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Abstract
Purpose of Review After a prolonged warm-up period of basic research, several modalities of cell replacement therapies are
under development for diseases with no available cure. Diabetic polyneuropathy (DPN) is one of the most prevalent chronic
diabetes complications that causes sensorimotor dysfunction, subsequent high risks for lower limb amputations, and high
mortality. Currently, no disease modifying therapy exists for DPN.
Recent Findings Several types of well-documented stem/progenitor cells have been utilized for cell transplantation therapies in
DPN model rodents: mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs), and cells with similar character-
istics of MSCs or EPCs derived from embryonic stem cells or induced pluripotent stem cells. Some recent experimental studies
reported that these immature cells may have beneficial effects on DPN.
Summary Although the role of nerve regeneration in the pathology of DPN has not been sufficiently elucidated, many inter-
vention studies attempting regenerative therapy of DPN have been reported. Further studies are needed to better evaluate the
potential of regeneration in reversing the pathology of DPN

Keywords diabetic polyneuropathy . mesenchymal stromal cell . endothelial progenitor cell . induced pluripotent stem cell . cell
transplantation . regenerativemedicine

Introduction

Today, the field of regenerative medicine is undergoing great
development.Traditionally, there have been several options
for tissue regeneration, i.e., artificial scaffold, cell transplanta-
tion, and replacement of various cytoprotective or growth fac-
tors. However, as new cell sources including induced plurip-
otent stem cells (iPSCs) [1, 2••] were introduced and many
clinical trials using mesenchymal stromal cells (MSCs) [3–5]
or other progenitor/stem cells were successively accumulated
[6, 7], the potential for cell transplantation therapies seems to
be expanding very rapidly. In this review, we discuss current

evidence on the potential of cell transplantation therapies as
regenerative medicine for diabetic polyneuropathy (DPN).

An overview outlining proposed steps to develop this new
therapeutic option for DPN is presented in Fig. 1.

Regenerative Medicine with MSCs

Adult stem cells or tissue stem cells are cells distributed in
various tissues and organs throughout our adult lives. It is
generally accepted that hematopoietic stem cells, neural stem
cells, and intestinal stem cells can be regarded as stem cells
[8–12] because they possess self-renewal abilities and multi-
ple differentiation potentials [13–16]. Meanwhile, as bone
marrow derived MSCs were also long considered to be stem
cells [17] and are not susceptible to malignant transformation
[18, 19], researchers have attempted to utilize them in the
treatment of various diseases [20]. As a consequence, focusing
on immunomodulatory effects of MSCs, intravenous infusion
of MSCs has already been approved for clinical uses in graft-
versus-host diseases following hematopoietic stem cell trans-
plantation. In addition to bone marrow, MSCs are also derived
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from various other tissues, such as dental pulp [21], adipose
tissues [22], umbilical cords [23] and placentae [24], and have
been reported to have similar properties of multipotent
differentiation.

Common features of these MSCs are adherence to plastic
dishes, and the ability to differentiate into mesodermal cells in,
for example, bone, cartilage, and adipose tissues [17, 25].
However, as MSCs comprise heterogeneous subsets express-
ing various biomarkers, it is still difficult to verify a specificity
of MSCs [26, 27]. Morphology and combinations of cell sur-
face markers may identify the MSCs [28, 29].

However, it is not yet established that MSCs are true stem
cells because their proliferation is mostly self-limited and their
self-replication ability is scarcely verified [18, 30, 31].
Moreover, as the in vivo distribution and physiological roles
of MSCs are not fully elucidated, the stemness and roles of
MSCs are still controversial [32•, 33]. The embryological or-
igin of MSCs is also unclear. As MSCs can differentiate to
neurons and glias and express some neural markers, an
neuroectodermal origin is possible, although not fully
established [34].

As described above, MSCs are expected to behave as
progenitor-like cells, i.e., to promote tissue reconstruction by
providing an extracellular matrix, to exert cytoprotective ac-
tions through production of various growth factors, and to
accelerate cell proliferation. These features imply possible
usefulness in the whole body; therefore, clinical trials have
been considered for a wide variety of diseases.

As of June 2017, on the WHO’s International Clinical
Trials Registry Platform, 651 trials were retrieved in response
to the search query "mesenchymal stem cell(s)", and 89 trials
with "mesenchymal stromal cell(s)".Although the tissue used
for the isolation of MSCs has conventionally been bone mar-
row, most current studies utilize placentae, umbilical cords, or
adipose tissues to obtain MSCs. This expansion of resource
options has allowed for a rapid increase in clinical trials
around the world. At the moment, as briefly mentioned above,
MSCs are used in clinical settings against GVHD associated
with bone marrow transplantation in Canada, New Zealand,
and Japan. On the other hand, no application as regenerative
medicine has been achieved except for a phase III trial for
Crohn's disease, which is being carried out in the United
States of America.

Cytotherapy Using MSCs in DPN

Some basic research studies have shown that bone marrow-
derived MSCs have improved nerve conduction velocities in
streptozotocin-induced diabetic rats [35, 36]. These reports
have suggested the possibility that paracrine effects of growth
factors such as vascular endothelial growth factor (VEGF) and
fibroblast growth factor-2 (FGF-2), produced by MSC-
ameliorated DPN, may be derived from exosomes [37, 38],
but the beneficial effects of exosomes on DPN has not been
yet verified.
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Fig. 1 Strategy of cytotherapy in diabetic polyneuropathy
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The differentiation potential of MSCs into Schwann cells
may be an additional argument for their potential benefit in the
treatment of DPNb [39, 40], in that a direct supply of neural
cells derived fromMSCsmay contribute to the regeneration of
the peripheral nervous system (PNS).

In addition, MSCs also have the ability to differentiate into
pericytes of capillaries, which suggests that MSCs might aid
angiogenesis in numerous tissues and organs. However, as the
potential for differentiation can decrease with aging of donor
cells [41], the experimental conditions need to be thoroughly
studied in order to obtain stable results.

Although cell transplantation therapies are in full bloom in
this decade, it should be noted that cytotrophic/growth factors
also attracted attention in experimental medicine. Some
growth factor replacement therapies in DPN using nerve
growth factor [42] or VEGF [43] proceeded to clinical trials,
but although these replacements achieved a certain level of
beneficial effects on DPN, they unfortunately were not viewed
as having a wide application in clinical settings. It has also
been shown that intramuscular administration of FGF-2 in-
creased sciatic nerve blood flow and improved nerve conduc-
tion velocities in diabetic rats [44]. As mentioned above, it has
been reported that MSCs also express various growth factors
including neurotrophic and angiogenic factors, e.g., NGF,
FGF-2, and VEGF. Therefore, MSCs are expected to function
as a composite provider of these cytoprotective factors.
Currently, only one clinical study using MSCs for DPN has
been registered in the ClinicalTrials.gov database
(NCT02387749), but although the trial has already concluded,
the results have not yet been published.

Although a bright future is anticipated for the use ofMSCs,
some problems need to be addressed. First, the existence of
MSCs is still questionable. In 2008, Crisan et al. proved that
non-cultured human pericytes expressed MSC markers and
exhibited the potentials of osteogenic, chondrogenic and
adipogenic differentiation [45]. On the other hand,
Guimarães-Camboa et al., recently reported that pericytes
did not behave as MSCs in vivo [32•]. They suggested that
MSCs arose from ex vivo manipulations of perivascular cells.
Second, the definitions of MSCs both in humans and rodents
still depend on artificial conditions: adherence to the surface
of hard dishes; multiple differential inducibility into osteo-
cytes, chondrocytes and adipocytes; and expression of cell
surface markers including CD146 and PDGF-Rβ. Despite a
broad and lengthy employment of this combinative definition
of MSCs, MSC proliferation ability differs in each paper from
several weeks to an infinite time [46, 47] and a variety of cell
marker sets is also utilized. Third, the pathophysiological con-
tribution of MSCs to various diseases has never been clarified
in any experimental or clinical studies. Given that the physio-
logical roles of MSCs in normal tissues have not been fully
described, due to the lack of identity of MSCs in vivo, the
indispensability of MSCs in pathologies of related diseases

has not also been described. Limited information is available
to discuss the role of MSCs in pathological changes of DPN,
but we previously proved the reduction of CD29 positive/
CD90 positive bone marrow mononuclear cells, in which
MSCs are contained, in diabetic rats compared with non-
diabetic rats [48]. However, this population reduction is just
indicative of, but not convincing evidence of, the impact of
MSCs in the pathology of DPN. Given these limitations, fur-
ther investigations to elucidate the physiology of and to define
MSCs are recommended in the future.

Transplantation of Endothelial Progenitor
Cells in DPN

LikeMSCs, vascular endothelial progenitor cells (EPCs) have
a wide target range of diseases in the field of regenerative
medicine. EPCs were first reported as CD34 positive cells in
the mononuclear cells derived from the bone marrow by
Asahara andMurohara et al., in 1997 [49]. Since the definition
and existence of EPCs has been called into question [50], the
distribution and physiological roles of stem or progenitor cells
responsible for angiogenesis in adults is currently being ac-
tively discussed [51]. No clinical application using EPCs has
been actualized despite numerous clinical trials having been
registered. Therefore, in order to consider effective clinical
applications, it will be necessary to investigate the biology
of EPCs in more depth and to revisit the definition of EPCs.

Regardless of the lack of validated EPCs, many basic stud-
ies utilizing EPCs have been conducted. Naruse et al., report-
ed that the transplantation of umbilical cord blood-derived
EPCs improved the capillary-muscle fiber ratio in soleus mus-
cle and nerve conduction velocities in a rat DPN model [52].
Another group also indicated that some of the beneficial ef-
fects on DPN were delivered from angiogenic and neuropro-
tective factors produced by EPCs [53]. According to the report
by Jeong [53], engrafted EPCs were preferentially localized
along the course of the vasa nervorum of sciatic nerves in
diabetic mice. However, the paper referred to bone marrow-
derived adherent cells as EPCs, thus the transplanted EPCs
would consist of heterogeneous populations. Therefore, it is
hard to conclude that the beneficial effects were exclusively
demonstrated by EPCs themselves.

Pluripotent Cells as a Source for Regenerative
Therapy of DPN

Owing to the engineering breakthrough of pluripotent cells
including embryonic stem cells (ESCs) and induced pluripo-
tent stem cells (iPSCs), several types of immature cells that
can differentiate into mature cells comprising the PNS were
derived from pluripotent cells, and employed for DPN
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treatment in experimental studies. We previously reported that
the transplantation of angioblast-like cells derived from mu-
rine ESCs increased capillary density in the soleus muscle and
improved motor and sensory nerve conduction velocities
(NCVs) in diabetic mice [54]. As an alternative approach to
regeneration of the PNS, we utilized neural crest stem cell-like
(NCSC-like) cells derived from murine iPSCs. The NCSC-
like cells were engrafted into muscles of the lower limbs; after
their intramuscular transplantation, they differentiated into
pericytes and S100-positive Schwann-like cells. The trans-
plantation of NCSC-like cells also ameliorated perception
functions and NCVs of DPN model mice [55]. Furthermore,
MSC-like cells derived from iPSCs were also employed for
the regenerative therapy in DPN [56]. The MSC-like cells
provided not only pericytes but also Schwann cells, and some
engrafted Schwann-like cells surrounding neuronal axons in
sural nerves.

Regenerative Capacity in DPN

Many tissue engineering materials have been proposed for
wound healing in diabetic animals, particularly on diabetic
foot ulcers [57]. Furthermore, regenerative medicine has also
been recognized to promote neural axon recruitment using
artificial materials in peripheral nerve injury models in diabet-
ic animals [58]. However, it has not been attempted to perform
the regeneration of axons using a particular scaffold in the
DPNmodel. In addition, it is indisputable that the replacement
of cell bodies of sensory neurons themselves in dorsal root
ganglions (DRGs) utilizing scaffolds mimicking a structure
of DRGs has never been attempted. The reason why these
experiments have never been attempted is because the regen-
erative capability in the PNS may be limited only to axons,
especially those on the periphery of nerves. Since peripheral
nerves are anatomically separated from systemic blood circu-
lation by the perineurium and the blood-nerve barrier, it is
possible that therapeutic interventions act only on the nerve
terminals and their vicinity.

The potential roles of Schwann cells and vascular cells in
the pathophysiology of DPN have not been taken sufficiently
into consideration. It is assumed that these cells would pro-
mote regeneration of axons or blood vessels in the PNS.

Therefore, although most glial or vascular progenitor/stem
cells have been injected in intravenous or intramuscular fash-
ion [35], the validity of the transplantation route has never
been considered due to a scarcity of basic knowledge about
the behavior of these cells and their derivatives. It is necessary
to clarify in detail how regeneration occurs in the PNS of DPN
in the future. On that basis, the way to realization of regener-
ative medicine will be developed. In other words, we should
return to rigorous investigation of the mechanism of

homeostasis of the PNS and regeneration in DPN, and there-
after, the pathophysiology of DPN would be further clarified.

Conclusion

Although regenerative therapies of DPN are hampered by an
insufficient insight into the pathology of DPN, numerous trials
that might be slightly speed-before-quality have been present-
ed. After revealing the regeneration mechanism of the PNS in
DPN, several types of cells including vascular, nervous, and/
or mesenchymal cells could be considered for an application
in regenerative medicine.
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