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Abstract

Involved in many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, G-protein-
coupled receptors (GPCRs) are among the most frequent targets of therapeutic drugs. It is time-consuming and expensive
to determine whether a drug and a GPCR are to interact with each other in a cellular network purely by means of
experimental techniques. Although some computational methods were developed in this regard based on the knowledge
of the 3D (dimensional) structure of protein, unfortunately their usage is quite limited because the 3D structures for most
GPCRs are still unknown. To overcome the situation, a sequence-based classifier, called ‘‘iGPCR-drug’’, was developed to
predict the interactions between GPCRs and drugs in cellular networking. In the predictor, the drug compound is
formulated by a 2D (dimensional) fingerprint via a 256D vector, GPCR by the PseAAC (pseudo amino acid composition)
generated with the grey model theory, and the prediction engine is operated by the fuzzy K-nearest neighbour algorithm.
Moreover, a user-friendly web-server for iGPCR-drug was established at http://www.jci-bioinfo.cn/iGPCR-Drug/. For the
convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the
desired results without the need to follow the complicated math equations presented in this paper just for its integrity. The
overall success rate achieved by iGPCR-drug via the jackknife test was 85.5%, which is remarkably higher than the rate by
the existing peer method developed in 2010 although no web server was ever established for it. It is anticipated that iGPCR-
Drug may become a useful high throughput tool for both basic research and drug development, and that the approach
presented here can also be extended to study other drug – target interaction networks.
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Introduction

G-protein-coupled receptors (GPCRs), also known as G protein-

linked receptors (GPLR), serpentine receptor, seven-transmem-

brane domain receptors, and 7 TM (transmembrane), form the

largest family of cell surface receptors. GPCRs share a common

global topology that consists of seven transmembrane alpha

helices, intracellular C-terminal, an extracellular N-terminal, three

intracellular loops and three extracellular loops (Fig. 1).

GPCR-associated proteins may play at least the following four

distinct roles in receptor signaling: (1) directly mediate receptor

signaling, as in the case of G proteins; (2) regulate receptor

signaling through controlling receptor localization and/or traf-

ficking; (3) act as a scaffold, physically linking the receptor to

various effectors; (4) act as an allosteric modulator of receptor

conformation, altering receptor pharmacology and/or other

aspects of receptor function [1,2,3]. Involved in many diseases

such as cancer, diabetes, neurodegenerative, inflammatory and

respiratory disorders, GPCRs are among the most frequent targets

of therapeutic drugs [4]. Over half of all prescription drugs

currently on the market are actually acting by targeting GPCRs

directly or indirectly [5,6]. A lot of efforts have been invested for

studying GPCRs in both academic institutions and pharmaceutical

industries.

Identification of drug-target interactions is an essential step in

the drug discovery process, which is the most important task for

the new medicine development [7]. The methods commonly used

in this regard are docking simulations [8,9], literature text mining

[10], as well as a combination of chemical structure, genomic

sequence, and 3D (three-dimensional) structure information,

among others [11]. Obviously, an experimental 3D structure of

a target protein is the key for identifying the drug-protein

interaction; if it is not available, the common approach is to

create a homology model of the target protein based on the

experimental structure of a related protein [12,13,14]. However,

the above methods need further development due to the following

reasons. (1) None of these methods has provided a web-server for

the public usage, and hence their practical application value is

quite limited. (2) The prediction quality needs to be improved with

the state-of-the-art machine learning techniques and updated

training datasets. (3) GPCRs belong to membrane proteins, which
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are very difficult to crystallize and most of them will not dissolve in

normal solvents. Although a series of recent reports

[15,16,17,18,19,20,21] have demonstrated that NMR is indeed a

very powerful tool in determining the 3D structures of membrane

proteins, it is time-consuming and costly. Also, although using

various structural bioinformatics tools [12], particularly the

homologous technique [22,23,24,25,26], can help acquire the

structural and functional information of membrane proteins,

unfortunately the number of templates for membrane proteins is

quite limited. Therefore, it would be very useful to develop a

computational method for predicting the interactions between

drugs and GPCRs in cellular networking based on their sequences-

derived features before a drug candidate was synthesized, so as to

reduce the unnecessary waste of time and money [27]. And this is

the goal of the current study.

According to a recent comprehensive review [28] and

demonstrated by a series of recent publications (see, e.g.,

[29,30,31]), to establish a really useful statistical predictor for a

protein system, we need to consider the following procedures: (i)

construct or select a valid benchmark dataset to train and test the

predictor; (ii) formulate the protein samples with an effective

mathematical expression that can truly reflect their intrinsic

correlation with the attribute to be predicted; (iii) introduce or

develop a powerful algorithm (or engine) to operate the prediction;

(iv) properly perform cross-validation tests to objectively evaluate

the anticipated accuracy of the predictor; (v) establish a user-

friendly web-server for the predictor that is accessible to the public.

Below, let us describe how to deal with these steps.

Methodology

1. Benchmark Dataset
The benchmark dataset S can be formulated as

S~Sz|S{ ð1Þ

where Sz is the positive subset that consists of the interactive

GPCR-drug pairs only, while S
{

the negative subset that contains

of the non-interactive GPCR-drug pairs only, and the symbol |

represents the union in the set theory. Here, the ‘‘interactive’’ pair

means the pair whose two counterparts are interacted with each

other in the drug-target networks as defined in the KEGG

database at http://www.kegg.jp/kegg/; while the ‘‘non-interac-

tive’’ pair means that its two counterparts are not interacted with

each other in the drug-target networks. The positive dataset Sz

contains 620 GPCR-drug pairs, which were taken from [32]. The

negative dataset S{ contains 1,240 non-interactive GPCR-drug

pairs, which were derived according to the following procedures as

done in [32]: (i) separating each of the pairs in S
z

into single drug

and GPCR; (ii) re-coupling each of the single drugs with each of

the single GPCRs into pairs in a way that none of them occurred

in S
z

; (iii) randomly picking the pairs thus formed until they

reached the number two times as many as the pairs in Sz. The

620 interactive GPCR-drug pairs and 1,240 non-interactive

GPCR-drug pairs are given in Supporting Information S1. All

the detailed information for the compounds or drugs listed there

can be found in the KEGG database via their codes.

2. Sample Representation
Since each of the samples in the current network system

contains a GPCR (protein) and a drug, a combination of the

following two approaches were adopted to represent the

GPCR{drug pair samples.

(a) Representing drugs with 2D molecular finger-

prints. Although the number of drugs is extremely large, most

of them are small organic molecules and are composed of some

fixed small structures [33]. The identification of small molecules or

structures can be used to detect the drug-target interactions [34].

Molecular fingerprints are bit-string representations of molecular

structure and properties [35]. It should be pointed out that there

are many types of structural representation that have been

suggested for the description of drug molecules, including

physicochemical properties [36], chemical graphs [37], topological

indices [38], 3D pharmacophore patterns and molecular fields. In

the current study, let us use the simple and generally adopted 2D

molecular fingerprints to represent drug molecules, as described

below.

First, for each of the drugs concerned, we can obtain a MOL file

from the KEGG database [39] via its code that contains the

detailed information of chemical structure. Second, we can

convert the MOL file format into its 2D molecular fingerprint

file format by using a chemical toolbox software called OpenBabel

[40], which can be downloaded from the website at http://

openbabel.org/. The current version of OpenBabel can generate

four types of fingerprints: FP2, FP3, FP4 and MACCS. In the

current study, we used the FP2 fingerprint format. It is a path-

based fingerprint that identifies small molecule fragments based on

all linear and ring substructures and maps them onto a bit-string

using a hash function (somewhat similar to the Daylight

fingerprints [41,42]). It is a length of 256-bit hexadecimal string

or a 256-bit vector, whose component values are an integer

between 0 and 15. Let us suppose V1 is the 1st value of the 256-bit

vector, V2 that of the 2nd value, and so forth. Thus, the 256-bit

vector can be converted to a digit signal. In order to find the

inwardness of the drug fingerprint values, we implement the

discrete Fourier transform, with the frequency-domain values

given by

Xk~
X256

l~1

Vi exp {j
2pl

256

� �
k

� �
, (k~1,2, � � � ,256) ð2Þ

where j represents the imaginary unit and Xk is a complex number

Figure 1. Schematic drawing of a GPCR. It consists of seven
transmembrane alpha helices, intracellular C-terminal, an extracellular
N-terminal, three intracellular loops and three extracellular loops.
Reproduced from [4] with permission.
doi:10.1371/journal.pone.0072234.g001
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whose complex modulus or amplitude is given by

Ak~ real2 Xkð Þzimag2 Xkð Þ
� �1=2 ð3Þ

where real(Xk) is the real part of Xk and imag(Xk) the

corresponding image part. Thus we can generate the discrete

Fourier spectrum as given by

A1,A2, � � � ,A256f g ð4Þ

The Fourier spectrum numbers contain substantial information

about the digit signal, and hence can also be used to reflect certain

characters of a drug. Thus, a drug compound d now can be

formulated as a 256-D (dimensional) vector given by

d~ A1 A1 ::: Aj ::: A256½ �T ð5Þ

where Ai has the same meaning as in Eq. 4, and T is the matrix

transpose operator.

The 256-D vector thus obtained for each of the drug codes

listed in Supporting Information S1 are given in Supporting

Information S2.

(b) Representing GPCR sequences with grey model

pseudo amino acid composition. The sequences of the

GPCRs involved in this study are given in Supporting Information

S3. Now the problem is how to effectively represent these receptor

sequences for the current study. Generally speaking, there are two

kinds of approaches to formulate protein sequences: the sequential

model and the non-sequential or discrete model [43]. The most

typical sequential representation for a protein sample with L
residues is its entire amino acid sequence, as can be formulated as

P~R1R2R3R4R5R6R7 � � �RL ð6Þ

where R1 represents the 1st residue of the protein sequence P, R2

the 2nd residue, and so forth. A protein thus formulated can

contain its most complete information. This is an obvious

advantage of the sequential representation. To get the desired

results, the sequence-similarity-search-based tools, such as BLAST

[44,45], are usually utilized to conduct the prediction. However,

this kind of approach failed to work when the query protein did

not have significant homology to proteins of known characters.

Thus, various non-sequential representation models were pro-

posed. The simplest non-sequential model for a protein was based

on its amino acid composition (AAC), as defined by

P~ f1 f2 � � � f20½ �T ð7Þ

where fu(u~1,2, � � � ,20) are the normalized occurrence frequen-

cies of the 20 native amino acids [46,47] in the protein P, and T
has the same meaning as in Eq. 5. The AAC-discrete model was

widely used for identifying various attributes of proteins.

However, as can be seen from Eq. 7, all the sequence order

effects were lost by using the AAC-discrete model. This is its main

shortcoming. To avoid completely losing the sequence-order

information, the pseudo amino acid composition was proposed

[48] to replace the simple amino acid composition (AAC) for

representing the sample of a protein. Since the concept of

PseAAC (also called ‘‘Chou’s PseAAC’’ [49]) was proposed in

2001 [48], it has been widely used to study various attributes of

proteins, such as discriminating outer membrane proteins [50],

identifying antibacterial peptides [51], identifying allergenic

proteins [52], predicting metalloproteinase family [53], predicting

protein structural class [54], identifying bacterial virulent proteins

[55], predicting supersecondary structure [56], predicting protein

subcellular location [57,58,59,60], predicting membrane protein

types [61,62], identifying GPCRs and their types [63], identifying

protein quaternary structural attributes [64], predicting protein

submitochondria locations [65], identifying risk type of human

papillomaviruses [66], identifying cyclin proteins [67], predicting

GABA(A) receptor proteins [68], classifying amino acids [69],

predicting cysteine S-nitrosylation sites in proteins [30], among

many others (see a long list of papers cited in the References

section of [28]). Recently, the concept of PseAAC was further

extended to represent the feature vectors of DNA and nucleotides

[29,31], as well as other biological samples (see, e.g., [70,71]).

Because it has been widely and increasingly used, recently two

powerful soft-wares called ‘‘PseAAC-Builder’’ [72] and ‘‘propy’’

[73] were established for generating various special Chou’s

pseudo-amino acid compositions, in addition to the web-server

PseAAC [74] built in 2008. According to a recent review [28],

the general form of PseAAC for a protein P is formulated by

P~ y1 y2 � � � yu � � � yV½ �T ð8Þ

where the subscript V is an integer, and its value as well as the

components yu(u~1,2, � � � ,V) will depend on how to extract

the desired information from the amino acid sequence of P
(cf. Eq. 6). Below, let us describe how to extract useful

information from the benchmark dataset S and Supporting

Information S3 to define the GPCR samples concerned via Eq. 8.

First, let us represent the protein sequence by a series of real

numbers. Listed in Table 1 are the ten different kinds of

physicochemical properties usually used for identifying protein

attributes [75]. For the current study, however, it was found

through many preliminary tests that when the 10th physicochem-

ical property (i.e., the ‘‘mean polarity’’) was used, the best

prediction quality was observed. This is quite consistent with the

observations that polar amino acids play an important role in

membrane protein receptors [12,17]. Accordingly, the 20 numer-

ical values of the mean polarity in Table 1 were used to encode

the 20 native amino acids in a GPCR sequence. Note that to

ensure that each of these numerical codes was a positive number as

required by the Grey model used later, during the encoding

process, each of the mean polarity values in Table 1 was added by

a number of 1.20. Thus, for a given GPCR sequence with L
amino acids (cf. Eq. 6), we can convert it into a series of L real

number as formulated by

P~ r1 r2 � � � rLð Þ ð9Þ

where r1 is the mean polarity value for the 1st amino acid residue

in the GPCR protein P, e.g., if the 1st residue is A, then we have

r1~({0:06z1:20)~1:14; r2 is the mean polarity value for the

2nd amino acid residue plus 1.20; and so forth. Now, we can use

the grey system model to extract the useful information of P via

Eq. 8 to formulate its PseAAC.

According to the grey system theory [76], if the information of a

system investigated is fully known, it is called a ‘‘white system’’; if

completely unknown, a ‘‘black system’’; if partially known, a ‘‘grey

system’’. The model developed based on such a theory is called

‘‘grey model’’, which is a kind of nonlinear and dynamic model

formulated by a differential equation. The grey model is

particularly useful for solving complicated problems [77] that are

Predict GPCR - Drug Interaction
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lack of sufficient information, or need to process uncertain

information and reduce random effects of acquired data. In the

grey system theory, an important and generally used model is

called GM(1,1) [76]. By following the similar procedures as

described in [78,79,80,81], Eq. 8 would become a feature vector

with dimension V~22 and each of its components defined by

yu~

fuP20
i~1 fiz

P2
k~1 wkak

, 1ƒuƒ20

wu{20au{20P20
i~1 fiz

P2
k~1 wkak

, 21ƒuƒ22

8>>><
>>>:

ð10Þ

where fu has the same meaning as Eq. 7, wk(k~1,2) is the weight

factor (in this study we choose w1~105 and w2~102 to get the

best results), and a1 and a2 are given by

a1

a2

� �
~(BTB){1BTY ð11Þ

where

B~

{
r2

ln
r1zr2

r1

� 	 1

{
r3

ln
r1zr2zr3

r1zr2

� 	 1

..

. ..
.

..

. ..
.

{
rL

ln

PL
k~1

rkPL{1
k~1

rk

 ! 1

2
6666666666666666664

3
7777777777777777775

ð12Þ

and

Y~

r2

r3

..

.

rL

2
66664

3
77775 ð13Þ

(c) Representing GPCR-drug pairs. Now the pair between

a GPCR protein P and a drug compound D can be formulated by

combing Eq. 5 and Eq. 8, as given by

Table 1. Ten physicochemical property codes for each of the 20 native amino acidsa.

Amino acid Ten physicochemical property codesb

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

A 0.62 20.50 15 2.35 9.87 6.11 91.50 89.09 27.5 20.06

C 0.29 21.00 47 1.71 10.78 5.02 117.7 121.2 44.6 1.36

D 20.90 3.00 59 1.88 9.60 2.98 124.5 133.1 40.0 20.80

E 20.74 3.00 73 2.19 9.67 3.08 155.1 147.1 62.0 20.77

F 1.19 22.50 91 2.58 9.24 5.91 203.4 165.2 115.5 1.27

G 0.48 0.00 1 2.34 9.60 6.06 66.40 75.07 0.0 20.41

H 20.40 20.50 82 1.78 8.97 7.64 167.3 155.2 79.0 0.49

I 1.38 21.80 57 2.32 9.76 6.04 168.8 131.2 93.5 1.31

K 21.50 3.00 73 2.20 8.90 9.47 171.3 146.2 100.0 21.18

L 1.06 21.80 57 2.36 9.60 6.04 167.9 131.2 93.5 1.21

M 0.64 21.30 75 2.28 9.21 5.74 170.8 149.2 94.1 1.27

N 20.78 0.20 58 2.18 9.09 10.76 135.2 132.1 58.7 20.48

P 0.12 0.00 42 1.99 10.60 6.30 129.3 115.1 41.9 0.00

Q 20.85 0.20 72 2.17 9.13 5.65 161.1 146.2 80.7 20.73

R 22.53 3.00 101 2.18 9.09 10.76 202.0 174.2 105 20.84

S 20.18 0.30 31 2.21 9.15 5.68 99.10 105.1 29.3 20.50

T 20.05 20.40 45 2.15 9.12 5.60 122.1 119.1 51.3 20.27

V 1.08 21.50 43 2.29 9.74 6.02 141.7 117.2 71.5 1.09

W 0.81 23.40 130 2.38 9.39 5.88 237.6 204.2 145.5 0.88

Y 0.26 22.30 107 2.20 9.11 5.63 203.6 181.2 117.3 0.33

aThe numerical codes of the physicochemical properties can be obtained from the text biochemistry book (e.g., [101]) and the papers [102,103].
bThe 1st physicochemical property is for ‘‘hydrophobicity’’, 2nd for ‘‘hydrophilicity’’, 3rd for ‘‘side-chain mass’’, 4th for ‘‘pK1 (Ca-COOH)’’, 5th for ‘‘pK2 (NH3)’’, 6th for ‘‘PI
(25uC)’’, 7th for ‘‘average buried volume’’, 8th for ‘‘molecular weight’’, 9th for ‘‘side-chain volume’’, and 10th for ‘‘mean polarity’’.
doi:10.1371/journal.pone.0072234.t001
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G~P+w3d~ y1 � � � y22 w3A1 � � � w3A256½ �T ð14Þ

where G represents the GPCR-drug pair, + the orthogonal sum

[43], w3 the weight factor that was chosen as 1/700 in this study to

get the best results, and yu(u~1,2, � � � ,22) are given in Eq. 10.

3. Fuzzy K-Nearest Neighbor Algorithm
The fuzzy K-Nearest Neighbour (KNN) classification method

[82] is quite popular in the pattern recognition community owing

to its good performance and ease of use. It is particularly effective

in dealing with complicated biological systems, such as identifying

nuclear receptor subfamilies [83], characterizing the structure of

fast-folding proteins [84], classifying G protein-coupled receptors

[85], predicting protein quaternary structural attributes [86],

predicting protein structural classes [87,88,89,90], identifying

membrane protein types [91], and so forth. The rationale of the

fuzzy method is based on the fact that it is impossible to define a

feature vector that can contain all the entire information of a

complicated system. Therefore, it is logically more reasonable to

treat this kind of object as a fuzzy system. Below, let us give a brief

introduction how to use the fuzzy KNN approach to identify the

interactions between the GPCR and the drug compounds in the

network concerned.

Suppose S(N)~ G1,G2, � � � ,GNf g is a set of vectors represent-

ing N GPCR-drug pairs in a training set classified into two classes

Cz,C{

 �

, where Cz denotes the interactive pair class while C{

the non-interactive pair class; S
�(G)~ G�1,G�2, � � � ,G�K


 �
5S(N)

is the subset of the K nearest neighbor pairs to the query pair G.

Thus, the fuzzy membership value for the query pair G in the two

classes of S(N) is given by [92]

mz(G)~

PK
j~1 mz(G�j )d(G,G�j ){2=(Q{1)PK

j~1 d(G,G�j ){2=(Q{1)

m{(G)~

PK
j~1 m{(G�j )d(G,G�j ){2=(Q{1)PK

j~1 d(G,G�j ){2=(Q{1)

8>>>>><
>>>>>:

ð15Þ

where K is the number of the nearest neighbors counted for the

query pair G; mz(G�j ) and m{(G�j ), the fuzzy membership values

of the training sample G�j to the class Cz and C{, respectively, as

will be further defined below; d(G,G�j ), the Euclidean distance

between G and its jth nearest pair G�j in the training dataset S(N);

Q(w1), the fuzzy coefficient for determining how heavily the

distance is weighted when calculating each nearest neighbor’s

contribution to the membership value. Note that the parameters K

and Q will affect the computation result of Eq. 15, and they will be

optimized by a grid-search as will be described later. Also, various

other metrics can be chosen for d(G,G�j ), such as Hamming

distance [93] and Mahalanobis distance [94,95].

The quantitative definitions for the aforementioned mz(G�j ) and

m{(G�j ) in Eq. 15 are given by

mz(G�j )~
1, if G�j [Cz

0, otherwise

�
m{(G�j )~

1, if G�j [C{

0, otherwise

�
ð16Þ

Substituting the results obtained by Eq. 16 into Eq. 15, it

follows that if mz(G)wm{(G) then the query pair G is an

interactive couple; otherwise, non-interactive. In other words, the

outcome can be formulated as

G[
Cz, if mz(G)wm{(G)

C{, otherwise

�
ð17Þ

The predictor thus established is called iGPCR-Drug. To

provide an intuitive overall picture of how the classifier works, a

flowchart is provided in Fig. 2 to show its operation process.

Results and Discussion

1. Metrics for Performance Evaluation
To provide a more intuitive and easier-to-understand method to

measure the prediction quality, here the criteria proposed in [96]

was adopted. According to those criteria, the rates of correct

predictions for the interactive GPCR-drug pairs in dataset S
z

and

the non-interactive GPCR-drug pairs in dataset S{ are respec-

tively defined by (cf. Eq. 1).

Lz~
Nz{Nz

{

Nz
, for the interactive GPCR-drug pairs

L{~
N{{N{

z

N{
, for the non-interactive GPCR-drug pairs

8>><
>>: ð18Þ

where Nz is the total number of the interactive GPCR-drug pairs

investigated while Nz
{ the number of the interactive GPCR-drug

pairs incorrectly predicted as the non-interactive GPCR-drug

pairs; N{ the total number of the non-interactive GPCR-drug

pairs investigated while N{
z the number of the non-interactive

GPCR-drug pairs incorrectly predicted as the interactive GPCR-

drug pairs. The overall success prediction rate is given by [97]

L~
LzNzzL{N{

NzzN{
~1{

Nz
{zN{

z

NzzN{
ð19Þ

It is obvious from Eqs. 18–19 that, if and only if none of the

interactive GPCR-drug pairs and the non-interactive GPCR-drug

pairs are mispredicted, i.e., Nz
{~N{

z~0 and Lz~L{~1, we

have the overall success rate L~1. Otherwise, the overall success

rate would be smaller than 1.

On the other hand, it is interesting to point out that the

following equation set is often used in literatures for examining the

performance quality of a predictor.

Sn~ TP
TPzFN

Sp~ TN
TNzFP

Acc~ TPzTN
TPzTNzFPzFN

MCC~ (TP|TN){(FP|FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

8>>>>><
>>>>>:

ð20Þ

where TP represents the true positive; TN, the true negative; FP,

the false positive; FN, the false negative; Sn, the sensitivity; Sp, the

specificity; Acc, the accuracy; MCC, the Mathew’s correlation

coefficient.

Obviously, the relations between the symbols in Eq. 18 or Eq.
19 and those in Eq. 20 are given by
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TP~Nz{Nz
{

TN~N{{N{
z

FP~N{
z

FN~Nz
{

8>>><
>>>:

ð21Þ

Substituting Eq. 21 into Eq. 20 and also noting Eqs. 18–19,
we obtain.

Sn~Lz~1{
Nz

{
Nz

Sp~L{~1{
N{

z
N{

Acc~L~1{
Nz

{zN{
z

NzzN{

MCC~
1{

Nz
{

Nzz
N{

z
N{

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z
N{

z{Nz
{

Nz

� �
1z

Nz
{{N{

z
N{

� �s

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð22Þ

Now we can easily see: when Nz
{~0 meaning none of the

interactive GPCR-drug pairs was mispredicted to be a non-

interactive GPCR-drug pair, we have the sensitivity Sn~1; while

Nz
{~Nz meaning that all the interactive GPCR-drug pairs were

mispredicted to be the non-interactive GPCR-drug pairs, we have

the sensitivity Sn~0. Likewise, when N{
z~0 meaning none of the

non-interactive GPCR-drug pairs was mispredicted, we have the

specificity Sp~1; while N{
z~N{ meaning all the non-interactive

GPCR-drug pairs were incorrectly predicted as interactive GPCR-

drug pairs, we have the specificity Sp~0. When Nz
{~N{

z~0

meaning that none of the interactive GPCR-drug pairs in the

dataset S
z

and none of the non-interactive GPCR-drug pairs in

S
{

was incorrectly predicted, we have the overall accuracy

Acc~L~1; while Nz
{~Nz and N{

z~N{ meaning that all the

interactive GPCR-drug pairs in the dataset S
z

and all the non-

interactive GPCR-drug pairs in S
{

were mispredicted, we have

the overall accuracy Acc~L~0. The MCC correlation coeffi-

cient is usually used for measuring the quality of binary (two-class)

classifications. When Nz
{~N{

z~0 meaning that none of the

interactive GPCR-drug pairs in the dataset Sz and none of the

non-interactive GPCR-drug pairs in S{ was mispredicted, we

have MCC~1; when Nz
{~Nz=2 and N{

z~N{=2 we have

MCC~0 meaning no better than random prediction; when

Figure 2. A flowchart to show the operation process of the iGPCR-Drug predictor. See the text for further explanation.
doi:10.1371/journal.pone.0072234.g002
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Nz
{~Nz and N{

z~N{we have MCC~{1 meaning total

disagreement between prediction and observation. As we can see

from the above discussion, it is much more intuitive and easier-to-

understand when using Eq. 22 to examine a predictor for its

sensitivity, specificity, overall accuracy, and Mathew’s correlation

coefficient.

2. Cross-Validation
How to properly examine the prediction quality is a key for

developing a new predictor and estimating its potential application

value. Generally speaking, to avoid the ‘‘memory effect’’ [43] of

the resubstitution test in which a same dataset was used to train

and test a predictor, the following three cross-validation methods

are often used to examine a predictor for its effectiveness in

practical application: independent dataset test, subsampling or K-

fold (such as 5-fold, 7-fold, or 10-fold) test, and jackknife test [93].

However, as elaborated by a penetrating analysis in [98],

considerable arbitrariness exists in the independent dataset test.

Also, as demonstrated by Eqs. 28–30 in [28], the subsampling test

(or K-fold cross validation) cannot avoid arbitrariness either. Only

the jackknife test is the least arbitrary that can always yield a

unique result for a given benchmark dataset. Therefore, the

jackknife test has been widely recognized and increasingly adopted

by investigators to examine the quality of various predictors (see,

e.g., [51,52,99]). In view of this, the success rate by the jackknife

test was also used to optimize the two uncertain parameters K and

Q in Eq. 15. The result thus obtained is shown in Fig. 3, from

which we obtain when K~10 and Q~1:8 the iGPCR-Drug
predictor reaches its optimized status.

The success rates thus obtained by the jackknife test in

identifying interactive GPCR-drug pairs or non-interactive

GPCR-drug pairs are given in Table 2, from which we can see

that the overall success rate by iGPCR-Drug on the benchmark

dataset S was about 85.5%. In contrast, the corresponding success

rate obtained by He et al. [32] in using six biochemical and

physicochemical features to formulate GPCR-Drug samples was

only 78.49%. The remarkable improved success rate indicates that

introducing 2D molecular fingerprints to represent drug samples

and using the grey PseAAC to represent GPCR samples are really

a promising approach for studying the interactions of GPCRs and

drugs in cellular network, where the former can catch the essence

of the drug sample whereas the latter can catch the essence of the

GPCR sample.

It is instructive to point out that, compared with the existing

sequence-based methods, although the current approach could get

better results because of introducing the 2D molecular fingerprints

to represent drug samples and using grey PseAAC to represent the

GPCR samples, it is still a sequence-based or ‘‘sequence-derived’’

approach, and hence could not avoid some limitation. Particularly,

it cannot be used to predict the binding site and binding energy

between GPCR and drug. Only when the 3D structures for both

the GPCR receptor and its drug ligand are known or well defined,

can we try to predict their binding details via molecular docking

(see, e.g., [9]). Nevertheless, before their 3D structures are

available, the current sequence-derived approach can serve as a

high throughput tool for predicting GPCR–drug interactions in

cellular networking. This is particularly useful in conducting large-

scale analysis for the avalanche of biological sequences generated

in the post-genomic age.

Besides, to further validate the current predictor, we took

314 GPCR-drug pairs from the study by Yamanishi et al. [100]

that had been confirmed by experiments as interactive pairs and

none of them occurred in the current benchmark dataset used to

train our predictor. It was observed that, of the 314 pairs in such

an independent dataset, 271 were correctly identified by iGPCR-
Drug as interactive pairs; i.e., the success rate was 86.33%, quite

consistent with the above-mentioned jackknife success rate

(85.55%) achieved by the predictor on the benchmark dataset S

(cf. Eq. 1).

To enhance the value of its practical applications, the web

server for iGPCR-Drug has been established that can be freely

accessible at http://www.jci-bioinfo.cn/iGPCR-Drug/. It is

anticipated that the web server will become a useful high

throughput tool for both basic research and drug development

in the relevant areas, or at the very least play a complementary

role to the existing method [32] for which so far no web-server

whatsoever has been provided yet.

3. The Protocol or User Guide
For the convenience of the vast majority of biologists and

pharmaceutical scientists, here let us provide a step-by-step guide

to show how the users can easily get the desired result by means of

the web server without the need to follow the complicated

mathematical equations presented in this paper for the process of

developing the predictor and its integrity.

Step 1. Open the web server at the site http://www.jci-

bioinfo.cn/iGPCR-Drug/and you will see the top page of the

predictor on your computer screen, as shown in Fig. 4. Click on

the Read Me button to see a brief introduction about iGPCR-
Drug predictor and the caveat when using it.

Step 2. Either type or copy/paste the query pairs into the

input box at the center of Fig. 4. Each query pair consists of two

parts: one is for the protein sequence, and the other for the drug.

The GPCR sequence should be in FASTA format, while the drug

Figure 3. A 3D graph to show how to optimize the two
parameters K and Q for the iGPCR-Drug predictor.
doi:10.1371/journal.pone.0072234.g003

Table 2. The jackknife success rates obtained iGPCR-Drug
in identifying interactive GPCR-drug pairs and non-interactive
GPCR-drug pairs for the benchmark dataset S (cf. Supporting
Information S1).

Performance evaluation
(cf. Eq. 10 or 22) iGPCR-Druga

Method by
He et al.b

LzSn or 496
620

~80:00% N/A

L{Sp or 1095
1240 ~88:30% N/A

LAcc or 1591
1860

~85:5% 78.49%

MCC 67:75% N/A

aThe parameters used: w1~105 and w2~102 (cf. Eq. 10), w3~1=700 (cf. Eq.
14), and K~10 and Q~1:8 (cf. Eq. 15).
bSee ref. [32].
doi:10.1371/journal.pone.0072234.t002
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in the KEGG code. Examples for the query pairs input can be

seen by clicking on the Example button right above the input box.
Step 3. Click on the Submit button to see the predicted result.

For example, if you use the four query pairs in the Example

window as the input, after clicking the Submit button, you will see

on your screen that the ‘‘hsa:10161’’ GPCR and the ‘‘D00528’’

drug are an interactive pair, and that the ‘‘hsa:10800’’ GPCR and

the ‘‘D00411’’ drug are also an interactive pair, but that the

‘‘hsa:1909’’ GPCR and the ‘‘D02566’’ drug are not an interactive

pair, and that the ‘‘hsa:2913’’ GPCR and the ‘‘D01699’’ drug are

not an interactive pair either. All these results are fully consistent

with the experimental observations. It takes about 10 seconds

before the results are shown on the screen.
Step 4. Click on the Citation button to find the relevant paper

that documents the detailed development and algorithm of

iGPCR-Durg.
Step 5. Click on the Data button to download the benchmark

dataset used to train and test the iGPCR-Durg predictor.
Step 6. The program code is also available by clicking the

button download on the lower panel of Fig. 4.

Supporting Information

Supporting Information S1 The benchmark dataset contains

1,860 GPCR-drug pair samples, of which 620 are interactive and

1,240 non-interactive. The codes listed here were from the KEGG

database at http://www.kegg.jp/kegg/.

(PDF)

Supporting Information S2 The fingerprints for the drug

codes listed in Supporting Information S1. Each of these

fingerprints is a 256-D vectors generated by the OpenBabel

software downloaded from http://openbabel.org/.

(PDF)

Supporting Information S3 The protein sequences for the

GPCRs listed in Supporting Information S1.

(PDF)
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Professor Richard Giegé’s 40th anniversary of their scientific careers.

J Biomedical Science and Engineering (JBiSE) 6: 435–442; Available: http://

dx.doi.org/10.4236/jbise.2013.64054.

50. Hayat M, Khan A (2012) Discriminating Outer Membrane Proteins with
Fuzzy K-Nearest Neighbor Algorithms Based on the General Form of Chou’s

PseAAC. Protein & Peptide Letters 19: 411–421.

51. Khosravian M, Faramarzi FK, Beigi MM, Behbahani M, Mohabatkar H

(2013) Predicting Antibacterial Peptides by the Concept of Chou’s Pseudo-
amino Acid Composition and Machine Learning Methods. Protein & Peptide

Letters 20: 180–186.

52. Mohabatkar H, Beigi MM, Abdolahi K, Mohsenzadeh S (2013) Prediction of

Allergenic Proteins by Means of the Concept of Chou’s Pseudo Amino Acid
Composition and a Machine Learning Approach. Medicinal Chemistry 9: 133–

137.

53. Mohammad Beigi M, Behjati M, Mohabatkar H (2011) Prediction of

metalloproteinase family based on the concept of Chou’s pseudo amino acid
composition using a machine learning approach. Journal of Structural and

Functional Genomics 12: 191–197.

54. Sahu SS, Panda G (2010) A novel feature representation method based on
Chou’s pseudo amino acid composition for protein structural class prediction.

Computational Biology and Chemistry 34: 320–327.

55. Nanni L, Lumini A, Gupta D, Garg A (2012) Identifying Bacterial Virulent

Proteins by Fusing a Set of Classifiers Based on Variants of Chou’s Pseudo
Amino Acid Composition and on Evolutionary Information. IEEE/ACM

Trans Comput Biol Bioinform 9: 467–475.

56. Zou D, He Z, He J, Xia Y (2011) Supersecondary structure prediction using

Chou’s pseudo amino acid composition. Journal of Computational Chemistry
32: 271–278.

57. Wan S, Mak MW, Kung SY (2013) GOASVM: A subcellular location

predictor by incorporating term-frequency gene ontology into the general form

of Chou’s pseudo-amino acid composition. Journal of Theoretical Biology 323:
40–48.

58. Chang TH, Wu LC, Lee TY, Chen SP, Huang HD, et al. (2013) EuLoc: a

web-server for accurately predict protein subcellular localization in eukaryotes

by incorporating various features of sequence segments into the general form of
Chou’s PseAAC. Journal of Computer-Aided Molecular Design 27: 91–103.

59. Zhang SW, Zhang YL, Yang HF, Zhao CH, Pan Q (2008) Using the concept

of Chou’s pseudo amino acid composition to predict protein subcellular
localization: an approach by incorporating evolutionary information and von

Neumann entropies. Amino Acids 34: 565–572.

60. Kandaswamy KK, Pugalenthi G, Moller S, Hartmann E, Kalies KU, et al.

(2010) Prediction of Apoptosis Protein Locations with Genetic Algorithms and
Support Vector Machines Through a New Mode of Pseudo Amino Acid

Composition. Protein and Peptide Letters 17: 1473–1479.

61. Chen YK, Li KB (2013) Predicting membrane protein types by incorporating

protein topology, domains, signal peptides, and physicochemical properties into
the general form of Chou’s pseudo amino acid composition. Journal of

Theoretical Biology 318: 1–12.

62. Huang C, Yuan JQ (2013) A Multilabel Model Based on Chou’s Pseudo-

Amino Acid Composition for Identifying Membrane Proteins with Both Single
and Multiple Functional Types. J Membr Biol 246: 327–334.

63. Zia Ur R, Khan A (2012) Identifying GPCRs and their Types with Chou’s

Pseudo Amino Acid Composition: An Approach from Multi-scale Energy

Representation and Position Specific Scoring Matrix. Protein & Peptide Letters
19: 890–903.

64. Sun XY, Shi SP, Qiu JD, Suo SB, Huang SY, et al. (2012) Identifying protein

quaternary structural attributes by incorporating physicochemical properties

into the general form of Chou’s PseAAC via discrete wavelet transform.
Molecular BioSystems 8: 3178–3184.

65. Nanni L, Lumini A (2008) Genetic programming for creating Chou’s pseudo

amino acid based features for submitochondria localization. Amino Acids 34:
653–660.

66. Esmaeili M, Mohabatkar H, Mohsenzadeh S (2010) Using the concept of
Chou’s pseudo amino acid composition for risk type prediction of human

papillomaviruses. Journal of Theoretical Biology 263: 203–209.

67. Mohabatkar H (2010) Prediction of cyclin proteins using Chou’s pseudo amino

acid composition. Protein & Peptide Letters 17: 1207–1214.

Predict GPCR - Drug Interaction

PLOS ONE | www.plosone.org 9 August 2013 | Volume 8 | Issue 8 | e72234



68. Mohabatkar H, Mohammad Beigi M, Esmaeili A (2011) Prediction of

GABA(A) receptor proteins using the concept of Chou’s pseudo-amino acid
composition and support vector machine. Journal of Theoretical Biology 281:

18–23.

69. Georgiou DN, Karakasidis TE, Nieto JJ, Torres A (2009) Use of fuzzy
clustering technique and matrices to classify amino acids and its impact to

Chou’s pseudo amino acid composition. Journal of Theoretical Biology 257:
17–26.

70. Li BQ, Huang T, Liu L, Cai YD, Chou KC (2012) Identification of colorectal

cancer related genes with mRMR and shortest path in protein-protein
interaction network. PLoS ONE 7: e33393.

71. Jiang Y, Huang T, Lei C, Gao YF, Cai YD, et al. (2013) Signal propagation in
protein interaction network during colorectal cancer progression. BioMed

Research International, 2013: 287019. Available: http://dx.doi.org/10.1155/
2013/287019.

72. Du P, Wang X, Xu C, Gao Y (2012) PseAAC-Builder: A cross-platform stand-

alone program for generating various special Chou’s pseudo-amino acid
compositions. Analytical Biochemistry 425: 117–119.

73. Cao DS, Xu QS, Liang YZ (2013) propy: a tool to generate various modes of
Chou’s PseAAC. Bioinformatics 29: 960–962.

74. Shen HB, Chou KC (2008) PseAAC: a flexible web-server for generating

various kinds of protein pseudo amino acid composition. Analytical
Biochemistry 373: 386–388.

75. Xiao X, Chou KC (2007) Digital coding of amino acids based on hydrophobic
index. Protein & Peptide Letters 14: 871–875.

76. Deng JL (1989) Introduction to Grey System Theory. The Journal of Grey
System: 1–24.

77. Lin WZ, Fang JA, Xiao X, Chou KC (2013) iLoc-Animal: A multi-label

learning classifier for predicting subcellular localization of animal proteins
Molecular BioSystems 9: 634–644.

78. Lin WZ, Fang JA, Xiao X, Chou KC (2011) iDNA-Prot: Identification of DNA
Binding Proteins Using Random Forest with Grey Model. PLoS ONE 6:

e24756.

79. Lin WZ, Fang JA, Xiao X, Chou KC (2012) Predicting Secretory Proteins of
Malaria Parasite by Incorporating Sequence Evolution Information into

Pseudo Amino Acid Composition via Grey System Model. PLoS One 7:
e49040.

80. Lin WZ, Xiao X, Chou KC (2009) GPCR-GIA: a web-server for identifying G-
protein coupled receptors and their families with grey incidence analysis.

Protein Eng Des Sel 22: 699–705.

81. Xiao X, Lin WZ, Chou KC (2008) Using grey dynamic modeling and pseudo
amino acid composition to predict protein structural classes. Journal of

Computational Chemistry 29: 2018–2024.
82. Keller JM, Gray MR, Givens JA (1985) A fuzzy k-nearest neighbours

algorithm. IEEE Trans Syst Man Cybern 15: 580–585.

83. Xiao X, Wang P, Chou KC (2012) iNR-PhysChem: A Sequence-Based
Predictor for Identifying Nuclear Receptors and Their Subfamilies via Physical-

Chemical Property Matrix. PLoS ONE 7: e30869.
84. Roterman I, Konieczny L, Jurkowski W, Prymula K, Banach M (2011) Two-

intermediate model to characterize the structure of fast-folding proteins.
Journal of Theoretical Biology 283: 60–70.

85. Xiao X, Wang P, Chou KC (2011) GPCR-2L: Predicting G protein-coupled

receptors and their types by hybridizing two different modes of pseudo amino
acid compositions. Molecular Biosystems 7: 911–919.

86. Xiao X, Wang P, Chou KC (2011) Quat-2L: a web-server for predicting

protein quaternary structural attributes. Molecular Diversity 15: 149–155.
87. Ding YS, Zhang TL, Chou KC (2007) Prediction of protein structure classes

with pseudo amino acid composition and fuzzy support vector machine
network. Protein & Peptide Letters 14: 811–815.

88. Maggiora GM, Zhang CT, Chou KC, Elrod DW (1996) Combining fuzzy

clustering and neural networks to predict protein structural classes. In: Devillers
J, editor. in Neural Networks in QSAR and Drug Design. London: Academic

Press. 255–279.
89. Shen HB, Yang J, Liu XJ, Chou KC (2005) Using supervised fuzzy clustering

to predict protein structural classes. Biochem Biophys Res Commun 334: 577–
581.

90. Zhang CT, Chou KC, Maggiora GM (1995) Predicting protein structural

classes from amino acid composition: application of fuzzy clustering. Protein
Engineering 8: 425–435.

91. Shen HB, Yang J, Chou KC (2006) Fuzzy KNN for predicting membrane
protein types from pseudo amino acid composition. Journal of Theoretical

Biology 240: 9–13.

92. Wang P, Xiao X, Chou KC (2011) NR-2L: A Two-Level Predictor for
Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived

Features. PLoS ONE 6: e23505.
93. Chou KC, Zhang CT (1995) Review: Prediction of protein structural classes.

Critical Reviews in Biochemistry and Molecular Biology 30: 275–349.
94. Mahalanobis PC (1936) On the generalized distance in statistics. Proc Natl Inst

Sci India 2: 49–55.

95. Chou KC (1995) Does the folding type of a protein depend on its amino acid
composition? FEBS Letters. 363: 127–131.

96. Chou KC (2001) Prediction of signal peptides using scaled window. Peptides
22: 1973–1979.

97. Chou KC (1995) A novel approach to predicting protein structural classes in a

(20–1)-D amino acid composition space. Proteins: Structure, Function &
Genetics 21: 319–344.

98. Chou KC, Shen HB (2010) Cell-PLoc 2.0: An improved package of web-
servers for predicting subcellular localization of proteins in various organisms.

Natural Science 2: 1090–1103. Available: http://dx.doi.org/10.4236/ns.2010.
210136.

99. Chou KC (2013) Some Remarks on Predicting Multi-Label Attributes in

Molecular Biosystems. Molecular Biosystems 9: 1092–1100.
100. Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction

prediction from chemical, genomic and pharmacological data in an integrated
framework. Bioinformatics 26: i246–254.

101. Voet D, Voet JG (1995) Biochemistry. New York: John Eiley & sons, Inc. 2nd

ed. 5–6. 5–6 p.
102. Tanford C (1962) Contribution of hydrophobic interactions to the stability of

the globular conformation of proteins. Journal of American Chemical Society
84: 4240–4274.

103. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from
amino acid sequences. Proc Natl Acad Sci USA 78: 3824–3828.

Predict GPCR - Drug Interaction

PLOS ONE | www.plosone.org 10 August 2013 | Volume 8 | Issue 8 | e72234


