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Abstract

In addition to the well-established somatotopy in the pre- and post-central gyrus, there is now 

strong evidence that somatotopic organization is evident across other regions in the sensorimotor 

network. This raises several experimental questions: To what extent is activity in the sensorimotor 

network effector-dependent and effector-independent? How important is the sensorimotor cortex 

when predicting the motor effector? Is there redundancy in the distributed somatotopically 

organized network such that removing one region has little impact on classification accuracy? To 

answer these questions, we developed a novel experimental approach. fMRI data were collected 

while human subjects performed a precisely controlled force generation task separately with their 

hand, foot, and mouth. We used a simple linear iterative clustering (SLIC) algorithm to segment 

whole-brain beta coefficient maps to build an adaptive brain parcellation and then classified 
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effectors using extreme gradient boosting (XGBoost) based on parcellations at various spatial 

resolutions. This allowed us to understand how data-driven adaptive brain parcellation granularity 

altered classification accuracy. Results revealed effector-dependent activity in regions of the post-

central gyrus, precentral gyrus, and paracentral lobule. SMA, regions of the inferior and superior 

parietal lobule, and cerebellum each contained effector-dependent and effector-independent 

representations. Machine learning analyses showed that increasing the spatial resolution of the 

data-driven model increased classification accuracy, which reached 94% with 1755 supervoxels. 

Our SLIC-based supervoxel parcellation outperformed classification analyses using established 

brain templates and random simulations. Occlusion experiments further demonstrated redundancy 

across the sensorimotor network when classifying effectors. Our observations extend our 

understanding of effector-dependent and effector-independent organization within the human brain 

and provide new insight into the functional neuroanatomy required to predict the motor effector 

used in a motor control task.

1. Introduction

Somatotopy is the point-to-point mapping of an area of the body to a specific point in 

the central nervous system (Saladin, 2012). Pioneering studies by Penfield and Boldrey 

(1937) and Penfield and Rasmussen (1950) used electrical stimulation on the surface of 

the cortex to map somatotopic organization in the human brain. Within both the primary 

motor cortex (M1) and primary somatosensory cortex (S1), lower extremities are located 

dorsally and close to the midline, the arms and hands are represented more laterally, and 

the face representation is most lateral and ventral. Somatotopic organization is not limited 

to the pre- and post-central gyri (M1/S1), with both fMRI and EEG studies revealing 

somatotopy in the supplementary motor area (SMA) (Chainay et al., 2004; Zeharia et al., 

2012), cingulate motor area (Mayer et al., 2001), premotor cortex, superior and inferior 

parietal lobules (Cunningham et al., 2013), insula, basal ganglia (Zeharia et al., 2015), and 

cerebellum (Batson et al., 2015; Boillat et al., 2020; Grodd et al., 2001a; Nitschke et al., 

1996; Schlerf et al., 2010; van der Zwaag et al., 2013). This raises several experimental 

questions: To what extent is activity in the sensorimotor network effector-dependent and 

effector-independent? How important is the sensorimotor cortex when predicting the motor 

effector? Is there redundancy in the distributed somatotopically organized network such 

that removing one region has little impact on classification accuracy? Current knowledge is 

unfortunately derived from experimental paradigms which often do not measure or control 

motor performance across effectors. This can be problematic given that the BOLD signal 

can be influenced by differing characteristics of force production (Spraker et al., 2012, 

2007), and different effectors inherently produce different amounts of force even when 

flexing/extending at the same frequency (Lotze et al., 2000; Zeharia et al., 2015).

Previous studies have used brain signals to classify different effectors with varying levels of 

success. Although studies vary in which effectors are assessed, what movements are made, 

and how the movements are measured (Cunningham et al., 2013; Lotze et al., 2000; Zeharia 

et al., 2015; Zhao et al., 2019), it is clear that classification performance is higher at the 

individual level as compared to the group level (Sleight et al., 2009). Classifying effectors 

at the individual level is helpful in the context of brain-computer interfaces when there is 
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an adaptation phase between the machine and the brain (Bhattacharyya et al., 2010; Morash 

et al., 2008; Shiman et al., 2017), but this approach does not always generalize well to new 

individuals. Other fMRI studies have implemented multivoxel pattern analyses (MVPA) to 

classify movements based on predefined regions of interest (Filimon et al., 2015; Gallivan 

et al., 2013, 2011; Shay et al., 2019; Zeharia et al., 2015). While effective in determining 

how well the BOLD signal can differentiate effectors within a specific brain region, it is 

challenging to implement this approach across the whole brain using a data-driven clustering 

approach.

Clustering methods that have been used in the neuroimaging literature include K-means 

(Chyzhyk and Graña, 2014), mean-shift (Ai and Xiong, 2016), and spectral clustering 

(Venkataraman et al., 2009). These data-driven methods can be effective in clustering; 

however, their flexibility and efficiency decrease as the dataset size increases. For example, 

K-means is an excellent general-purpose clustering algorithm, but it prefers spherical-shaped 

clusters and can fail to capture clusters with complicated geometric shapes. It also has 

randomized seed locations which makes reproducibility more challenging. Mean-shift works 

well with spherical data and automatically selects the optimal number of clusters. However, 

it is not highly scalable. Spectral clustering is a graph-based method that clusters regardless 

of shape or distribution, but it works best with fewer numbers of clusters and is costly 

to compute. In this study, we used a modified simple linear iterative clustering (SLIC) 

algorithm (Achanta et al., 2012), to address these limitations by providing flexibility in 

the compactness of clusters (i.e., parcellations), improved computational efficiency, and 

grid-based initialization. These factors provide a controllable, generalizable, and repeatable 

method for generating data-driven parcellations.

We used fMRI to assess BOLD signal changes across the whole brain while force 

production was precisely controlled across three different effectors: the foot, hand, and 

mouth. Real-time visual feedback was provided to subjects while they completed a 

target matching task by executing a sustained isometric contraction with each effector. 

We first used conventional univariate analyses to identify effector-dependent and effector-

independent brain activation during task performance. Next, we implemented a novel 

machine learning approach which allowed us to control the brain parcellation resolution 

by tuning the maximum number of features fed into the classifier, to understand how 

data-driven, adaptive brain parcellation granularity altered classification accuracy and key 

region identification. The findings provide new insight into the functional neuroanatomy 

required to predict the motor effector used in a motor control task.

2. Methods

2.1. Subjects

This study included 20 right-handed adults (age = 20.50 ± 0.92 years; female = 10). 

All participants had normal or corrected to normal vision, self-reported no disability 

or neurological conditions that would prevent them from completing the required force 

tasks with their foot, hand, or mouth. All participants provided written informed consent 

before testing, and all procedures were approved by the Institutional Review Board at the 

University of Florida.
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2.2. Force task and acquisition

Three force production tasks were performed by each participant inside an MRI scanner. 

Participants were supine for all conditions, and generated force against a custom fiber-optic 

force transducer with a resolution of 0.025 N (Neuroimaging Solutions, Gainesville, FL) 

using the right foot (see Fig. 1A), the right hand (Fig. 1B), and bilaterally by the mouth 

(Fig. 1C). Force signals were transmitted through a fiber-optic cable to an SM130 Optical 

Sensing Interrogator (Micron Optics, Atlanta, Georgia). The interrogator digitized analog 

force data at 62.5 Hz. We used a customized program written in LabVIEW (National 

Instruments, Austin, TX) to collect the force data. Online visual feedback of the force output 

was visible to the participants at a 60 Hz refresh rate. Force data were low-pass filtered using 

a Butterworth, 20 Hz 4th-order dual-pass filter.

Before entering the scanner, each participant’s maximum voluntary contraction (MVC) was 

recorded for each effector (foot, hand, mouth) during a practice session. During a series of 

three consecutive MVC trials, participants held a maximum force contraction (MFC) for 5 

s. A 60 s rest period was provided between the trials. Average force during each sustained 

MFC was calculated and the mean of three trials was used as the participant’s MVC value. 

fMRI data were collected while each participant produced force to a target level set at 10% 

of their MVC for each of the three effectors separately. Effector order was counterbalanced 

across participants.

A representation of the task paradigm is shown in Fig. 1D. Each task involved both a rest 

and force condition. During the force condition, two horizontal bars were displayed which 

represented the cue to produce force (green bar) as well as the target force (white bar). 

Subjects produced force for 4 s when the bar turned green. The force produced caused the 

green bar to move vertically, providing visual feedback to the participant. The white target 

bar remained stationary and represented the participant’s 10% MVC target. When the bar 

turned red, subjects rested for 2 s. This pattern of 4 s force and 2 s rest repeated 5 times over 

the 30 s force block. In the rest block, subjects rested the entire 30 s with stationary bars on 

the screen. Each scan started and ended with a rest block and contained a total of 4 force 

blocks.

2.3. MRI acquisition

MRI images were collected using a 32-channel head coil inside a Phillips 3T magnetic 

resonance scanner (Achieva, Best, the Netherlands). T1-weighted images (resolution: 1 mm 

isotropic, repetition time: TR = 6.8 ms, echo time: TE = 3.3 ms, flip angle = 8°, field of 

view = 240 mm3, and acquisition matrix = 240 × 240) were collected in 170 contiguous 

axial slices. Functional data were collected in 46 contiguous axial slices using a single-shot 

gradient echo-planar imaging pulse sequence (resolution: 3 mm isotropic, TR = 2500 ms, TE 

= 30 ms, flip angle = 80°, field of view = 240 mm3, and acquisition matrix = 80 × 80).

2.4. Force data analysis

Force data were analyzed using customized algorithms in LabVIEW. Mean force generated 

as a percentage of MVC, variability of force generated, and target force error were 

calculated for each trial and then averaged separately for each effector (hand, foot, mouth). 
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These measures were calculated from the data extracted from the middle 2 s of each 4 s 

force pulse. Variability of force generated was quantified by the standard deviation of the 

force data. Target force error was quantified using root mean square error (RMSE). The 

onset of a trial was identified by the time point at which the force rose above 10% of the 

peak force, and the offset of a trial was identified as the time point at which force fell below 

10% of the peak force.

Shapiro-Wilk’s test of normality was used to determine whether the data were normally 

distributed (Shaprio and Wilk, 1965), which is one of the key assumptions when 

implementing ANOVA. Those data that failed the test were subsequently logarithmically 

transformed for all statistical testing. Differences in mean force as a percent of MVC, 

variability of force generated, and target force errors between each effector were quantified 

using 1-way ANOVAs with Bonferroni post hoc. Statistical analyses were performed in 

SPSS version 26 (IBM Corp. Released 2019. IBM SPSS Statistics for Windows, Version 

26.0. Armonk, NY: IBM Corp) at a 0.05 alpha level.

2.5. Imaging data analysis

Imaging data were analyzed with AFNI software (Analysis of Functional NeuroImages; 

National Institutes of Health, Bethesda, MD), SPM8 (Statistical Parametric Mapping) 

software, the SUIT (A spatially unbiased atlas template of the cerebellum and brainstem) 

(Diedrichsen, 2006; Diedrichsen et al., 2011, 2009; Diedrichsen and Zotow, 2015) toolbox 

of SPM8, and custom UNIX shell scripts. AFNI software was used to compute whole-brain 

statistical maps. Cerebellum-specific fine-tuning of the statistical maps was performed with 

SPM8 and SUIT.

2.6. Subject-level analysis

Each effector (hand, foot, mouth) was analyzed separately. Three functional volumes 

were collected prior to the beginning of the experiment to allow for magnetization to 

stabilize, and these volumes were discarded before analysis. The remaining volumes were 

slice-acquisition-dependent slice-time corrected. The anatomical image was skull stripped 

using 3dSkullStrip in AFNI. Functional volumes were registered to a base volume via rigid 

body rotations and aligned with the anatomical image in a single transformation, therefore 

avoiding repeated image resampling. For the whole-brain analysis, functional volumes were 

warped into MNI space and smoothed with a 4 mm full-width-half-maximum Gaussian 

kernel for increasing the signal-to-noise ratio. The blood-oxygen-level-dependent (BOLD) 

signal in each voxel at every time point was scaled by the mean of its respective time 

series to normalize the data. The BOLD signal during the 30 s force periods was modeled 

using a boxcar regressor convolved with the hemodynamic response function. Head motion 

parameters calculated during the registration step were included in the general linear model 

as regressors. Head motion between adjacent volumes that was greater than 0.6 mm resulted 

in the exclusion of both volumes from the regression analysis. For the cerebellum analysis, 

warping to MNI space and smoothing occurred using the SUIT template after the BOLD 

signal was normalized and head motion was regressed out of the signal. Head motion above 

the threshold limit resulted in more than 35% of the functional volumes being excluded from 

analysis in three individuals. These three subjects were excluded, resulting in 17 participants 
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being included in the final imaging and behavioral analyses. Across the remaining 17 

participants, after correcting for head motion, an average of 97.5%, 99.8%, and 89.7% 

of the volumes remained for the foot, hand, and mouth tasks, respectively. The resulting 

regression-coefficient (beta-value) maps for each individual were then passed to the group 

level and were analyzed using two approaches: group-level voxelwise analyses, and machine 

learning classification analysis.

2.7. Group level voxelwise analyses

2.7.1. Creating an activation mask and determining cluster extent threshold
—We first created an activation mask to constrain the number of voxels and therefore 

the number of statistical analyses performed at the group level. To do this we conducted 

t-tests for each effector (foot, hand, mouth) compared to rest for all voxels in the cerebrum, 

and then separately for all voxels in the cerebellum. The output from each t-test was then 

binarized using a liberal threshold (p < 0.05 and cluster size ≥ 2 voxels) to include as 

many voxels as possible in the mask. The binarized maps for foot, hand, and mouth for the 

cerebrum were then summed, and any voxel with a value greater than 1 was included in 

the activation mask for the cerebrum. The binarized maps for foot, hand, and mouth for the 

cerebellum were also summed, and any voxel with a value greater than 1 was included in 

the activation mask for the cerebellum. At this stage, we make no statistical inferences on 

whether brain activation is effector-dependent or effector-independent.

Next, we identified the cluster-extent threshold using 3dClustSim to control for Family-wise 

error rate (FWER) in the statistical maps that are outlined below in Sections 2.7.2 and 2.7.3. 

The number of voxels required for a cluster to reach significance when p = 0.005 and α = 

0.05 was 24.

2.7.2. Identifying effector-independent brain regions—Task (foot, hand, mouth) 

vs. rest t-tests were computed using activation-masked beta-coefficient maps for the 

cerebrum, and significantly active voxels were identified using FWER-corrected parameters 

outlined above. Statistical maps for each t-test were then binarized such that significantly 

active voxels were assigned a value of 1 and all other voxels were assigned a value of zero. 

To identify voxels that were commonly active across the t-tests we computed a conjunction 

analysis by summing the binarized maps for each effector. Voxels that had a value of 3 

were retained and all other voxels were assigned a value of zero. Clusters of voxels with 

a value of 3 were labeled as effector-independent regions because they were significantly 

active across all t-tests. Size, coordinates, and anatomical label were recorded for each 

effector-independent cluster. The same analysis was performed for the SUIT normalized 

cerebellum data.

2.7.3. Identifying effector-dependent brain regions—To determine differences in 

brain activity between effectors, activation-masked beta-coefficient maps for each effector 

were directly compared using a 1-way ANOVA with three levels (foot, hand, mouth). The 

resulting F-statistic map was thresholded to retain voxels with P-values <0.005 and clusters 

that were >24 voxels in volume to keep the FWER <0.05. The F-statistic map identified 

regions of the brain that were significantly different between at least two of the three 
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effectors. Size, coordinates, and anatomical label were recorded for each effector-dependent 

cluster. Follow-up t-tests (foot vs. hand, foot vs. mouth, hand vs. mouth) were then used to 

identify which of the effectors differed within the clusters identified by the ANOVA, as well 

as the direction of the difference. A separate ANOVA and follow-up t-tests were run for the 

SUIT normalized cerebellum data using the same procedures.

2.8. Identifying effector-dependent regions using machine learning classification analysis

A machine learning classification analysis was used to determine whether brain activity 

from multiple regions could together predict which effector was being used and to determine 

which brain regions have the largest contribution to that prediction. Activation-masked beta 

coefficient maps for each effector (i.e., task vs rest) for each subject were used as inputs to 

the pipeline. Subject-level whole-brain maps were first averaged across effectors for each 

subject (Fig. 2a) and then across all subjects (Fig. 2b) to create a single whole-brain map. 

Each voxel in the map represented an average beta coefficient value, which represents the 

mean percent signal change in the BOLD signal across all subjects, all effectors, and all 

tasks. Supervoxels were then identified based on a data-driven algorithm which we outline 

next (Fig. 2c). Supervoxels reduce computational complexity, and by iteratively increasing 

the number of allowed supervoxels we were able to determine the relationship between 

spatial resolution and performance of the classifier.

2.8.1. Supervoxel parcellations—The supervoxels were generated using a 3-

dimensional simple linear iterative clustering (3D-SLIC) algorithm. The algorithm segments 

data points with consistent uniformity and is computationally efficient (Achanta et al., 

2012). In the current study, we implement the 3D-SLIC algorithm to segment clusters of 

voxels in three-dimensional space (x, y, z). The algorithm takes a single input K, which is 

the desired number of equally sized supervoxels. The approximate size of each supervoxel 

is N/K, where N is the number of voxels in the 3-dimensional map of beta coefficients 

calculated from the fMRI volume. A supervoxel center is found at every grid step S = N
K

for roughly equally sized supervoxels. Clustering begins with an initial seeding of K 

regularly spaced cluster centers. Each cluster center is then moved to the lowest gradient 

position within a 3 × 3 × 3 neighborhood. The voxel map gradient is computed with Eq. (1).

G(x, y, z) = I(x + 1, y, z) − I(x − 1, y, z) 2 + I(x, y + 1, z) − I(x, y − 1, z) 2

+ I(x, y, z + 1) − I(x, y, z − 1) 2 (1)

I(x,y,z) is the beta coefficient that corresponds to the voxel position of (x,y,z). ∥.∥2 is the L2 

norm which measures the magnitude of signal difference between two voxels. The gradient 

accounts for intensity while avoiding the placement of centers on edges or noisy voxels. 

Each voxel in the map is then associated with the nearest cluster center based on a 2S × 2S 
× 2S neighborhood around each cluster center. The distance, D, between two voxels i and 

j is measured using both signal intensities and spatial distances (Eq. (2)). The compactness 

variable, m, defines the shape of the supervoxels. Higher values of m ensure uniform shapes, 

while lower values allow supervoxels to adhere to boundaries resulting in irregular shapes. 

We set m to a constant value of 0.001 which is considered low enough to allow irregular 
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shapes that would be expected given brain anatomy. Using SLIC offers more flexibility and 

adaptiveness to the large variance in the anatomical brain regions. This versatility allows us 

to freely conform to activations with little restriction.

dintensity = li − lj 2

dspatial = xi − xj
2 + yi − yj

2 + zi − zj
2

D = dintensity
m

2
+ dspatial

S
2

(2)

Cluster centers are recomputed using the mean positions of respectively matched voxels. 

Residual errors are taken using the L1 distance between the old and the new centers. 

The process of assigning voxels and recomputing centers was repeated until the error 

was minimized. Connectivity is enforced by relabeling disjointed segments to the largest 

neighboring cluster. The voxels are then masked using the activation mask that is detailed in 

Section 2.7.1 above (Fig. 2d). This may remove supervoxels entirely or remove a portion of 

the voxels contributing to a supervoxel. This approach guaranteed that the same number of 

supervoxels was used for each subject in the classification analysis, while also ensuring that 

we did not bias supervoxel generation using between effector contrasts. For each supervoxel, 

an average beta coefficient was then calculated for each subject across all effectors (Fig. 

2e). Each supervoxel, therefore, represented a single feature, reflecting activity in an area of 

the brain. Hence, the number of supervoxels indicated how many features were fed to the 

classification analysis, where an increase in feature number reflects an increase in spatial 

resolution. The goal of the classification analysis was to determine which supervoxels (i.e., 

features or brain regions) contributed most to predicting which effector was being used, 

while also determining the overall performance accuracy of the combination of supervoxels. 

We repeated the supervoxel identification process 37 times, changing the maximum number 

of allowed supervoxels between 1 and 10,000. Specifically, we sampled 9 models between 

1 and 9 with a step size of 1, 9 models between 10 and 90 with a step size of 10, 9 

models between 100 and 900 with a step size of 100, and finally 10 models between 1000 

and 10,000 with a step size of 1000. A total of 37 models of different spatial resolution 

were generated. Note here the maximum number of allowed supervoxels is input to the 

SLIC algorithm as a parameter, however, SLIC does not always generate the maximum 

number during the optimization problem. Supervoxels are merged during the optimization 

process when their centers overlap. This results in a lower number of supervoxels than was 

specified. The number of generated supervoxels describes the output of the SLIC algorithm. 

The 10,000 allowed supervoxels generated 1755 supervoxels which is the largest number of 

features used among the models, as shown in Table 5. Machine learning was run separately 

for each iteration that allowed a different number of supervoxels.

For comparison, random uniformly generated supervoxels and pre-existing brain atlases 

were used to compare against the proposed supervoxel-based parcellation. Each voxel in 

the random maps was randomly assigned a supervoxel number. Since the maximum number 

of actual supervoxels from the SLIC algorithm is 1755, as a comparison, we generated 4 

different random supervoxel models with 1, 10, 100, and 1000 random supervoxels. We 

See et al. Page 8

Neuroimage. Author manuscript; available in PMC 2022 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compare these random supervoxels to those generated by the SLIC algorithm. We used 

the automated anatomical labeling (AAL) (n = 117 subregions), Brainnetome (n = 247 

subregions), and Harvard-Oxford cortical atlases (n = 68 subregions) (Desikan et al., 2006; 

Fan et al., 2016; Tzourio-Mazoyer et al., 2002). These were resampled into 3 mm voxel 

sizes and a 61 × 73 × 61 matrix to match our activation mask.

The supervoxel features were fed into a machine learning algorithm implemented in Python 

3.7 to classify effectors (Fig. 2f). We use a modified implementation of gradient boosting 

decision trees (GBDT), known as extreme gradient boosting (XGBoost), which utilizes an 

ensemble of weak learners or shallow decision trees (Friedman, 2001; Chen, 2016).

2.8.2. XGBoost machine learning classification—XGBoost (Extreme Gradient 

Boosting) is an ensemble of gradient boosted decision trees that we implemented to predict 

effectors using beta coefficient maps as features. A decision tree uses a tree-like model 

of sequential and hierarchical decisions. Decision nodes test for a condition and pass the 

instance through a branch to one of its children nodes based on the condition met by the 

instance. The tree stops growing when the nodes cannot be further split, or the stopping 

criteria are met. The final outcome or leaf determines the class label. Every instance begins 

at the decision stump or base of the tree. This instance follows a series of decision nodes 

until it reaches a leaf predicting a class label.

We can obtain the performance of decision trees with an objective function ℒm. This 

objective function compares the true label and predicted label from the decision trees or base 

learners. F is a set of f base learners up to M total learners (i.e. the decision trees) (Eq. (3)).

F = f1, f2, f3, f4, …, fM (3)

The prediction scores from individual trees are summed and averaged to get a final 

prediction label yi (Eq. (4)), where xi is the ith training instance.

yn = 1
m ∑

m = 1

M
fm xn (4)

The objective function is calculated with a loss function l comparing the true label yi and 

predicted label yi across N instances. A regularization term Ω(fm) is added to control model 

complexity and reduce overfitting of the mth tree (Eq. (5)).

ℒm = ∑
n = 1

N
l yn, yn + Ω fm (5)

Eq. (6) is the logistic regression loss l between the true and predicted label.
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l = − yn * log yn − 1 − yn * log 1 − yn (6)

The regularization term Ω(fm) tunes the bias and variance trade-off. T is the total number of 

leaves and ωt2 are the weights from each leaf (Eq. (7)). Larger weights and larger numbers of 

leaves are penalized. Terms γ and λ are tunable in the algorithm. The larger γ and λ are the 

more conservative the algorithm would be.

Ω fm = γT t + 1
2λ ∑

t = 1

T
wmt2 (7)

Boosting is an ensemble learning method of sequentially combining weak learners (i.e. 

shallow decision trees) to form a strong learner. Each sequential tree aims to reduce the error 

of the previous tree. The fth tree in boosting is chosen from a forest of decision trees. A 

forest is generated with a fixed number of decision trees. XGBoost determines the maximum 

number of trees as each new tree is sequentially tested. The fth tree is selected as the best 

performing tree in the forest. Eq. (8) is the updated prediction label that takes the result from 

the previous tree. t is the iteration in boosting.

yn
(t) = ∑

m = 1

M
fm xn = yn

(t − 1) + ft xn (8)

Eq. (9) is the updated objective function for boosted decision trees. This equation substitutes 

Eq. (8) yi into Eq. (5). Now the current model considers the results from the previous model.

ℒm = ∑
n = 1

N
l yn, yn

(t − 1) + fm xn + Ω fm (9)

The gradient in XGBoost describes the method of minimizing the loss function with gradient 

descent. The direction of gradient descent is approximated with a 2nd order Taylor series 

expansion (Eq. (10)).

f(x) ≈ f(a) + f′(a)(x − a) + 1
2f″(a)(x − a)2

(10)

Here, a = yn
(t − 1), h = fm (xn), and f(a) = l yn, yn

(t − 1) . These are substituted into the Taylor 

series approximation in Eq. (11).

ℒm = ∑
n = 1

N
l yn, yn

(t − 1) +
∂l yn, yn

(t − 1)

∂yn
(t − 1) fm xn +

∂2l yn, yn
(t − 1)

∂yn
(t − 1)2

fm xn
2

+ Ω fm

(11)
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Eq. (12) simplifies the expansion where gi =
∂l yn, yn

(t − 1)

∂yn
(t − 1)  and ℎi =

∂2l yn, yn
(t − 1)

∂yn
(t − 1)2

. The 

final objective function (Eq. (12)) describes the gradient boosting decision trees.

ℒm = ∑
n = 1

N
l yn, yn

(t − 1) + gnfm xn + 1
2ℎnfm2 xn + Ω fm (12)

Traditional gradient descent minimizes a cost function f(x) by following the negative 

gradient of the function at each step. However, the exact minimum is not found after a single 

step. Convergence can be quite slow and large steps can overshoot the minimum. The 2nd 

order approximation gives more information in the direction of the minimum. A tree that is 

evaluated with a full cost function l, has a computation every new split. XGBoost is faster 

than other gradient boosted tree algorithms because l yn, yn
(t − 1) , gi, and hi are constants in 

the approximation and are computed once and reused for all decision tree splits. fm(xn) and 

Ω(fm) remain to be calculated each split.

XGBoost enhances the gradient boosting implementation with the inclusion of additional 

features. These include but are not limited to hardware optimization, parallelized tree 

building, L1 and L2 regularization, and handling of missing data. XGBoost yields improved 

model performance and parallelized computational speed compared to other decision tree-

based models. This is ideal in comparing multiple models with many features. The algorithm 

outputs weights for supervoxels (Fig. 2g), providing information on which supervoxels (and 

therefore brain areas) are identified as the most important when classifying effectors (Fig. 

2h).

We use a nested 5-fold cross-validation (CV) to estimate the unbiased accuracy of each 

iteration of supervoxel combinations. A traditional training (80% of the data) and testing 

(20% of the data) split can bias the results depending on the choice of the test set. Nested 

5-fold CV provides a more unbiased performance measure. Nested 5-fold CV divides the 

data into five folds or groups of subjects with an equal number of subjects per fold. Each 

group is stratified to retain an equal ratio from each effector (hand, foot, and mouth). Nested 

CV uses an outer loop to estimate the error (Fig. 3a), while the inner loop is used for model 

selection and to tune hyperparameters (Fig. 3b). A single iteration of CV uses a single fold 

for testing and the rest for training. Each loop rotates the training and test folds until all 

folds have been used for testing once. Performance of the models and hyperparameters are 

recorded for each loop iteration. We used a broad parameter dictionary to account for the 

wide range of supervoxels (i.e., 1–10,000) (Table 1). A randomized search of parameters 

using different combinations was used to determine the ideal parameters in optimizing 

performance. The parameters with the best classification performance were used in the final 

model.

A final machine learning model is created for each supervoxel model to generate the 

supervoxel weights for interpretable analysis. Each final model is trained on the entire 

dataset. Results and parameters from CV are only used to estimate the performance and are 
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not used to build the final model to avoid bias and overfitting. Each final model produces 

weights for every supervoxel included in the model. These weights represent the importance 

of a supervoxel in determining an effector. The center of mass, volume, and weighting of 

each supervoxel are then recorded.

2.9. Classification evaluation metrics

In the classification analysis, we used a 3D-SLIC algorithm to automatically segment 

task-based fMRI using supervoxels. The supervoxels computationally group regions based 

on voxel similarities alone. We compared multiple models of generated supervoxels in 

classifying different effectors (hand, foot, and mouth). Increasing the number of supervoxels 

also increases the spatial resolution of brain parcellation. The task-based fMRI was utilized 

from 17 subjects, each with hand, foot, and mouth fMRI data yielding 51 total data 

sets. The classification used nested 5-fold CV for each supervoxel model to estimate the 

performance. An additional and separate model is generated from each supervoxel group 

using all 51 data sets to produce the weights. To compare the performances between models, 

we calculated the balanced accuracy, macro-precision, macro-recall, macro-F1 score, and 

confusion matrices for any given model.

Balanced accuracy is the mean of Sensitivity and Specificity, which is more appropriate 

for unbalanced data, i.e. data with an unbalanced number of samples for each label. Here 

sensitivity is the same as recall defined below, and specificity (a.k.a. true negative rate) is the 

ratio of negative samples correctly predicted among the total number of negative samples. 

This is because even though we have an equal number of labels for hand, foot, and mouth, 

stratified 5-fold CV still has slightly unbalanced data in each fold because there are 51 

samples in total.

AccuracyB = Sensitivity+Specificity
2 (13a)

Precision is the fraction of examples predicted to be a certain label that belongs to that label 

(Eq. (13b)). For example, the machine learning model predicts 50 samples to be Foot and 

among them, only 40 are Foot samples. Then Precision equals 40/50 = 80%. A precision 

score is calculated for each label, then averaged to obtain a macro-precision score

Precisionl ∈ Hand,  Foot,  Moutℎ = Correctly Predicted # of Label l
Predicted # of Label l (13b)

Recall (a.k.a. Sensitivity) measures the fraction of samples belonging to a certain label 

that are correctly predicted (Eq. (13c)). For example, among 60 samples of label Hand, 

30 samples are predicted as Hand. Then recall equals 30/60 = 50%. One recall score is 

calculated for each label. The recall score is averaged across all labels to give a macro-recall 

score.
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Recalll ∈ Hand,  Foot,  Moutℎ

= Correctly Predicted # of Samples witℎ Label l
True # of Samples witℎ Label l

(13c)

The F1 score takes the harmonic mean (Eq. (13d)) of precision and recall of each label, then 

these F1 scores are averaged to obtain a macro-F1 score across labels (Eq. (13d)). F1 score 

conveys the balance between precision and recall.

F1 Score = 2 * Precision*Recall
Precision+Recall (13d)

Lastly, confusion matrices are generated for each supervoxel model to show the distribution 

of predicted and true labels. A 3-by-3 confusion matrix is generated where each row and 

column correspond to the Hand, Foot, and Mouth labels. The rows contain the true labels 

whereas the columns contain the predicted labels, showing the number of different types 

of predictions. Labels that are correctly predicted (predicting a hand label to be a hand) lie 

upon the main diagonal. All other values in the confusion matrix represent misclassified 

samples. All previously mentioned metrics can be calculated from the confusion matrix.

2.10. Occlusion tests

An occlusion test is used to show the change in the performance of a model by occluding 

a specific brain region (e.g. set values to zeros). The larger the contribution a brain region 

has in the classification, the larger the performance degradation in the occluded model. 

To evaluate the contribution of a certain brain region(s), the values of the brain region(s) 

are set to zero for all data (both training and test data). Then we use the same machine 

learning to build a model using data where the region has been lesioned and compute the 

classification performance on the test data. The change in the classification performance 

reflects the importance of the corresponding brain region(s). In this work, we use the AAL 

atlas to occlude specific brain regions (Tzourio-Mazoyer et al., 2002) and set the supervoxel 

number to 5000 when creating the adaptive supervoxel-based parcellation, as a good balance 

between the spatial resolution and computation time, leading to 1038 supervoxels in the 

actual parcellation model.

3. Results

3.1. Force data

Table 2 shows the mean ± SD of all behavioral variables assessed. No significant difference 

was found between effectors for the mean force generated as a percentage of MVC (F(2,48) 

= 2.7; p = 0.079), or for the target force error (F(2,48) = 0.4; p = 0.661). A significant effect 

of effectors was found for the variability of force generated (F(2,48) = 43.1; p < 0.001). 

A Bonferroni post hoc revealed that the variability of force generated by the hand (0.40 

± 0.09; p < 0.001) and foot (0.62 ± 0.44; p < 0.001) was greater than the variability of 

force generated by the mouth (0.15 ± 0.11). No significant difference was found between the 

variability of force generated by the hand and foot (p = 0.069).
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3.2. Group level voxelwise analyses

Fig. 4A shows activation maps for each of the three effectors based on whole-brain 

t-test contrasts of each task versus rest (p = 0.005; α = 0.05; cluster size = 24 voxels). 

Qualitatively, the well-established somatotopic organization of the foot, hand, and mouth 

areas of the sensorimotor cortex can be seen. For the foot, activation was localized medially 

in the paracentral lobule, consistent with the foot and leg area of the sensorimotor cortex. 

Hand activation was localized laterally in the left hemisphere, consistent with the right hand 

being used to perform the task. Finally, the mouth task resulted in more lateral and inferior 

activation in the left hemisphere when compared to the hand, as well as more widespread 

and bilateral activity. Fig. 4B shows cerebellar activation maps for each of the three effectors 

(p = 0.005; α = 0.05; cluster size = 24 voxels). For the foot, the cerebellum activity was 

localized to the right anterior lobules IV-V, as well as bilaterally in posterior lobule VI. The 

majority of activity during the hand task was localized to the ipsilateral right anterior and 

posterior lobule VI. Finally, the mouth task resulted in bilateral activation in posterior lobule 

VI.

Fig. 4C shows results of the separate 1-way ANOVAs used to determine differences in 

brain activity between effectors. Follow-up t-tests (rows 2, 3, and 4) show which effector(s) 

differed within each region identified in the ANOVA. For example, the Foot vs Hand 

follow-up t-test shows significantly greater activation for the foot in the medial sensorimotor 

cortex, indicated by the warm colors (yellow-red). This medial paracentral lobule region 

is consistent with prior work localizing peak BOLD responses during ankle movement to 

MNI coordinates of −7, −38, 74 (Alkadhi et al., 2002) and −7, −35, 73 (Cunningham 

et al., 2013) (after conversion of coordinates to MNI space), as well as −3, −42, 69 

(Debaere et al., 2001). Significantly greater activation for the hand was identified laterally 

in the left sensorimotor cortex, indicated by the cool colors (blue), and is consistent with 

hand movement experiments localizing peak BOLD responses to MNI (−38, −24, 56) 

(Hardwick et al., 2013). Similarly, the Foot vs Mouth follow-up t-test shows significantly 

greater activation for the foot in the medial sensorimotor cortex, while significantly greater 

activation for the mouth effector was more lateral, aligning with localization of tongue 

movement in the left hemisphere (−54, −5, 30; after conversion to MNI space) (Alkadhi 

et al., 2002). The bottom row shows the Hand vs Mouth comparison revealed significantly 

greater bilateral activation for the mouth. For contrasts that include the mouth, the left-

lateralized clusters extend into the dorsal and ventral premotor cortex, with greater activation 

for the mouth compared to the foot and hand.

In the cerebellum, Fig. 4D shows significantly greater activation for the foot in right lobule 

IV-V, while the hand effector shows significantly greater activation in right lobule VI. 

Greater activation for the mouth as compared to the foot was evident in left lobule VI. 

Finally, the cerebellar Hand vs Mouth comparison shows significantly greater activation for 

the hand effector in right lobule VI, while the mouth effector shows significantly greater 

activation in left lobule VI. Overall, our results showed that 11 whole-brain and 3 cerebellar 

regions significantly differed between the effectors (p < 0.005; α = 0.05; cluster size = 24 

voxels). These regions, along with the t-value for each of the three effector comparisons, are 

shown in Table 3.
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Effector-independent areas of common activation are shown in Fig. 5 and Table 4. We 

further refine these effector independent regions based on the extent to which they 

represent abstract motor representations. The activation in SMA and regions of IPL, 

SPL, and cerebellum (Table 4) are interpreted as likely representing abstract movement 

representations, whereas common activity in the inferior and middle occipital gyri more 

likely represent the general processing of online visual information across all tasks.

3.3. Classification analysis

Table 5 shows the performance of a subset of different models, including balanced accuracy, 

macro-precision, macro-recall, and macro-F1 score. Across all of these measures, the 

numbers increase with an increase in the number of supervoxels. For instance, balanced 

accuracy increased from 0.42 to 0.94 from 1 supervoxel to 1755 supervoxels. As we 

increased the number of allowed features, the model is better able to predict which effector 

was being used. This pattern of accuracy is also shown in Fig. 6 across all supervoxel 

models and indicates that performance surpasses 80% at around 100 supervoxels. With 1755 

supervoxels, our model achieves 94% balanced accuracy. Fig. 6 also shows that random 

supervoxels (n < 100) performed worse than random guessing and overall had accuracy 

under the average segmented supervoxel accuracies. Furthermore, AAL, Brainnetome, and 

Harvard-Oxford cortical atlases also yield lower accuracies than the SLIC supervoxel 

accuracies. Table 5 and Fig. 6B show macro-F1 scores (along with macro-precision and 

macro-recall), which account for the performance across effector labels. The macro-F1 

scores are in line with the balanced accuracy scores and increase as the number of allowable 

features increased. Together these data show that the supervoxel models do well with 

differentiating effectors with increased spatial resolution.

The individual F1 score for each effector in each model shows the different trends in 

classification complexity (Fig. 6B). Closer inspection shows the difficulty of classifying foot 

effector maps when lower numbers of supervoxels are used (i.e., lower spatial resolution). 

This suggests the foot requires greater spatial resolution to better classify. The performance 

improvement in classifying the mouth effector is not as steep as the foot effector, indicating 

that the mouth effector is more distinctive in the fMRI data even at relatively lower spatial 

resolution in the brain parcellation. The hand effector maps fall in between the other two 

effectors and follow a similar trend to the foot effector maps. Additionally, the scores of 

all three labels meet around 50 supervoxels suggesting that this is a minimum resolution to 

classify between the three effectors.

Confusion matrices show the prediction relationships between the true effector labels 

and predicted effector labels (Fig. 7). The supervoxel model with only 1 supervoxel 

showed poor accuracy in a seemingly random distribution in the confusion matrix because 

only one supervoxel is used, which grouped the entire activation mask as one region. 

As the supervoxels increase from 1 to 10,000 the main diagonal scores become higher 

with less misclassification across labels. The misclassifications are fairly distributed as 

supervoxels increase except for the 10,000 supervoxel models. Three mouth labels were 

incorrectly classified in the 10,000 supervoxel confusion matrix. The distribution of the 

misclassifications could simply be a result of noise from the single model. Lastly, an overall 
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confusion matrix was averaged from all confusion matrices to determine if there were 

difficult labels across resolutions. The matrix suggests that all models performed equally 

across all three labels with nearly even scores across the main diagonal.

We identified the top 10 supervoxels with the highest weights from the final machine 

learning models. These top 10 supervoxels were determined by their final weights after 

training. We only considered models that were trained by the entire dataset to limit bias 

from randomized subjects. Then, we localized each supervoxel based on the supervoxel’s 

center of mass. This localization was performed for each of the models with 30 to 10,000 

specified supervoxels (a total of 26 models), as the models including < 30 supervoxels 

produced less than 10 supervoxels. To determine how often a brain region was ranked in 

the top 10 across all models we counted the number of times a supervoxel’s center of mass 

was identified within an anatomical region. Within a model, it was, therefore, possible that 

multiple supervoxels could be located within the same anatomical region. Fig. 8A and B 

show a supervoxel overlap count on an anatomical template and then over the human motor 

area template (Mayka et al., 2006). Fig. 8A shows that as with the voxelwise analysis the 

postcentral gyrus cluster extended anteriorly across the precentral gyrus into the primary 

motor cortex, and premotor cortex, whereas the paracentral lobule was largely centered in 

medial regions of the primary motor cortex (Fig. 8B). Counts within the brain regions are 

listed in Supplemental Table 6, with a subset of these regions shown in Fig. 8C and D. 

Fig. 8C shows that supervoxels were most often localized to the postcentral gyrus (n = 

29), paracentral lobule (n = 21), and cerebellum (n = 16). The majority of regions were 

localized to the left hemisphere consistent with movement of the right effector. We next 

used an occlusion paradigm to determine the redundancy in somatotopy. We occluded each 

region and then re-ran the model to see its effect on balanced accuracy. Although Fig. 8D 

shows that removing the left post-central gyrus resulted in accuracy dropping below 80%, in 

general, the Figure shows that accuracy remained in the 80–90% range, indicating that no 

one area was essential in predicting effector.

4. Discussion

This study used fMRI to assess whole-brain and cerebellar specific somatotopic brain 

activity while force production was precisely controlled by the foot, hand, and mouth. We 

implemented univariate analyses and multivariate machine learning analyses to characterize, 

differentiate, and classify brain activation associated with each effector. Together our 

voxelwise and classification analyses identified effector-dependent activity in regions of 

the post-central gyrus, precentral gyrus, and paracentral lobule. Univariate voxelwise 

analyses identified the middle occipital gyrus and putamen as regions showing effector-

independent activation. Finally, SMA, regions of the inferior and superior parietal lobule, 

and cerebellum each contained effector-dependent and effector-independent representations. 

Machine learning analyses showed that increasing the spatial resolution of the data-

driven model increased classification accuracy, which reached 84–95% with supervoxel 

numbers of around 1000. Our 3D-SLIC-based supervoxel parcellation outperformed 

classification analyses using established brain templates and random simulations. The 

occlusion experiments further demonstrated redundancy across the sensorimotor network 
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when classifying effectors. Our observations extend our understanding of effector-dependent 

and effector-independent organization within the human brain.

Within the cortex, the post-central gyrus, paracentral lobule, precentral gyrus, and inferior 

and superior parietal lobe were most commonly identified as showing effector-dependent 

activation. The left post-central gyrus was the region most often identified across 

classification models and the center of mass of the largest cluster of activation in the 

voxelwise analysis was centered in the post-central gyrus. The clusters of activation in the 

post-central gyrus extended anteriorly into the precentral gyrus, while also conforming to 

the medial to lateral hand to mouth organization in the sensorimotor cortex (Alkadhi et 

al., 2002; Hardwick et al., 2013; Meier et al., 2008). The activation in the precentral gyrus 

extended through M1 into the premotor cortex, with activation differences localized across 

its dorsal and ventral border. Between effector differences in the premotor cortex were 

driven by greater activation during the mouth task as compared to both the foot and the 

hand. Our classification algorithm also exploited the BOLD signal in the medial wall of the 

pre- and post-central gyrus, with the paracentral lobule region being identified most often 

after the post-central gyrus. The para-central lobule underlies the sensorimotor function of 

the lower limbs (Alkadhi et al., 2002; Cunningham et al., 2013), and was the second-largest 

cluster of activation identified in the univariate voxelwise analysis.

In humans, somatotopic organization is more discrete and segregated in S1 as compared 

to the more integrated and overlapping organization in M1 (Hlustík et al., 2001), and 

our findings are consistent with this. One explanation for the repeated identification of 

the post-central gyrus across our analyses is sensory feedback (Cunningham et al., 2013; 

Hlustík et al., 2001; Sanes and Schieber, 2001; Schellekens et al., 2018). Using a population 

receptive field approach to differentiate within-limb somatotopy of finger digits, Schellekens 

et al. (Schellekens et al., 2018) demonstrated that receptive fields in M1 are larger compared 

to S1, such that sensory information occurs at a more specific level in S1 as compared to 

motor activity in M1. The demonstration of larger receptive fields with less segregation in 

the precentral gyrus is consistent with primate studies showing extensive intrinsic horizontal 

connections in M1 (Huntley and Jones, 1991; Wu et al., 2000). Additional support for 

our findings comes from evidence showing that upper extremity nerve fibers are 75–95% 

sensory, with the ratio of sensory to motor fibers increasing when moving distally. As 

such, greater amounts of sensory feedback are required to perform more precise movements 

(Gesslbauer et al., 2017), as was the case in the current study given the real-time visual 

feedback presented to the subjects. Previous somatotopy studies often use visual stimuli 

to cue individuals when to move which effector (Grodd et al., 2001b; Lotze et al., 2000; 

Zeharia et al., 2015), but do not always provide real-time visual feedback to the subject 

as in the current study. Here, for the first time, we controlled and normalized target 

force amplitude across effectors using precise visual feedback and extend the literature by 

identifying a preference for between limb somatotopic organization in the post-central gyrus 

and paracentral lobule as compared to the precentral gyrus.

Both effector independent and effector dependent activation was identified in the regions 

of SMA, IPL, and SPL. The effector-independent activation in SMA and bilateral middle-

to-anterior intraparietal sulcus in the parietal lobe has been shown in individuals with 
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congenitally absent upper limbs when pointing with their foot (Liu et al., 2020). IPL and 

SPL regions in the current study were within 5 mm of each other in the Y and Z direction 

and near the intraparietal sulcus (Liu et al., 2020). The parietal lobe was first identified 

as a brain region with the capacity to store movement representations over 100 years 

ago (Liepmann, 1905). More recent evidence from left and right interlimb coordination 

tasks have further confirmed the existence of abstract movement encoding in the parietal 

cortex, which in combination with the premotor cortex, form the highest level in the action 

representation hierarchy (Swinnen et al., 2010). In contrast, effector-dependent activation 

in IPL was more anterior and inferior and bordered the post-central gyrus. A similar 

pattern emerged in SPL with effector-dependent activity bordering the post-central gyrus in 

more anterior and superior regions compared to effector-independent activity. Somatotopic 

organization has also been shown in SMA, with a rostral-caudal face-to-foot organization 

(Chainay et al., 2004; Zeharia et al., 2012), and in the putamen, with a ventral-to-rostral 

foot-to-face organization (Zeharia et al., 2015). Five of our classification models identified 

SMA as effector-dependent; however, these supervoxels were large (>450 voxels), and 

extended posteriorly into the paracentral lobule. Likewise, a single classification model 

identified the putamen as an effector-dependent region. The limited number of hits across 

classification models and the absence of voxelwise effector-dependent activation in these 

regions may be the result of large clusters and widespread activation across the visuomotor 

system associated with the implemented visuomotor task. Previous evidence using interlimb 

coordination tasks across the foot and the hand have identified many of these same regions 

(IPL, SPL, SMA, putamen) as encoding abstract movement representations and our findings 

are generally consistent with these data (Swinnen et al., 2010). A key difference between 

our findings and those of Swinnen et al. was the identification of effector-independent 

activation in the premotor cortex. We found some evidence of effector-dependence activation 

at the border of the dorsal and ventral premotor cortex, with the cluster of activation 

extending from its center of mass in the post-central gyrus anteriorly to the precentral gyrus. 

Importantly, follow-up contrasts showed greater activity for the mouth task relative to the 

foot and the hand, but no difference between the foot and hand tasks. A key difference, 

therefore, is the inclusion of the mouth task in the current study. Indeed, consistent with 

Swinnen et al., we did not find evidence of activation differences between the foot and hand 

tasks in the premotor cortex. The bilateral nature of the mouth task, coupled with its novelty 

compared to the foot and hand, may help explain the activation differences. Common 

activation was also evident in the middle and inferior occipital gyrus, consistent with other 

visuomotor studies that use real-time feedback (Coombes et al., 2010; Vaillancourt et al., 

2003). While these regions are grouped with effector-independent regions, we further refine 

our interpretation of their activation in the current study as being more related to the 

general processing of online visual information and less to the abstract coding of movement 

representation. Indeed, our paradigm differed from many other somatotopy studies in the 

extent to which the visuomotor network was engaged, and this may have masked the more 

fine-grained somatotopic organization that others have observed in these regions, while also 

accounting for the addition of other regions in the visual cortex that were commonly active 

across tasks.
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Our observations reveal that the cerebellum contains both effector-dependent and effector-

independent representations. The cerebellum was the third most commonly identified 

effector-dependent region. The majority of these regions were in the left hemisphere 

contralateral to the hand and foot, likely driven by the machine learning algorithm exploiting 

the bilateral activation associated with the mouth task (Fig. 4B). However, consistent with 

prior literature (Boillat et al., 2020; Mottolese et al., 2013; Nitschke et al., 1996; Schlerf 

et al., 2010; Stoodley and Schmahmann, 2009), our voxelwise analysis did identify foot- 

and hand-related effector-dependent activity in right (ipsilateral) lobules IV-V, in addition to 

left lobule VI activity associated with the mouth task. Four different homunculi have been 

identified in the cerebellum (Manni and Petrosini, 2004), and our findings are consistent 

with one of these in the anterior lobe. Indeed, anterior to posterior, foot-to-head organization 

has previously been shown for lobules II–VI (Boillat et al., 2020; Grodd et al., 2001a; 

Nitschke et al., 1996; Schlerf et al., 2010), with activity related to the foot also more medial 

relative to the hand (Debaere et al., 2001), consistent with our data (see Fig. 4D, row 2). 

Additionally, some evidence of effector-independent cerebellar regions also exists (Liu et 

al., 2020). We found effector-independent activity in left lobule VI (−25, −65, −26), close 

to the region of lobule VI that we previously identified as responding to multimodal pain 

and motor stimuli (−26, −65, −24: Coombes and Misra, 2016). Other evidence points to 

regions of Lobule VI being involved in early learning during explicit sequence learning tasks 

(Bernard and Seidler, 2013), suggesting more generalized effector and modality independent 

sensorimotor processing within this cerebellar region. Invasive and non-invasive stimulation 

studies in rodents and humans have targeted the cerebellum (Grimaldi et al., 2014; Hardwick 

and Celnik, 2014; Miterko et al., 2021; Reis et al., 2014), and our findings add to the 

growing literature informing the stimulation of effector-dependent and effector-independent 

cerebellar regions.

The effector classification performance increased with an increasing number of supervoxels, 

reaching 94% accuracy with 10,000 specified supervoxels (1755 actual supervoxels). We 

varied the total number of supervoxels allowed across models to identify the extent to which 

coarse to fine parcellation alters classification accuracy. As expected, coarser parcellation 

using fewer and larger supervoxels led to lower accuracy whereas finer parcellation 

using more and smaller supervoxels led to higher accuracy. Our approach outperformed 

standardized brain atlases in classifying effectors. It is interesting to note that while all three 

standardized brain atlases perform worse than the supervoxel-derived atlas, the Brainnetome 

atlas (Fan et al., 2016) achieved the highest accuracy among the three standardized atlases. 

The Brainnetome includes subdivisions in the precentral and post-central gyrus for the hand 

and face region, trunk, upper limb, as well as lower limb subdivisions in the para-central 

lobule. The AAL does not subdivide the precentral gyrus but does include the paracentral 

lobule (Tzourio-Mazoyer et al., 2002). Finally, the Harvard atlas includes the entire pre- 

and post-central gyrus without any subdivisions (Desikan et al., 2006). It is therefore 

not surprising that classification accuracy improves with increasing granularity, especially 

within the post-central gyrus, which across our models, was the most frequently identified 

region that contributed to the classification accuracy. Our data demonstrate that predefined 

atlases lead to classification accuracies in the 70–80% range, whereas the current supervoxel 

approach reached 94%. A supervoxel approach has previously been used to segment and 
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recognize 3D boundaries and shapes in mitochondria using electron microscopy (Lucchi et 

al., 2012), livers using volumetric CT (Wu et al., 2016), brain tumors in MRI (Soltaninejad 

et al., 2018), and resting-state fMRI networks (Wang and Wang, 2016) with success. Here, 

for the first time, we implement a supervoxel approach to classify the movement of different 

effectors using fMRI data.

Both multivariate pattern analysis (MVPA) and classification approaches have been used 

to determine how well brain activity can distinguish different limbs performing similar 

movements (Bhattacharyya et al., 2010; Gallivan et al., 2013; Morash et al., 2008; Zhao et 

al., 2019), different movements performed by the same limb (Gallivan et al., 2013; Robinson 

et al., 2013; Shiman et al., 2017), and imagining as compared to executing movements 

(Morash et al., 2008; Sleight et al., 2009). The frontoparietal motor network has been 

consistently identified across these studies as having the ability to distinguish between 

different movements. This is evident despite variations in the movements being made, the 

neuroimaging technique being employed, and the analytical approach being taken. Indeed, 

the redundancy in the system, in terms of how many areas show somatotopic organization, 

was confirmed in our occlusion analysis which demonstrated that even when removing the 

most commonly identified brain region, classification accuracy remained ~80% or higher.

The SLIC algorithm has advantages over other clustering-based methods in our 

generalizable approach; however, there may be cases that SLIC may be unreliable. For 

instance, SLIC is computationally faster than other clustering algorithms. It accomplishes 

this by searching in a limited area surrounding the cluster. However, this may not account 

for joint activations between two separate regions. That is, although control of supervoxel 

compactness and size gives us the flexibility to conform to anatomical brain regions, 

there may be a tradeoff of flexibility and interpretability. Too much flexibility may allow 

supervoxels to associate unrelated activations together. However, we compensate for this by 

using a range of supervoxel counts. Finer granularities and coarser parcellations are both 

generated to account for supervoxel variances. Furthermore, SLIC generates fixed initialized 

seeds with equidistant points arranged in a grid-like fashion. This ensures repeatability 

in experiments as long as the data remains consistent in size. However, this grid-based 

initialization may be a disadvantage if the clusters are tightly packed together.

Many studies have used EEG measurements to classify movement, given its logistical and 

practical advantages in real-world settings as compared to the confines of fMRI. Sleight 

et al. (2009), assayed cortical dynamics using 64 channel EEG while subjects imagined 

or executed unimanual or bimanual hand and foot flexion. Classification at the individual 

level reached 69% which dropped to 56% at the group level. Individual-level classification 

accuracy reached 84% when differentiating left- and right-hand movements performed by 

one individual using EEG data collected from 2 electrodes (Bhattacharyya et al., 2010). 

As one would expect, classification accuracy drops when the movements being made are 

subtler. Morash et al. required subjects to execute or imagine a right-hand squeeze, left-hand 

squeeze, press of the tongue on the roof of the mouth, or a right foot toe curl while 

EEG data were collected (Morash et al., 2008). The classification accuracy was at or 

below 60% for executed movements and at or below 50% for imagined movements. The 

inclusion of the tongue press may have attenuated classification accuracy, with tongue/lip/
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mouth movements being harder to classify as compared to movements of the hand and 

foot (Zhao et al., 2019). Within-limb studies have also used EEG to show that forward 

reaching movements to different targets can be classified with between 50 and 80% accuracy 

depending on the number of targets being decoded and the number of subjects being tested 

(Robinson et al., 2013; Shiman et al., 2017). In each case, signals over the parietal cortex 

prominently contributed to classification accuracy, consistent with our observations. Frontal 

and parietal brain areas have also been identified in fMRI studies that have classified 

eye and hand movements with ~55–65 accuracy (Gallivan et al., 2011), and the planning 

and execution of reaching and grasping movements with the left and right hand with 

55–70% accuracy (Gallivan et al., 2013). Executing, observing, and imagining reaching 

movements of the same limb has been classified with 80% (Filimon et al., 2015) and 

within-subject mouth movements with 90% accuracy (Bleichner et al., 2015). Other fMRI 

studies have implemented MVPA approaches within specific regions such as M1 during 

hand and foot rotation (Shay et al., 2019). General linear modeling approaches have also 

been implemented to determine differences in brain activation during flexion of the right 

finger, elbow, and ankle (Cunningham et al., 2013). We extend the current literature by using 

fMRI data and a generalizable classifier to differentiate three different effectors performing 

the same task with the same relative amount of force. Our novel approach achieved 95% 

accuracy using 1755 supervoxels. This is notable because we implemented a whole-brain 

analysis approach that also allowed us to vary the number of supervoxels across different 

models, while also using a between- rather than within-subjects classification approach to 

increase the generalizability of our findings.
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Fig. 1. 
Experimental setup and paradigm. (A) Custom-designed foot force device (left). Force 

was generated by dorsiflexion of the right foot and measured by the force transducer. 

Exemplary force time series (right) shows the 10% MVC target force (green), as well as 

the force produced (black). (B) Hand force device which measured right-hand pinch force. 

(C) The custom-designed bite device. Force was generated against the bite plates held in 

the subject’s mouth and was measured by the force transducer. (D) Depiction of the task 

paradigm. After a 30 s rest period, the red force bar turned green to cue force production. 

The subject then produced force to match the white target force bar for 4 s. When the bar 

turned red, subjects rested for 2 s. This pattern of 4 s force and 2 s rest, repeated 5 times 

during the 30 s force block
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Fig. 2. 
The pipeline serves to generate a uniform supervoxel map which is used for all subjects. 

All subject data (a) are averaged to produce a single whole-brain map (b). This ensures 

consistency between subjects. (c) Supervoxel maps are generated using the single whole-

brain map. *This step onwards is repeated for every resolution of supervoxels from the 
same single whole-brain map. (d) Supervoxels are masked using an activation mask to limit 

the number of voxels included in the analysis. This will affect generated supervoxels by 

removing all or a portion of voxels. (e) Supervoxels are organized into a tabular format for 

machine learning where the supervoxels are represented as feature inputs. Supervoxels are 

used as features in the machine learning model (f) to produce weights (g). (h) Weights are 

visualized to determine anatomical location.
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Fig. 3. 
Example of 5-fold nested cross-validation. (A) There are a total of 51 task-based data sets 

or beta coefficient voxel maps across 17 subjects. Each subject has a hand, foot, and mouth 

voxel map. The full dataset is split and stratified into 5-folds where each fold has 10–11 

voxel maps and roughly the same amount of each task. (B) Each fold is iteratively used as 

a test fold where the rest of the data is used for training. The cross-validation outer loop 

controls error estimation and provides an overall performance measure from this dataset. 

(C) The cross-validation inner loop performs cross-validation using the training subsets from 

the outer loop to tune hyperparameters. The nested cross-validations estimate an unbiased 

performance of a model.
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Fig. 4. 
(A) Whole-brain activation maps showing t-values for each of the three effectors vs. rest. 

All three effectors show activation of the supplementary motor area. The foot (top) shows 

activation in the medial sensorimotor cortex. The hand (middle) shows activation laterally in 

the left hemisphere, consistent with the right hand being used. The mouth (bottom) shows 

more widespread, lateral activation bilaterally. (B) Cerebellum activation maps showing 

t-values for each of the three effectors vs. rest. The foot (top) shows activity in the right 

anterior lobules, as well as bilateral activity in the posterior lobules of the cerebellum. 

The hand (middle) activity is localized to the right anterior and posterior lobules. The 

mouth (bottom) shows bilateral activation of the posterior lobules. (C) Whole-brain 1-way 

ANOVA (top) identifying areas showing significant effector-dependent activity. Follow-up 

t-tests (bottom) determined which effector(s) differed at each region. (D) Cerebellum 1-way 

ANOVA (top) identifying areas showing significant effector-dependent activity. Follow-up 
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t-tests (bottom) determined which effector(s) differed at each region. Images were threshold 

at p = 0.005, α = 0.05, and cluster size = 24 voxels.
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Fig. 5. 
Whole-brain (top) and cerebellum (bottom) overlap maps showing common, effector-

independent areas of activation across all three effectors. Images were threshold at p = 

0.005, α = 0.05, and cluster size = 24 voxels.
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Fig. 6. 
(A) Accuracy scores across supervoxels. An increase in balanced accuracy is seen with an 

increase in the number of generated supervoxels. Generated supervoxels are the outputs of 

the SLIC algorithm. The number of supervoxels is on a logarithmic scale. A 2nd-degree 

polynomial trend line was fit to show the steady increase from 1 to 1755 supervoxels. 

Randomly generated supervoxels and brain atlases have lower accuracy than the segmented 

supervoxels. (B) F1 scores across labels. F1 scores increase at different rates across 

effectors. The F1 scores focus on the misclassification of effectors and show the effectors 

perform differently. The foot effector has the worst performance when a lower number of 

supervoxels is used (i.e., less spatial resolution). F1 scores greatly increase until around 

1000 supervoxels where the foot scores begin to plateau. All three effectors benefit from an 

increased number of supervoxels or greater spatial resolution.
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Fig. 7. 
Confusion matrices. Confusion matrices are shown for different supervoxel models from 

1 to 10,000. In each matrix, the main diagonal represents a correct prediction. Smaller 

supervoxel numbers tend to reflect the lower accuracies and metrics with a seemingly 

normal distribution of misclassifications. All confusion matrices were averaged together 

to generate an overall model. The overall model shows an equal distribution of correctly 

predicted labels. There is generally at least one misclassified label and no majorly difficult 

labels seen across all models.
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Fig. 8. 
(A) Model overlap counts of supervoxels in the post-central gyrus overlaid on an anatomical 

image and then on the HMAT for Z-slice = 47. (B). Model overlap counts of supervoxels in 

the para-central lobule overlaid on an anatomical image and then on the HMAT for Z-slice 

= 73. (C) Subset of regions identified by the classification analysis and the number of times 

the region was identified for the right and left hemispheres. The majority of regions were 

localized to the left hemisphere consistent with the movement of the right effector. Note 

that the left (contralateral) cerebellum was identified more often than the expected right 

(ipsilateral) cerebellum, likely because the classification algorithm could more easily exploit 

the bilateral activity associated with the mouth task. (D) Each identified brain region was 

independently removed or occluded from the classification analysis. Regions were removed 

at the same time the conjunction map is applied. Each model uses a pre-specified 5000 

supervoxels, leading to a parcellation model of 1038 regions. The accuracy shows the 
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performance of a model without the respective brain region. Lower accuracies indicate the 

relative importance of a region in classification.
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Table 1

List of the parameters and values considered. A randomized search was performed to sample multiple 

combinations of parameters to optimize performance.

Parameters Value

Learning_rate 0.01, 0.05, 0.10, 0.20, 0.30, 0.40

n_estimators 50, 100, 500, 1000

max_depth 5, 10, 15, 20, 25

subsample 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

colsample_bytree 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

scale_pos_weight 30, 40, 50, 300, 400, 500, 600, 700

gamma 0.00, 0.05, 0.10, 0.15, 0.20, 1, 5
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Table 2

Mean ± SD of force, force variability, and target force error for the hand, foot, and mouth effector.

Effector Mean Force Force Variability (SD) Target Force Error (RMSE)

Hand 9.33 ± 0.64 0.40 ± 0.09 0.74 ± 0.70

Foot 9.53 ± 0.97 0.62 ± 0.44 0.70 ± 0.28

Mouth 9.86 ± 0.34 0.15 ± 0.11 0.59 ± 0.16
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Table 4

Cluster size, MNI coordinate, and anatomical location of common effector-independent brain activity common 

across all three effectors (foot, hand, and mouth).

Cluster Size (voxels) MNI Coordinates (x, y, z) Anatomical Location

196 1, −1, 61 Supplementary Motor Area

83 33, −88, −3 Right Inferior Occipital Gyrus

79 −26, 2, −1 Left Putamen

56 −30, −90, −4 Left Middle Occipital Gyrus

35 34, −50, 53 Right Inferior Parietal Lobule

27 −34, −53, 58 Left Superior Parietal Lobule

24 −13, −19, 6 Left Thalamus

66 −25, −65, −26 Left Cerebellum Lobule VI

44 −14, −72, −45 Left Cerebellum Lobule VIII

32 6, −74, −40 Right Cerebellum Lobule VII
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