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Abstract

The tumor suppressor p53 regulates downstream genes in response to many cellular stresses and is 

frequently mutated in human cancers. Here, we report the use of a crosslinking strategy to trap a 

tetrameric p53 DNA binding domain (p53DBD) bound to DNA and the X-ray crystal structure of 

the protein/DNA complex. The structure reveals that two p53DBD dimers bind to B form DNA 

with no relative twist and that a p53 tetramer can bind to DNA without introducing significant 

DNA bending. The numerous dimer-dimer interactions involve several strictly conserved residues 

thus suggesting a molecular basis for p53DBD-DNA binding cooperativity. Surface residue 

conservation of the p53DBD tetramer bound to DNA highlights possible regions of other p53 

domain or p53 cofactor interactions.

The gene encoding the p53 tumor suppressor is commonly mutated in human cancer and its 

protein product has been extensively studied at both the cellular and molecular level. In 

response to DNA damage, cell stress and some oncogenic proteins, p53 induces cell cycle 

arrest or apoptosis(Horn and Vousden, 2007). p53 must retain its ability to oligomerize and 

bind specific DNA sequences to fulfill its function(Pietenpol et al., 1994). Through many 

structural studies, residues within the p53 DNA binding domain (p53DBD) that are crucial 

for domain stability, DNA binding and dimerization have been elucidated and correlated 

with known cancerous mutations(Cho et al., 1994; Ho et al., 2006; Kitayner et al., 2006). 

The in vivo form of p53 is a tetramer and while several models of four p53 core domains 

bound to a consensus sequence have been proposed (Ho et al., 2006; Kitayner et al., 2006; 

Nagaich et al., 1999; Pan and Nussinov, 2007) and one p53 tetramer bound to a 

discontinuous DNA duplex has been recently described (Kitayner et al., 2006), a p53 

tetramer bound to a continuous cognate DNA site has not been previously reported.

The polypeptide chain of p53 has four distinct domains: a loosely folded N terminal 

transactivation domain (residues 1 – 44), a DNA binding core domain (residues 99 – 289), a 

tetramerization domain (residues 317 – 353), and a C terminal regulatory domain (residues 

353 – 390)(Jeffrey et al., 1995). The DNA binding domain binds p53 consensus sequences 
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that contains two half sites of the following motif: 5′ – Pu Pu Pu C (A/T) | (T/A) G Py Py Py 

– 3′, where Pu and Py stand for purine and pyrimidine respectively(El-Diery et al., 1992). 

The half sites may be separated by 0 to 20 basepairs, with a zero base-pair separation being 

the most common(El-Diery et al., 1992). The symmetry of the consensus sequence and the 

structure of the tetramerization domain determined in 1995 (Jeffrey et al., 1995) lead to the 

hypothesis that p53 is a dimer of dimers.

Recently, the structure of a mouse p53DBD dimer bound to DNA was determined through 

the use of structure based cross-linking (Ho et al., 2006). Covalent crosslinking has emerged 

as a useful tool to crystallize otherwise difficult protein-DNA complexes (He and Verdine, 

2002; Verdine and Norman, 2003). Structure based crosslinking uses site-directed 

mutagenesis to introduce a crosslinkable cysteine residue and the convertible nucleoside 

approach to create a DNA oligomer bearing a disulfide linker for crosslinking with the 

engineered cysteine residue of the protein (He and Verdine, 2002; MacMillan and Verdine, 

1991; Verdine and Norman, 2003). When the protein binds the DNA, the cysteine and linker 

come close enough to form a disulfide bond, thus trapping the protein/DNA complex in the 

form of a crosslinked product. This particular strategy, which requires some knowledge of 

the protein/DNA interface, has previously lead to high-resolution structures and a deeper 

understanding of HIV-1 reverse transcriptase(Huang et al., 1998) and MutM DNA 

glycosylase(Banerjee et al., 2006; Banerjee et al., 2005).

The mouse p53DBD dimer work relied on results from Cho et al.’s landmark X-ray crystal 

structure study of a p53DBD monomer bound to DNA in order to design an appropriate 

protein-DNA crosslink. Cys277 (human numbering) was reported to specifically contact 

Cyt18, the first pyrimidine within the provided DNA half site (Cho et al., 1994). Ho et al. 

modified the cytosine at this position by replacing the N4 amine with a cystamine and 

crosslinked wild type p53DBD to the new half site. The result of this work was an X-ray 

structure determination of a dimeric mouse p53DBD dimer bound to DNA and 

characterization of the core domain dimer interface (Ho et al., 2006). Further support for the 

ability of p53-DNA crosslinking to provide biologically meaningful results was provided by 

Shakked and coworkers with their structure of a human p53DBD dimer of dimers bound to a 

discontinuous DNA duplex, which showed analogous p53DBD dimer interactions on DNA 

(Kitayner et al., 2006).

Previous attempts to crystallize four p53DBDs bound to a continuous DNA consensus site 

have met with little success. This is underscored by the structure determined by Cho et al., 

whose asymmetric unit contained only one of three p53DBDs bound sequence specifically 

to a DNA half site (Cho et al., 1994). More recently, the dimer of p53DBD dimers bound to 

a discontinuous DNA duplex where the break in DNA is between two p53DBD dimer/DNA 

complexes was reported, but the DNA packed in the crystal lattice such that the DNA is out 

of register (by about two base-pairs) relative to a continuous DNA duplex (Kitayner et al., 

2006). In order to visual a p53 core domain tetramer bound to a continuous cognate DNA 

duplex, we extended the previously utilized crosslinking strategy to trap a p53DBD tetramer 

bound to a full p53 consensus site containing the most common zero base-pair separation 

between the two DNA half sites and now report on its structure.
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RESULTS AND DISCUSSION

Crystal structure of the p53DBD tetramer bound to DNA

Two tetrameric p53DBD/DNA complex structures, referred to as structure 1 and structure 2, 

were determined to resolutions of 2.00 and 2.20 Å respectively (Table 1). While both 

protein/DNA complexes crystallized in spacegroup C2, the cell parameters and asymmetric 

units of these complexes differ, with structure 1 containing a p53DBD dimer bound to a 

DNA half site and structure 2 containing a p53DBD subunit bound to a DNA quarter site. 

As a result of these differences, the crystal packing contacts show significant differences 

between the two structures. The most significant difference lies along the direction of the 

DNA helical axis. The DNA in structure 1 forms end-end Hoogsteen base-pairs involving 

the overhanging 5′ thymine base of one DNA duplex with the Watson-Crick base-paired 

adenine of another duplex (Figure 1b). In contrast, the DNA duplex in structure 2 does not 

show electron density for the overhanging 5′ thymine base or the adjacent adenine-thymine 

base pair, which are presumably looped out of the DNA helix. As a result of this, two 

adjacent DNA duplexes of structure 2 stack end-to-end forming a pseudo continuous helix 

with the terminal DNA base-pairs from adjacent DNA duplexes about 3.6 Å apart (Figure 

1b). The shorter ordered DNA duplex within structure 2 relative to structure 1 results in 

more extensive protein contacts between adjacent p53DBD tetramer/DNA complexes within 

the crystal lattice of structure 2 relative to structure 1 (Figure 1c). Despite these crystal 

packing differences between structure 1 and 2, the overall structures of the p53DBD 

tetramer/DNA complexes are essentially superimposable in the two crystal lattices (Figure 

1c), arguing for the biological relevance of the crystallographic tetramer. Unless otherwise 

stated, discussion will focus on the higher resolution structure 1.

Structure of each p53DBD within the tetramer and DNA contacts

Within the tetramer, the structure of each of the p53DBD subunits is nearly identical to each 

other (Cα rmsd ≤ 0.105 Å) and to other p53DBD domain structures that have been 

determined (Cα rmsd ≤ 0.559 Å) (Cho et al., 1994; Wang et al., 2007; Zhao et al., 2001). 

Briefly, each domain is comprised of two anti-parallel βsheets that form an 

immunoglobulin-like β sandwich. Each strand is twisted resulting in two very different ends 

of the sandwich; one end is compact with short loops while the other end splays to the loop-

sheet-helix motif, which contains a tetrahedrally bound Zn2+ ion, the L2 loop, and the H2 α 

helix (Figures 1a).

The major difference between each tetramer subunit and the previous structures lies within 

the L1 loop, residues 109 – 119 (Figure 1e). Both Cho et al. (human p53DBD monomer 

bound to DNA) and Kitayner et al. (human p53DBD dimer of dimers bound to a 

discontinuous DNA duplex) stress the importance of the L1 loop for DNA recognition since 

Lys120 (Lys117 in mouse) at the loop’s tip points into the major groove to make a base-

specific DNA contact (Cho et al., 1994; Kitayner et al., 2006). In contrast, here Lys117 and 

the L1 loop in each subunit has moved nearly 15 Å away from the DNA and adopts some α 

helical structure.
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The DNA contacts made by each subunit to the DNA are essentially as reported by Cho et 

al.(Cho et al., 1994). Three minor variations, which are also observed in the other 

p53DBD/DNA structures, are seen in each subunit. First, Lys117 (Lys120 in human p53) of 

the L1 loop has moved away from the DNA and towards the tetramerization interface as 

previously described in subunits B and D of structure 1 and all subunits of structure 2 

(Figures 1e, 3b, and 3c). In subunits A and C of structure 1, this residue is disordered. 

Second, Arg280 (Arg283 in human p53), part of the H2 helix, is too far to contact the 

phosphate backbone. Third, Arg245 (Arg248 in human p53), the most frequently mutated 

residue in human cancers, adopts two different conformations in structure 1 and its DNA 

contact changes accordingly. In structure 2 and subunits A and C of structure 1, Arg245 sits 

in the minor groove and contacts the DNA as reported in Cho et al. However, in subunits B 

and D of structure 1, the same residue adopts a 90° bend and only contacts the backbone of 

one DNA strand. Taken together, analysis of the protein/DNA contacts within the tetrameric 

p53DBD bound to DNA reveals that the basic residues 117, 245 and 280 have variable roles 

in DNA recognition.

Structure of each p53DBD dimer and tethers

Each dimer (A–B and C–D, Figures 1a and 1d) within the tetramer comes together as 

previously described by Shakked and coworkers. for 2AC0 (Kitayner et al., 2006). Key 

residues involved are Arg178, Pro174, His175, Gly241 and Met243. Also, the dimers show 

little structural variation from the previously reported mouse p53DBD dimer (Cα rmsd 

0.776 Å(Ho et al., 2006)).

Each p53DBD subunit is tethered to its quarter site via the side chain sulfur of Cys274 to the 

modified sulfur-bearing linker attached to the N4 atom of the cytosine 3′ to the invariant 

guanine (Figure 2a). The extended tether has a length of 7.5 Å(Huang et al., 1998). Figure 

2b shows simulated annealing composite omit maps for each p53DBD/DNA complex 

structure around residue Cys274. Structure 2 clearly shows a break in density, strongly 

indicating that the linking atoms are not rigid. Structure 1 shows connected density between 

the atoms but it lacks defined structure also supporting the tether’s flexibility. The distance 

between the crosslinked atoms is less than 4.1 Å and nearly all the DNA contacts previously 

reported are intact suggesting that the tether is flexible and does not perturb the p53/DNA 

interface.

Taken together, the similarity of p53DBD-DNA interactions reported here to the DNA 

interactions with the monomeric p53DBD(Cho et al., 1994; Wang et al., 2007; Zhao et al., 

2001) and dimeric p53DBD (Ho et al., 2006; Kitayner et al., 2006), and the lack of rigid 

tether density in the structures reported here, these data support the conclusion that the tether 

does not significantly disrupt the natural binding properties of the p53DBD to its consensus 

site.

Structure of the p53DBD tetramer and dimer-dimer contacts

The p53DBD tetramer binds to its DNA consensus sequence as a dimer-of-dimers as 

previously proposed (Figure 1a). Each dimer (A–B and C–D) binds to its respective half site 

with no relative twist and without significant DNA bending (Figures 1a and 1d). Each 
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dimer-dimer interface buries an average of 665 Å2 of surface area and shows nearly the 

same interactions in each structure. The major interface involves the L2 loop from subunits 

A and C tucking against the S2′/S3, S5/S6 and S7/S8 loops from subunits B and D (Figure 

3a) and is stabilized by both van der Waals forces and a network of hydrogen bonds (Figures 

3b and 3c). The backbone nitrogen of D-Ala135 (S2′/S3) donates a hydrogen bond to A-

Gln164 OE1 (L2), which in turn accepts a hydrogen bond from the side chain hydroxyl of 

D-Thr137 (S3). This hydroxyl also accepts a hydrogen bond from the side chain of A-

Ser163 (L2). D-Gln164 NE2 also donates a hydrogen bond to the backbone oxygen of D-

Ala135, while the side chain of A-Thr167 (L2) donates a hydrogen bond to OE1 of D-

Glu195 (S5/S6). Completing this major contact region are two van der Waals interactions: 

D-His230 CE1 (S8) with A-Ser163 CB and D-His230 CD2 with A-Met166 CE (L2). In 

structure 2 (Figure 3c), the van der Waals contact involving A-Met166 CE is lost due to a 

different side chain conformation, but an additional hydrogen bond is present between D-

His230 ND1 and the side chain of A-Ser163.

Both structures 1 and 2 show that D-Tyr199 (S5/S6) donates a hydrogen bond to AGln207 

(S6/S7) near the top of each interface. Structure 2 has one additional hydrogen bond 

between D-Glu221 (S7/S8) and the backbone nitrogen of A-Lys98 (modeled as alanine in 

the structure). Overall, both structures have very similar dimer-dimer interfaces and involve 

nearly the same residues.

A sequence alignment of all p53DBD sequences available(Gasteiger et al., 2003) 

underscores the importance of these dimer-dimer interacting residues. Glu195 and Ala135 

are strictly conserved, while Thr137 is strictly conserved in all species except chicken. Also, 

Gln207, Gln164 and Glu221 only show conservative mutations. This described interface is 

also consistent with previous studies implicating specific residues for dimer-dimer 

interactions (Cho et al., 1994; Ho et al., 2006; McClure and Lee, 1998; Pan and Nussinov, 

2007; Pan and Nussinov, 2008) The most often sited tetramerization residues implicated for 

such interactions include Ser93, Ser96, Thr167, Ser163, Gln164 from one domain and 

Glu195, Thr137, and Glu221 from the other. All except for residues Ser93, Ser96 

(disordered in these structures) and Gly196, each of the implicated dimer-dimer contact 

residues are observed to make contacts at the dimer-dimer interface of the structures 

reported here.

A curious area of the tetramerization interface involves the enigmatic Lys117 of the L1 loop. 

As previously stated, the L1 loop of each subunit has moved far from where other p53DBD 

and p53DBD/DNA structures have it placed (Figures 1e, 3b, and 3c). Due to this movement, 

Lys117 points up towards residues D-Thr137 and A-Ser163 but does not make any specific 

contacts with the opposite dimer. Several possibilities exist to explain this conformational 

change. Careful analysis around Cys274 shows that the tether can only loop in one direction, 

which is towards the L1 loop. In fact, the tether is likely blocking the DNA bases that 

Lys117 has previously been shown to contact. However, the tether is only 7.5 Å in length 

and the L1 loop has moved approximately 15 Å away, which is much too far to attribute 

only to steric hindrance by the tether. Alternatively, the current position of the L1 loop be 

stabilized by crystal contacts from a symmetry-related subunit or the presence of a citrate 

molecule, which sits close to the new conformation. Perhaps the most intriguing possibility 
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is that the shift in position is induced by tetramerization itself. Lys117, which is strictly 

conserved across all species but shows low cancerous sensitivity(Ho et al., 2006), and 

although this residue is shown to make base specific contacts in several reported 

experimental p53/DNA complexes (Cho et al., 1994; Kitayner et al., 2006; Pan and 

Nussinov, 2008), but it also disordered in others (Ho et al., 2006; Kitayner et al., 2006; Pan 

and Nussinov, 2008). Within structure 1, Lys117 is only ordered in subunits B and D, the 

two p53DBD subunits in the crystal lattice that allow Lys117 to come close to the 

tetramerization interface. Lys117 is ordered in structure 2. Zupnick and Prives studied a 

K120A (Lys117 in mouse p53DBD) mutation for its effects on p53 function. They found 

that the mutant had strong DNA binding in vitro, but a weaker affinity in vivo. 

Overexpression in cells resulted in normal p53 function, however upon expression at normal 

cellular levels, the mutant showed defects in transactivation and apoptosis (Zupnick and 

Prives, 2006). It is interesting to speculate that Lys117 might alternate between DNA base 

contact and tetramerization contact, thus explaining its ambiguity. Clearly, additional studies 

will have to be carried out to resolve the role of Lys117 in the DNA binding properties of 

p53.

Comparison with other p53DBD tetramers

Two p53DBD tetramer complexes with DNA have been made available recently and vary in 

their structures. Ho et al. proposed a model p53DBD tetramer bound to DNA, which was 

generated by translating their crystallographic p53DBD dimer down the DNA to the next 

half site(Ho et al., 2006). This model predicted that the dimers come close at the L2 loop 

and S7/S8 regions, which is consistent with what we see in our current structures. A 40° 

DNA bend was also proposed in this model as well as models from Nagaich et al.(Nagaich 

et al., 1999) and Pan et al. (Pan and Nussinov, 2007). Interestingly, the present structures 

reveal that the DNA is relatively straight. Previous studies suggested that a straight p53DBD 

tetramer/DNA complex would not be possible due to steric clashes. To alleviate these 

clashes, it was proposed that the DNA would have to bend by as much as 50°

(Balagurumoorthy et al., 1995; Nagaich et al., 1997a; Nagaich et al., 1999; Nagaich et al., 

1997b; Pan and Nussinov, 2007). In contrast to these proposals, the two p53DBD 

tetramer/DNA structures reported here clearly show that a stable tetrameric complex can 

bind to straight, B-form DNA and maintain well-ordered dimer-dimer interfaces.

Shakked and coworkers reported on the structure of a p53DBD tetramer bound to 

discontinuous DNA where two p53DBD dimers bound to DNA came together end-to-end 

within their crystal lattices(Kitayner et al., 2006). These dimers are twisted 33° relative to 

each other in each structure (Figures 4a and 4b). While, the two DNA half sites appear to be 

out of register for each (Figure 4c), they can be considered approximate p53DBD tetramers 

and provide insight into alternative dimer-dimer contacts. Each tetramer shows its own set 

of limited dimer-dimer contacts. 2AC0, 2AHI, and 2ATA are quite similar in that one 

dimer-dimer interface is devoid of interaction and the other has limited hydrogen bonds and 

water-mediated interactions. 2ADY is unique in that both interfaces have the same five 

hydrogen bond interactions. Interestingly, as in the p53DBD tetramer/DNA complexes 

reported here, Ser166, Gln167, and Thr170 (Ser163, Gln164 and Thr167 in mouse p53DBD) 

are involved in hydrogen bonds in the p53DBD tetramer/DNA complexes reported by 
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Shakked and coworkers but these residues mediate different hydrogen bonds within the two 

complexes.

Multiple Tetramerization Modes for p53 on DNA

After comparison of the p53DBD tetramer/DNA models with the two complexes reported 

here, we hypothesize that dimer-dimer contacts within the p53DBD tetramer on DNA can 

vary in vivo. This hypothesis is supported by several lines of evidence. First, p53 response 

elements are varied across the genome due to different base-pair spacing between half sites 

and response elements which fulfill the consensus sequence requirement (El-Diery et al., 

1992). Second, the current structure shows that the DNA need not be bent for four p53DBD 

domains to stably bind to it. Given that solution studies and molecular dynamics suggest that 

bent DNA complexes are possible (Nagaich et al., 1999) and the inherent flexibility of the 

DNA sequences has been studied (McNamara et al., 1990; Nagaich et al., 1994; Zhurkin et 

al., 1991), it is likely that other energy minima exist besides the one captured 

crystallographically here. Also, while several of the residues at the interface involved are 

conserved, cancerous mutations of the residues are low compared with DNA contacts or 

monomer-dimer contact residues within the p53DBD(Ho et al., 2006). Taken together, these 

observations suggest that perhaps the tetramerization interface is not fixed, but able to 

accommodate different contacts depending on different cellular conditions.

p53DBD DNA binding cooperativity

It has been shown that the predominantly monomeric p53DBD will bind to its consensus 

sequence DNA in a highly cooperative manner (Balagurumoorthy et al., 1995) and the basis 

for this cooperativity has been the subject of much speculation. McClure et al. studied how 

p53DBD dimers and tetramers could bind DNA oligomers by varying the placement of the 

consensus quarter sites. Results from this work showed that two p53DBD dimers will bind a 

full consensus site for a far longer period of time (t1/2 ~ 15 minutes) than one dimer alone 

(t1/2 ~ 30 seconds) (McClure and Lee, 1998). A similar experiment was performed with 

wild-type p53 (residues 94 – 360, tetrameric) and an L344A mutant construct that could 

only form dimers. The results showed that tetramers had a six-fold greater affinity for DNA 

over dimers (Weinberg et al., 2004). Correlating this data with the two structures reported 

here suggests that two dimers are more stably bound to DNA due to the numerous dimer-

dimer contacts that are observed in the structures reported here. One dimer bound to DNA 

benefits from both stabilizing DNA and dimerization contacts (Klein et al., 2001), but 

according to McClure et al and supported by Weinberg et al, will still diffuse away from the 

DNA in a short period of time. With the added dimerization contacts, the complex is more 

stable, as evidenced by the increase in t1/2 and affinity.

Other suggestions have been reported for p53DBD cooperativity but are not supported by 

crystal structures (McClure and Lee, 1998). No conformational change is seen within the 

p53DBD upon tetramerization or DNA binding. While it is possible that other areas of the 

protein may undergo structural rearrangement during DNA binding, cooperativity is seen at 

the level of p53DBD binding to DNA alone, thus implicating determinants for DNA-binding 

cooperativity within the DNA-binding domain of p53. Also, cooperative DNA binding by 

p53 is largely influenced by its tetramerization domain in vivo. Taking these observations 
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together with the p53DBD tetramer/DNA complexes reported here suggests the DNA-

induced interactions that are observed between the two p53DBD dimers plays a major role 

in cooperative p53DBD binding to DNA.

p53DBD conservation and implication for function

A surface conservation map of the p53DBD in the context of the p53DBD tetramer bound to 

DNA reveals several areas of high conservation and by inference functional importance. The 

highest degree of conservation maps to the DNA binding region of the monomer and the 

monomer-dimer interface (Figure 5a) highlighting the relative importance of these regions. 

In contrast, the dimer-dimer interface shows far less conservation (Figure 5b) arguing for a 

less significant role of p53DBD dimer-dimer contacts for DNA recognition. Subunit A 

shows a long groove of conservation that is set back from the L2 loop. A mirrored pattern on 

subunit B would suggest a strict dimer-dimer interaction, but this is not seen and further 

supports the model that multiple tetramerization modes can accommodate p53 binding to 

DNA.

Intriguingly, a comparison of subunit A and B shows that one side of each subunit is more 

conserved than the other (Figure 5b). For subunits B and D, this highly conserved surface 

would face the solvent rather than the opposite dimer. It is possible that these residues 

participate in binding other domains of p53 or partner proteins of p53. This could also be the 

case for the ring of conserved amino acids that map around the back surface of each subunit 

(Figure 5c). Taken together, the sequence conservation on the surface to the p53DBD 

tetramer bound to DNA suggests other protein binding and perhaps regulatory surfaces.

Considering the proposed variability of the dimer-dimer contacts within the tetrameric 

p53DBD bound to DNA, one might ask why p53 binds DNA as a tetramer. This could 

simply be to increase the affinity of p53 for DNA. It is also possible that other regions of 

p53 interact with the DNA binding domain to support tetrameric binding to DNA. 

Correlating with this possibility, the N- and C- terminal ends of the p53DBD are located at 

the dimer-dimer interface (Figure 1d). Given that p53 has been reported to interact with 

many proteins, it is also possible that the p53DBD tetramer bound to DNA provides a 

unique protein contact surface. Taken together, these correlations suggest that the p53DBD 

domain may play a more active role in p53 function than simply providing a scaffold for 

DNA binding.

METHODS

Growth and purification of mouse p53DBD and purification of DNA containing unnatural 
nucleotides

This was carried out essentially as described in Ho et al.(Ho et al., 2006)

Purification of Crosslinked Tetramer

Crosslinking was performed at room temperature in 20 mM citrate, pH 6.1, 100 mM NaCl, 

and 0.5 mM TCEP. A 4:1 molar ratio of p53DBD to DNA was added to excess buffer and 

allowed to sit for three hours. The crosslinking reaction was loaded onto Q resin and higher 
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order oligomers were eluted with a gradient of 100 mM to 500 mM NaCl. Tetrameric 

complexes eluted first since its negative charges were the least available for binding with the 

resin. Denaturing but non-reducing gels were run to assay purity. Tetramer purity was 

determined by the presence of only one band corresponding to one strand of DNA with two 

bound p53DBDs. These fractions were pooled and concentrated to 5 μM as determined by 

standard curve of known protein-DNA concentrations and frozen at −80°C until use.

Data Collection and Structure Refinement

Crystals were grown in 200 mM lithium citrate, 20% PEG 3350 by hanging drop vapor 

diffusion. Small, rectangular crystals appeared in two days and reached a maximum size of 

160 × 30 × 30 uM after one week. Crystals were frozen in the well condition with 15 – 20% 

glycerol. Data collection was carried out on the 23-IDB beamline at the Advanced Photon 

Source synchrotron at Argonne National Laboratories. Data was indexed and scaled using 

HKL2000 (Otwinowski and Minor, 1997). The structures were solved by molecular 

replacement using PHASER with 2GEQ as a search model. For structure 1, the resulting 

solution was the p53DBD dimer bound to its half site in an asymmetric unit cell with a full 

tetramer containing a crystallographic two-fold axis. For structure 2, the resulting solution 

was the p53DBD monomer bound to its quarter site in an asymmetric unit. These models 

were refined in CNS using simulated annealing, minimization and individual B-factor 

refinement. For structure 1, medium NCS restraints were initially used for the two p53DBD 

domains in the asymmetric unit. The NCS restraints were gradually lowered and were 

eventually dropped completely. Between refinement cycles, the model was manually rebuilt 

using the program Coot(Emsley and Cowtan, 2004). Data collection and refinement 

statistics for structures 1 and 2 are summarized in Table 1.
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Figure 1. 
Structure 1 of the tetrameric p53DBD/DNA-complex and crystal packing. (a) Overall view 

of the tetramer in cartoon representation (DeLano, 2002). Subunits A (blue) and B (cyan) 

represent one dimer and subunits C (purple) and D (pink) represent the other. Zn2+ ions are 

shown as yellow spheres. The DNA consensus sequence is rendered in red and other bases 

are rendered in gray. (b) View of DNA base pairing between crystallographic DNA 

duplexes in structures 1 and 2 with involved bases numbered as in Figure 2a. One duplex is 

colored in green and the crystallographic duplex is colored in blue. Hydrogen bonds are 

colored in orange. (c) View of tetramer crystal packing in both structures 1 and 2. Structure 

1 is colored red and structure 2 is colored gray. A tetramer is shown for both structures with 

a dimer from the adjacent crystallographic tetramer shown to the right. A clear gap is seen 

between structure 1 and its crystallographic dimer neighbor while no such gap is seen for 

structure 2. (d) View of the tetramer perpendicular to the DNA helical axis. (e) Close up 

view of the L1 loops from human (2OCJ, orange) and mouse (1HU8, red) p53DBD; human 

p53DBD (1TSR, yellow), human p53DBD dimer (2AC0, magenta), mouse p53DBD dimer 

(2GEQ, cyan) bound to DNA; Cep-1 p53 ortholog (1T4W, blue), mouse p53DBD tetramer 

bound to DNA structure 1 (green) and mouse p53DBD tetramer bound to DNA structure 2 

(light green).
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Figure 2. 
DNA used for crystallization and view of crosslink. (a) DNA sequence used for 

crystallization. The consensus sequence is boxed and crosslinked bases are in red. (b) 

Simulated annealing composite omit 2Fo−Fc map contoured at 1.0 σ (left) 1.3 σ (right) at the 

area of crosslinking. DNA consensus sequence atoms are colored red. Protein atoms are 

colored in green (structure 1, left) or light green (structure 2, right) (DeLano, 2002).
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Figure 3. 
p53DBD dimer-dimer formation. (a) View of subunits A (blue) and D (magenta) in surface 

representation for structure 1 (DeLano, 2002). Subunits B and C have been removed for 

clarity. (b) Overall view (left) and close up view (right) of the dimer-dimer interaction 

between subunits A and D for Structure 1. (c) Overall view (left) and close up view (right) 

of the dimer-dimer interaction between subunits A and D for structure 2. Hydrogen bonds 

are depicted as orange dashed lines. The same interactions are seen between subunits B and 

C for both structures.
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Figure 4. 
Superposition of the p53DBD tetramer/DNA complex reported here with the p53DBD 

tetramer bound to a discontinuous DNA duplex. (a) View down the helical axis of 2AC0 

after superposition on the p53DBD tetramer/DNA complex (DeLano, 2002). 2AC0 is 

rendered in magenta and structure 1 is rendered in green. Each p53DBD tetramer/DNA 

complex is shown separately for clarity. The 33° twist of the back dimer relative to the front 

is easily seen for 2AC0. (b) View of the superposition oriented 90° from the view in A. (c), 

DNA from 2AC0 (upper), structure A (middle) and structure B (lower) crystal structures as 

Calladine-Drew schematics. Duplex 1 and 2 of 2AC0 are labeled and the central helical axes 

are the dotted lines. Duplex 2 is lower and rotated toward the viewer relative to duplex 1. All 

schematics were made with 3DNA and rendered in PyMOL (DeLano, 2002; Lu and Olson, 

2003).
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Figure 5. 
Surface map of amino acid conservation in p53DBD. (a) A sequence alignment was 

performed with all known sequences of p53 using ClustalW (Gasteiger et al., 2003) and 

mapped with ESPript (Gouet et al., 1999). View of subunits A and D with strictly conserved 

residues colored in red to nonconserved residues in blue (DeLano, 2002). The DNA is 

rendered in gray. Subunits B and C have been removed for clarity. Monomer-dimer interface 

is circled with a black, dashed line. (b) View along the helical axis of subunits A and B with 

subunits C and D removed for clarity. Dimer-dimer interface is circled with a black, dashed 

line. (c) Back view of subunits B and C showing the band of conserved residues that wrap 

around each subunit.
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Table 1
Structure A

Crystallographic statistics.

Structure 1 2

Space Group C2 C2

Cell Dimensions

 a, b, c (Å) 114.75, 68.016, 75.162 109.41, 68.10, 34.42

 A, β, γ (°) 90.00, 111.12, 90.00 90.00, 104.17, 90.00

 Resolution (Å) 2.00 2.20

 Rsym
a 0.083 [0.465] 0.100 [0.277]

 <I> / σ 16.5 [3.6] 14.7 [5.6]

 Completeness 99.1% [99.4%] 99.6% [97.3%]

 Redundancy 4.9 [4.9] 4.9 [4.4]

Refinement

 Resolution Range (Å) 70.186 – 2.00 57.354 – 2.20

 Reflections 177,707 60,952

 Rwork
b / Rfree

c 0.225 / 0.260 0.205 / 0.250

 Asymmetric Unit Dimer + half site Monomer + quarter site

Number of Atoms

 Protein 3034 1510

 DNA 464 204

 Zinc 2 1

 Water 577 161

Average B Factor (Å2) 37.67 33.91

RMSDs

 Bond lengths (Å) 0.00547 0.0108

 Bond angles (°) 1.37 1.54

a
: Rsym = ΣhΣl |Ihj − Ih| / ΣhΣh,i, where Ih is the mean intensity of symmetry-related reflections.

b
: Rwork = Σ ||Fo| − |Fc|| / Σ |Fo|, Fo is observed structure factor amplitudes; Fc is calculated structure factor amplitudes.

c
: Rfree is calculated from the withheld 5% of data.
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