fire growth during combustion
and calculated based on HRR curves according to Equation (3) [35].

FIGRA = PHRR/TPHRR (3)

The lower FIGRA value of the material indicates the higher fire safety performance.
The results in Table 5 display that the FIGRA value decreases significantly after the incor-
poration of AVD, from 11.2 kW·m−2·s−1 for pure EP to 3.44 kW·m−2·s−1 for FREP-10, with
a reduction of 69.2%. Therefore, it can be concluded that the FREPs containing AVD have
excellent fire safety.

It is well known that smoke is the cause of death for the majority of victims who lose
their life due to respiratory injuries in fires. Therefore, the smoke suppression performance
of flame retardant materials is a critical parameter. Obviously, the TSP value of FREP-10
(20.4 m2) is reduced by15.4% as compared that of the pristine EP (24.1 m2), illustrating that
the AVD displays good smoke suppression on the epoxy resin.

Furthermore, the average effective heat of combustion (av-EHC, HRR/MLR) is an
essential parameter to measure the degree of combustion of volatile substances in the
gas phase. Seen from Table 5, the av-EHC value [36] of the FREPs is decreased gradually
with the increasing AVD loading level, indicating that AVD has a good gas-phase flame
retardant effect. It is also shown in Table 5 that the FREPs display reduced av-CO2Y
values and increased av-COY values. This is attributed to the occurrence of incomplete
combustion, further verifying the gas-phase flame retardant effect of AVD. Moreover,
much more carbon residuals were left for FREPs, confirming that the incorporation of
AVD promotes the carbonization of the EP. This might be attributable to the fact that the
decomposition of the compounds containing DOPO can generate polyphosphates which
catalyze the dehydration and esterification of the EP matrix, thus facilitating the formation
of a carbonaceous protective layer.
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3.6. Morphology of Char Residues

Figure 6 displays the digital photographs and SEM images of char residues after CCT.
As shown in the images, the pure EP was burned almost completely and left a few broken
and loose char residues (Figure 6a2). However, with the incorporation of AVD, much more
and continuous char residues (Figure 6b2–d2) with greater expansion height (Figure 6b1–d1)
were obtained after CCT. It is further evident from the SEM images that the pure EP exhibits
a thin and friable char layer with many cracks on the surface and inside (Figure 6a3), which
completely fails to protect the underlying substrate. Conversely, compact and continuous
char layers (Figure 6b3–d3), which effectively isolate the underlying substrate from heat
and oxygen, are observed for FREPs. This is mainly due to the fact that the phosphoric
acid from the decomposition of AVD catalyzes the dehydration and carbonization of the
EP substrate, and the benzothiazole group with better thermal stability also contributes to
the production of char residues.
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3.7. Chemical Component of Residual Char

XPS was applied to analyze the compositional changes of the char residues of pure
EP and FREPs. The XPS spectra with possible peak positions are presented in Figure 7,
and the corresponding elemental contents are listed in Table 6. Compared with the neat
EP, the FREP-7.5 sample displays a greater ratio of C/O and N/O. It means that the char
layer of FREP-7.5 is rich in nitrogen heterocycles and aromatic compounds. Moreover, a
low oxygen content is also found for FREP-7.5. The decrease of oxygen content is mainly
due to the formation of PO· and PO2·, which volatilize into the gas phase to play a flame
retardant role. Furthermore, the presence of P and S elements in the char residues indicates
that they can act as the flame retardant mode of action in the condensed phase.
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Figure 7. XPS total spectrum of residual char from EP and FREPs.

Table 6. Composition and content of char residues.

Sample C (At%) O (At%) N (At%) P (At%) S (At%)

EP 81.71 14.37 3.92 0 0
FREP-7.5 83.18 12.17 4.24 0.23 0.18

Figure 8 shows the C1s, N1s, O1s, and P2p spectra of the char residue of FREP-7.5.
In Figure 8a, the C1s spectrum is decomposed to three bands at 284.3 eV (aliphatic and
aromatic C-H and C-C), 286.0 eV (C-O-C and P-O-C) and 288.3 eV (carbonyl) [37]. In the
N1s spectrum (Figure 8b), the bands at 397.7 eV and 399.4 eV are ascribed to C-N or P-N
and N-H on the amine group, respectively [38]. For the O1s spectrum (Figure 8c), the
peaks at 531.5 eV and 532.8 eV are attributed to C=O/P=O and -O- in the C-O-P group.
For the P2p spectrum (Figure 8d), the P2p peak is split into two peaks at 132.4 eV and
133.4 eV, which are assigned to the P-O-C group in phosphate and P=O, respectively [39].
The above results suggest that the AVD can decompose to produce phosphate-containing
compounds which promotine the dehydration and esterification of the EP substrate to form
a high-quality protective layer.
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3.8. Raman Characterization of the Char Residues

Raman spectroscopy can be applied to characterize the degree of graphitization of
carbon materials. Figure 9 plots the Raman spectra of the char residue of pure EP and FREPs.
The spectra of all samples have two peaks belonging to the D-band (around 1360 cm−1)
and the G-band (around 1600 cm−1), which represent disordered carbon and graphitized
carbon, respectively [40]. The value of AD/AG (area ratio of D-band to G-band) can reflect
the graphitization degree of the charcoal residue, and its lower value means the higher
graphitization degree of the corresponding char layer. The AD/AG values of the char
residues from pure EP, FREP-5, FREP-7.5, and FREP-10 were determined to be 2.57, 2.50,
2.30, and 2.11, respectively. It can be seen that the values of FREPs are all lower than that
of the pure EP, and the lowest value is achieved for FREP-10, indicating that the addition
of AVD enhanced the graphitization of the char layer, which facilitates the formation of a
denser and continuous char layer that acts as a barrier to inhibit the further degradation of
the substrate.
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3.9. Analysis of Gaseous Products of Pyrolysis of EP Composites

A TG-FTIR test was adopted to excavate the gas-phase volatiles generated during the
pyrolysis of EP composites. Figure 10 demonstrated the characteristic spectra and 3D TG-
FTIR spectra of the gas-phase pyrolysis products of the neat EP and FREP-7.5 at different
temperatures. As can be seen, the pyrolysis product of FREP-7.5 appears earlier (349 ◦C)
than that of pure EP (382 ◦C), suggesting that the earlier decomposition of the EP matrix is
advanced by the introduction of AVD. Despite all this, the pyrolysis products of pure EP
and flame retardant EP are almost the same at higher temperatures, including 3675 cm−1

(H2O), 2850 cm−1–3100 cm−1 (aliphatic C-H), 1337 cm−1 (C-N), 1252 cm−1 (C-O of bisphenol
A), 1176 cm−1 (aliphatic C-O), 747 cm−1 (benzene C-H) [39]. With respective to FTIR spectra
of FREP-7.5; nevertheless, some other bands occur at 1602 cm−1 (P-O-Ph), 1332 cm−1 (SO2),
1257 cm−1 (P=O), 1043 cm−1 (P-O-C), and 966 cm−1 (NH3). The variation of the peak intensi-
ties of these compounds reveals the flame retardant effect of AVD in the gas phase.
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In order to confirm the flame retardant effect of AVD in the gas phase, Figure 11
depicts the variation of the spectra absorbance of combustible volatiles (hydrocarbons,
aromatic compounds, carbonyl compounds, and aliphatic ethers) with time. Obviously,
the intensities of the corresponding peaks are reduced with the introduction of AVD. Since
combustible volatiles provide a large amount of fuel for combustion [41,42], the significant
reduction of their intensities is further evidence of the radical scavenging effect of AVD
decomposition products. Simultaneously, the captured aromatic compounds can be used
as a carbon source, thus improving the char yield of the FREPs.
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3.10. Potential Flame-Retardant Mode of Action

The results of the above tests indicated that AVD exerts a good flame retardant effect
in both the gas phase and the condensed phase. Hence, the possible flame retardant
mode of action of AVD is proposed as shown in Figure 12. AVD acts as a flame retardant
in the gas phase by releasing non-combustible gases such as NH3, SO2, CO2, and PO·,
PO2·. Non-combustible gases dilute the concentration of gases supporting combustion
such as oxygen and carry away heat; phosphorus-containing radicals such as PO· and
PO2· capture high-activity radicals (H· and OH·) in the combustion area to break off the
free radical chain reaction of combustion [43], and thus prevent further combustion of
the matrix. Simultaneously, the decomposition of the AVD can produce polyphosphate,
pyrophosphoric acid or metaphosphoric acid in the condensed phase, which can undergo
an esterification reaction with the EP substrate. Dehydration and carbonization form dense
char layers with a P-O-C structure. This continuous and dense char layers can block the
transfer of heat and protect the EP matrix.
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3.11. Mechanical Properties

DMA was employed to study the dynamic thermomechanical behavior of epoxy
resins. Figure 13 illustrates the curves of storage modulus (E′) and tan δ with temperature
for pure EP and FREPs, and the obtained results from DMA are listed in Table 7. The
storage modulus at 50 ◦C of the FREPs are higher than that of the pure EP and increase
with the increasing AVD contents. This is mainly due to the presence of rigid DOPO and
benzothiazole groups of the AVD. At temperatures above Tg, however, the AVD contents
have converse influence on the storage modulus, which might be attributed to a lower
crosslink density (υe) of the FREPs. As can be seen in Figure 13b, the occurrence of a single
peak indicates good compatibility between the AVD and EP matrix. Moreover, the Tg
values of the FREPs are decreased with the increasing AVD contents. This is attributed to
the predominance of the crosslink density over the rigid groups.
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Table 7. Thermomechanical properties of EP and FREPs.

Sample Tg (◦C) E′at 50 ◦C (MPa) E′ at Tg + 40 ◦C (MPa) υe (mol·m−3)

EP 170.8 2786 63.56 5265
FREP-5 157.3 3157 58.91 5021

FREP-7.5 145.0 3216 52.40 4586
FREP-10 143.1 3790 51.42 4516

The crosslink density (υe) of the cured EP can be calculated from the equation derived
from the theory of rubber elasticity [44].

νe = E′/3RT (4)

E′: the storage modulus taken 40 ◦C above Tg, R: the ideal gas constant (8.314 J K−1 mol−1),
T: the thermodynamic temperature at Tg + 40 ◦C.

The calculated υe values for all samples are also summarized in Table 7. Since the
presence of rigid DOPO and benzothiazole groups inhibits the motion of the molecular
chains, the υe values are decreased with the increasing AVD contents.

4. Conclusions

A novel bio-based flame retardant AVD was one-pot synthesized using DOPO, vanillin,
and 2-aminobenzothiazole as raw materials. The introduction of AVD hindered the curing
process and reduced the Tg and crosslinking density values. The AVD showed an opposite
effect on the storage modulus at temperatures above or under Tg due to the competition
between the rigidity and lowered crosslinking density. The TGA results demonstrated that
the early decomposition of AVD decreased the T5% and Tmax values of the cured FREPs while
retarding the further decomposition of the EP matrix at higher temperature. The doping
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of AVD, EP exhibits great flame retardant properties. At a AVD loading level of 7.5 wt%
(P content only 0.52 wt%), the LOI value of 31.3% and UL-94 V-0 rating were achieved for
FREP-7.5. Moreover, the PHRR, THR and TSP values of FREP-7.5 declined by 54.7%, 14.7% and
15.4%, respectively. The comprehensive analysis of the char residues after CCT demonstrated
that the phosphate-containing compounds dehydrated and esterified the EP matrix to form
compact and continuous protective layers with high quality, which acted as physical barriers
to effectively isolate the underlying substrate from heat and oxygen in the condensed phase.
Additionally, the analysis of the pyrolysis volatiles showed that the release of non-combustible
gases and phosphorus-containing radicals prevented the further combustion of the matrix
in the gas phase. In conclusion, AVD, as an efficient and environmentally friendly bio-based
flame retardant, is consistent with the concept of sustainable development and has great
potential application in many fields. The exploration of more bio-based raw materials for
flame retardant modification is one of the very promising development directions in flame
retardant research.
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