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Abstract: The retinal ganglion cells (RGCs) are the output cells of the retina into the brain. In mammals,
these cells are not able to regenerate their axons after optic nerve injury, leaving the patients with
optic neuropathies with permanent visual loss. An effective RGCs-directed therapy could provide
a beneficial effect to prevent the progression of the disease. Axonal injury leads to the functional loss of
RGCs and subsequently induces neuronal death, and axonal regeneration would be essential to restore
the neuronal connectivity, and to reestablish the function of the visual system. The manipulation of
several intrinsic and extrinsic factors has been proposed in order to stimulate axonal regeneration and
functional repairing of axonal connections in the visual pathway. However, there is a missing point in
the process since, until now, there is no therapeutic strategy directed to promote axonal regeneration
of RGCs as a therapeutic approach for optic neuropathies.

Keywords: retinal ganglion cells; neurodegeneration; axonal regeneration; neuroprotection;
optic neuropathies

1. Introduction

The retina is part of the central nervous system (CNS) and is constituted by neurons, glial cells
and blood vessels [1]. The neuronal component of the retina is composed by six types of neurons:
photoreceptors (rods and cones), bipolar cells, horizontal cells, amacrine cells and retinal ganglion cells
(RGCs). Photoreceptors, whose nuclei is located in the outer nuclear layer (ONL), respond to light and
make synapses with second-order neurons. The cell bodies of retinal interneurons (horizontal, bipolar
and amacrine cells) are located predominately in the inner nuclear layer (INL) and modify and relay
the visual information from the photoreceptors to the RGCs that are located in the innermost layer of
the retina, the ganglion cell layer (GCL) (Figure 1). RGCs are the output cells of the retina that convey
the visual signals to the brain visual targets. The axons of RGCs run initially in the nerve fiber layer
(NFL) and converge into the optic disc, cross the lamina cribrosa at the optic nerve head (ONH), and
form the optic nerve (Figure 1) [1].
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[2]. Blindness secondary to optic neuropathies is irreversible since RGCs lack the capacity for self-
renewal and have a limited ability for self-repair [3]. The exact mechanism that leads to RGC death 
and degeneration is still unknown, but axonal injury has been proposed as an early event that 
culminates in apoptotic death of RGCs [4]. This paper reviews the events that contribute to axonal 
degeneration and death of RGCs and also the neuroprotective strategies with potential to circumvent 
this problem. 

 

Figure 1. Schematic representation of the neural sensory retina, depicting the organization of the cells 
into nuclear and plexiform layers. The nuclei of photoreceptors, rods and cones, are located in the 
outer nuclear layer (ONL) and nuclei of interneurons, amacrine, bipolar and horizontal cells, are 
located predominately in the inner nuclear layer (INL). The cell bodies of RGCs are in the ganglion 
cell layer (GCL), and their axons run in the nerve fiber layer (NFL). There are two types of macroglia: 
Müller cells that span vertically the entire retina and astrocytes that are present in the GCL. Microglial 

Figure 1. Schematic representation of the neural sensory retina, depicting the organization of the cells
into nuclear and plexiform layers. The nuclei of photoreceptors, rods and cones, are located in the outer
nuclear layer (ONL) and nuclei of interneurons, amacrine, bipolar and horizontal cells, are located
predominately in the inner nuclear layer (INL). The cell bodies of RGCs are in the ganglion cell layer
(GCL), and their axons run in the nerve fiber layer (NFL). There are two types of macroglia: Müller
cells that span vertically the entire retina and astrocytes that are present in the GCL. Microglial cells are
localized predominately in the inner retina and in the outer plexiform layer (OPL). IPL: inner plexiform
layer; IS/OS: inner and outer segments of photoreceptors.

Optic neuropathies comprise a group of ocular diseases, like glaucoma (the most common),
anterior ischemic optic neuropathy and retinal ischemia, in which RGCs are the main affected cells [2].
Blindness secondary to optic neuropathies is irreversible since RGCs lack the capacity for self-renewal
and have a limited ability for self-repair [3]. The exact mechanism that leads to RGC death and
degeneration is still unknown, but axonal injury has been proposed as an early event that culminates
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in apoptotic death of RGCs [4]. This paper reviews the events that contribute to axonal degeneration
and death of RGCs and also the neuroprotective strategies with potential to circumvent this problem.

2. Obstacles to RGC Survival and Regeneration upon Injury: Insights from Development to
Disease Models

During development, RGCs extend their axons to synapse in target areas of the brain (reviewed
in [5]). After birth, there is a peak in cell death that in rodents occurs between postnatal days 2 and 5
(PND 2-5), ensuring that only cells that reached their targets survive (reviewed in [6]). The ability of
RGCs to extend their axons decreases with age and the capacity to regenerate their axons is lost early
in development [7]. In fact, cultures of RGCs (Figure 2) prepared at both embryonic day 20 (ED 20) or
PND 8 extend their axons with similar calibers; however, after 3 days in culture, ED 20 RGCs extend
their axons further and faster than cells isolated at PND 8. The exposure of these cells to conditioned
media of superior colliculus cells further potentiates axonal growth of ED 20 RGCs without interfering
with PND 8 RGCs, demonstrating that the loss of ability of RGCs axon growth is mediated by retinal
maturation [7]. The reason behind the lost in the intrinsic ability of RGCs to regenerate upon injury
has been extensively explored. Several players, including cyclic adenosine monophosphate (cAMP),
phosphatase and tensin homologue (PTEN)/mammalian target of rapamycin (mTOR) and Krüppel-like
family (KLF) transcript factors are implicated in the transition from the rapid axon growth of immature
neurons into the poor axon growth of mature neurons in the CNS.
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with anti-RBPMS antibody; Abcam, Cat. # ab194213, 1:500) were obtained by sequential 
immunopanning, as previously described [8,9]. RGCs were cultured for 1 day in vitro (DIV1), DIV2 
and DIV3, followed by fixation in paraformaldehyde and processed for immunocytochemistry. (B) 
RGCs were identified by immunolabeling for Brn3a (red, Millipore, Cat. # MAB1585, 1:500), a 
transcription factor expressed only by these cells in the retina. The neurites, labelled with an antibody 
that recognizes β-tubulin III (green, BioLegend, Cat. # 802001; 1:1000), extended during the period in 
culture. Nuclei were stained with DAPI (blue). 

Figure 2. Neurite growth of RGCs in culture. (A) Schematic representation of the experimental
design. Retinas were dissected from Wistar rats at PND 5 and nearly pure RGC cultures (~93% purity
assessed with anti-RBPMS antibody; Abcam, Cat. # ab194213, 1:500) were obtained by sequential
immunopanning, as previously described [8,9]. RGCs were cultured for 1 day in vitro (DIV1), DIV2 and
DIV3, followed by fixation in paraformaldehyde and processed for immunocytochemistry. (B) RGCs
were identified by immunolabeling for Brn3a (red, Millipore, Cat. # MAB1585, 1:500), a transcription
factor expressed only by these cells in the retina. The neurites, labelled with an antibody that recognizes
β-tubulin III (green, BioLegend, Cat. # 802001; 1:1000), extended during the period in culture. Nuclei
were stained with DAPI (blue).
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cAMP plays an important role in neuronal survival and axon growth and guidance [10]. For
example, in the goldfish, the injection of an analogue of cAMP is able to enhance axonal regeneration
upon optic nerve crush (ONC) [11]. Moreover, PTEN/mTOR pathway has been implicated in the failure
of RGCs axons to regenerate. The deletion of PTEN in RGCs leads to the activation of phosphoinositide
3-kinases (PI3K)/mTOR pathway, increases neuronal survival and promotes robust axon regeneration
after optic nerve injury [12,13]. Moreover, it has been reported a coordinated regulation of neurite
growth by KLF transcription factors. During development, at least two growth-enhancing KLFs (KLF6
and 7) are down-regulated, and at least two growth-suppressive KLFs (KLF4 and 9) are upregulated [14].
The profile of gene expression from ED 17 through PND 21 RGCs identified the zinc finger transcription
factor KLF4 as the most effective suppressor of neurite outgrowth [14]. Indeed, the KLF4 overexpression
in ED 20 RGCs reduces their ability to extend axons and, on the other hand, KLF4 knockout enhances
axon growth ability by PND 12 RGCs [14]. This decline in the ability of postnatal RGCs to grow
axons is associated with KLF-regulated changes in axonal growth cone morphology and protrusive
dynamics [15]. The knockout of KLF4 during development increases the regenerative potential of
RGCs upon ONC at adulthood [14]. Amacrine cells have been implicated in the process of losing
intrinsic growth capability of RGCs [7]. In fact, zinc (Zn2+) increases in amacrine cell processes upon
optic nerve injury and is transferred to RGCs via vesicular release [16]. The chelation of Zn2+ improves
cell survival and axon regeneration [16], raising the possibility that the dysregulation of mobile Zn2+

levels is responsible for the loss of axonal growth.
Other transcription factors have been studied for their role in axon growth and regeneration

(reviewed in [17]). The tumor suppressor p53 plays a central role in the regulation apoptosis in
RGCs. The overstimulation of N-methyl-D-aspartate (NMDA) receptor activates a p53-dependent
pathway of cell death [18]. The involvement of p53 in neurite outgrowth and axon regeneration has
been explored in CNS injury [19]. However, the deletion of p53 in RGCs fails to promote axonal
regeneration, despite the increase in RGC survival upon ONC [12], confirming the hypothesis that
inducing neuronal survival is not enough to allow axonal regeneration. The activation of p53 has
been implicated in the transcription of several factors responsible for apoptosis, as pro-apoptotic BAX
or anti-apoptotic Bcl-2 proteins (reviewed in [20]). It was shown that there is an up-regulation of
BAX expression after ONC injury [21], as well as after ischemic retinal damage [22]. BAX deficiency
completely prevents RGCs death in a glaucoma animal model [23]. However, deficient BAX expression
in not sufficient to hinder axonal degeneration even without RGC death, reinforcing the idea that
axon degeneration is not a consequence of RGC death [23]. A down-regulation of the anti-apoptotic
protein Bcl-2 was observed in RGCs in the GCL when the onset of regenerative failure of RGCs
occurs [24]. Elevating the expression of Bcl-2 maintains neuronal survival even after withdrawing
of all trophic factors in cultures of RGCs [3]. However, Bcl-2-overexpressing RGCs fail to elaborate
axons or dendrites, unless axon growth-inducing signals are present, clearly demonstrating that axon
growth is not a default function of a surviving neuron, but must be specifically signaled [3]. These
evidences clearly demonstrate that manipulation of some intrinsic factors could have beneficial effects,
not only in the prevention of RGC death but also in promoting axon regeneration upon injury. In
the peripheral nervous system (PNS) the injured neurons are able to regenerate, which does not happen
in the CNS. However, the observation that CNS neurons, including RGCs, regrow into peripheral
nerve grafts [25,26], confirms the possibility that extrinsic factors also have a preponderant role in
limiting axonal repair.

Glial scar and myelin that compose the environment of optic nerve particularly at the site of injury
inhibit the axonal regeneration (reviewed in [27]). Semaphorin-3 is expressed in the core of the glial scar
upon CNS injury [28] and limits regenerating neurons crossing semaphorin-3A (Sema3A)-expressing
regions [29]. This raises the hypothesis that semaphorins may have a potential role in the glia inhibiting
effect of axonal regeneration. Semaphorins have an important function in neuronal polarity and axonal
guidance during RGC development or injury [30]. Sema3A is one of the extracellular factors that is
involved in regulating RGC polarity [31,32]. At PND 14, when all RGCs axons reached their targets [33],
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Sema3A is elevated [34], and increased expression of Sema3A results in strong axonal inhibition in optic
nerve injury model [35]. In line with these findings and corroborating the role of semaphorin in axonal
growth, the intravitreous injection of antibodies against the Sema3A-derived peptide to neutralize
the function of Sema3A, caused a marked inhibition of RGC loss in an animal model of complete
axotomy of the rat optic nerve [36]. Sema5A is a semaphorin produced by oligodendrocytes that
also contributes to the inhibitory environment of the injured optic nerve, heralded by the observation
that RGC axonal growth increases when blocking Sema5A [37]. It has been demonstrated that
myelin proteins inhibit axonal regeneration in adult neurons. Following an insult, nonspecific T cells
accumulate at the lesion site on optic nerve [38,39]. Immunization with T cells specifically against
myelin proteins (copolymer-1, Cop-1) reduces the post-traumatic neuronal loss after ONC [38,39].
Moreover, it has been shown to be an effective therapy for glutamate-induced toxicity in mice and
in a rat model of chronically high intraocular pressure (IOP) [40]. Although these studies were only
focused on the survival of RGCs, some years after the authors demonstrated that Cop-1 treatment confer
functional protection to RGCs [41]. Other studies led to the identification of several myelin-associated
inhibitors of axon growth. Nogo-A is one of the most potent oligodendrocyte-derived inhibitors for
axonal regrowth in the injured adult CNS [42,43] that is also expressed by RGCs [44]. In cases of optic
nerve injury Nogo-A is upregulated [45], although the overexpression or down-regulation of Nogo-A
does not impact the survival of injured RGCs. However, the neuronal knockout of Nogo-A diminishes
the axonal growth response, demonstrating a role for Nogo-A in RGCs growth after injury [45]. On
the other hand, axonal sprouting is increased in the optic nerves of oligodendrocyte-specific Nogo-A
knockout mice [46], demonstrating that the inactivation of Nogo-A in oligodendrocytes appears to
be a good strategy to promote axonal regeneration. Moreover, it was reported that neutralizing
Nogo-A has beneficial effects on visual recovery and plasticity after retinal injury [47]. Moreover,
myelin-associated glycoprotein (MAG) is a component of the myelin-derived inhibition of nerve
regeneration [48]. It seems that a possible mechanism underlying synapse degeneration and RGCs
death in glaucoma is mediated by Nogo-A [49]. The antagonism of Nogo receptor (NgR) reduces
RGCs loss and attenuates synaptic degeneration [50] and the knockout of NgR is effective in enhancing
axonal regeneration after ONC [51].

The failure to regenerate has also been attributed to an environment poor in growth-promoting
trophic factors. In fact, the importance of trophic factors in promoting viability and axonal regeneration
of RGCs has long been recognized [51]. A great variety of neurotrophins were found to induce axon
growth, which include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and
ciliary neurotrophic factor (CNTF). BDNF plays an important role in RGCs neuroprotection since
the levels of BDNF are increased in response to injury [52,53]. BDNF is also highly expressed in
the superior colliculus [54,55] and it is retrogradely transported to the retina. However, displaced
amacrine cells in the GCL are the main source of BDNF to RGCs [56]. The application of BDNF
to the superior colliculus reduces RGC death during development [57]. Moreover, several studies
demonstrated that administration of BDNF into the eye increases the survival of RGCs upon injury,
and ameliorate their function [58–64].

The survival of RGCs is increased by co-administration of BDNF and CNTF soon after optic nerve
injury [65]. Moreover, RGCs extend their axons in response to BDNF and CNTF, but both together
induce more axon growth than either alone [3], raising the hypothesis that different factors may be
responsible for different facets of axon growth. However, neurotrophins fail to induce axon growth
alone. For instance, RGCs fail to survive in the presence of such trophic factors as BDNF or CNTF
unless their cAMP levels are elevated [66]. CNTF overexpression promotes long-term survival and
regeneration of injured adult RGCs [67]. It was described that exogenously applied CNTF stimulates
RGCs partially indirectly via a mechanism that depends on astrocyte-derived CNTF [68]. The NGF
has also an important role in promoting RGCs survival, being the Schwann cells the main source of
this factor [69]. Intraocular injection of NGF has been previously shown to promote RGC survival [70].
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Studying the mechanisms of glaucomatous damage has been a great opportunity to unravel
the signaling pathways involved in RGC axonal degeneration and growth. Elevated IOP is the main
risk factor of glaucoma and, together with other factors, it has been implicated in RGC degeneration
and death [71]. Several in vitro models have been developed [72] and allowed the demonstration
that there are pressure-dependent changes in the length of axons and neurites of RGCs [73]. When
cultures of RGCs are challenged with elevated pressure there is a severe impact in axon length and
in the total neurite length, with a weakened neurite extension (Figure 3), without interfering with
cell body area [73]. In glaucoma, the increased IOP perturbs anterograde and retrograde axonal
transports that lead to deprivation of RGCs of neurotrophic factors produced by brain targets [74]. In
fact, the retrograde transport of BDNF is impaired after IOP elevation, and this may contribute to RGC
loss [75,76].

Recently, it was reported that intravitreal injections of BDNF leads to an increase in the levels of
synaptic proteins between RGCs and bipolar cells in the IPL, meaning that this could have a beneficial
effect in the function of RGCs [77].
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Figure 3. Elevated hydrostatic pressure (EHP) impacts neurite growth of RGCs. (A) Schematic
representation of the experimental design. RGCs were purified from Wistar rats at PND 5 by sequential
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immunopanning, as previously described [8,9] and were cultured for DIV2. RGCs were challenged
with EHP (+70 mmHg above atmospheric pressure) [78,79]) for 24 h and 48 h and then processed for
immunocytochemistry as described in the legend of Figure 2. (C) RGCs were plated in a coverslip with
a cloning cylinder and neurite extension was observed beyond the limit established by the cylinder
(B, grey dashed circle). Exposure to EHP decreased the length of the neurites when compared with
the control (CTR) condition (normal pressure). (D) Higher magnification. This effect on the neurites of
RGCs is dependent on the duration of the exposure to EHP.

3. Potential Therapeutic Targets Aiming RGC Neuroprotection

Several therapeutic strategies have been proposed in order to protect RGCs and restore visual
function (Figure 4).
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Figure 4. Schematic representation of the main strategies for RGC neuroprotection. Blue squares
represent the therapies directed to RGCs and red squares represents the undirected therapies that
culminates in RGCs neuroprotection.

3.1. Neuroprotective Therapies

3.1.1. Neurotrophic Factors

Neurotrophic factors are a family of growth factors that regulate the survival, development and
differentiation of neurons. Neurotrophic factors generally include the neurotrophin family: NGF, BDNF,
neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5); the glial cell-line derived neurotrophic factor
(GDNF) family: GDNF, neurturin (NRTN), artemin (ARTN), and persephin (PSPN); and CNTF [80,81].
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It was reported that most of these neurotrophic factors, which can be produced by glial cells, increase
RGC survival in different experimental models of injury [53,82–88]. Neurotrophic factors bind to
different receptors and transduce diverse intracellular signals. Usually, neurotrophic factors bind to
the high affinity receptor tyrosine kinase (Trk family) that promote cell survival. For instance, NGF
binds to TrkA, BDNF and NT-4 to TrkB, and NT-3 binds to TrkC. However, they can also bind to the low
affinity neurotrophin receptor p75 (p75NTR) and induce programmed cell death. These opposing
effects of neurotrophic factors are important for regulating RGCs development [80,81]. The distribution
of neurotrophic factors and their receptors in the mammalian retina has been studied in detail in
physiology as well as in pathological conditions [52,53]. Of interest, especially when using in vitro
models to study these mechanisms, the expression of neurotrophic factors and their receptors is
preserved in glial cells and in RGCs even when in culture for 6 days [86] and the factors secreted by
Müller cells offer protection to cultured RGCs [89].

Nerve Growth Factor (NGF)

NGF is an important growth factor affecting the survival of nerve cells and their deprivation can
lead to apoptosis [90,91]. NGF is produced and utilized by RGCs [92] and protects these cells after
injury [93–95]. Furthermore, NGF treatments reduced the progressive loss of RGCs in a glaucoma
model [93]. In addition, in patients with glaucoma, NGF eye drops resulted in an improvement of
the INL function, neural conduction, visual field, optic nerve function, contrast sensitivity, and visual
acuity [96]. However, further studies are required to confirm the therapeutic efficacy of NGF.

Brain-Derived Neurotrophic Factor (BDNF)

BDNF is widely expressed throughout the CNS. RGCs express BDNF and its high affinity receptor
TrkB [97]. As mentioned above, it is a powerful neuroprotective agent that promotes the survival
and regrowth of RGCs [61,62,98]. The exposure to NMDA induces an increase in BDNF expression
in RGCs in the first hours, suggesting that it is an endogenous neuroprotective response of RGCs.
However, this effect is not sustained over time, maybe because the cells cannot maintain the synthesis
of BDNF or because the activation of the apoptotic mechanism inhibits BDNF synthesis [52,84]. It has
been speculated that the therapeutic properties of different neuroprotective agents in promoting RGC
survival are related to the induction of retinal BDNF expression [99,100]. Consistently, BDNF levels are
reduced in the serum and tears of glaucoma patients, suggesting that deficits in this neurotrophin may
participate in RGC death in glaucoma and that BDNF may be a biomarker for glaucoma [101,102].

Glial Cell Line-Derived Neurotrophic Factor (GDNF)

GDNF is secreted by glial cells and binds to the GDNF-α receptor and to the receptor tyrosine
kinase in RGCs [103]. GDNF promotes the survival of RGCs after injury [104–106]. Moreover, GDNF
treatments, specifically intravitreal injection of microspheres containing GDNF, protect RGCs in
glaucoma animal models [107,108]. This neuroprotective property of GDNF may be orchestrated
by Müller cells. GDNF upregulates the glutamate/aspartate transporter (GLAST) in Müller cells
enhancing glutamate uptake that may indirectly protect RGCs [109]. Another possible mechanism
of action could be through osteopontin since activation of Müller cells by GDNF was shown to
induce the secretion of osteopontin [110]. Thus, GDNF holds strong therapeutic potential for retinal
neurodegenerative diseases.

Ciliary Neurotrophic Factor (CNTF)

CNTF belongs to the interleukin-6 (IL-6) family of cytokines, binds to CNTF receptors (CNTFR)
and exerts robust neuroprotection in neurons [81,111]. In the retina, CNTF is expressed by various cell
types, particularly by Müller cells [112]. Its neuroprotective effects are mediated especially by these
glial cells that directly respond to CNTF by releasing other neurotrophic factors such as basic fibroblast
growth factor (bFGF) [113]. The neurotrophic properties of CNTF were tested in several animal models
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of glaucoma and in ischemic optic neuropathy [60,114–116]. CNTF is also capable of stimulating axonal
regeneration [117], which may be mediated by astrocytes [118]. Notably, the concentration of CNTF
in the aqueous humor, lacrimal fluid and blood serum is decreased in patients with glaucoma [119].
The results of CNTF in neuroprotection and regeneration suggest a potential for clinical use; however,
the pharmacology and administration of CNTF must be optimized.

Other Trophic Factors

Other trophic factors have been described to promote RGCs survival. Pigment epithelium derived
factor (PEDF) reduces RGC loss in a mouse model of glaucoma [120] and insulin-like growth factor-1
(IGF-1) also protects RGCs from different injuries [121,122]. Despite the role of vascular endothelial
growth factor A (VEGF-A) in neovascularization, VEGF is also a neuronal trophic factor that may
play a role in RGC neuroprotection. Indeed, it reduces RGC apoptosis in models of glaucoma and
anti-VEGF therapies exacerbate neuronal cell death [123–126].

3.1.2. Glutamate Receptors Antagonists

Despite being the major excitatory neurotransmitter in the retina and involved in the vertical
pathway of information [1], excessive glutamate levels have detrimental effects on RGCs [127],
a term described as glutamate excitotoxicity [128], due to the activation of a complex apoptotic
cascades [128,129]. The fact that intraocular glutamate levels are increased in glaucoma
patients [130,131] raised the hypothesis that the blockade of glutamate receptors could be a valuable
strategy for RGC neuroprotection, at least for glaucoma. MK801 (dizocilpine maleate) is a potent
glutamate receptor antagonist and is a neuroprotective agent of RGCs [132,133], although it could
also be neurotoxic [134]. In preclinical studies memantine, a NMDA receptor antagonist, affords
robust neuroprotection of RGCs against glutamate toxicity [129,135]. However, memantine had limited
efficacy in glaucoma patients [136,137]. More studies are required to clearly evaluate these and other
glutamate antagonists as effective neuroprotective therapies for RGCs.

3.1.3. Alpha-2 Adrenergic Receptors Agonists

The presence of alpha-adrenergic receptors in the RGCs has been demonstrated [138]. Additionally,
the activation of alpha-2 adrenergic receptors by agonists such as brimonidine has been shown
to enhance survival of RGCs after different types of injuries, namely in glaucoma [138–141],
ONC [142] and ischemia [143]. Brimonidine can confer protection by reducing the accumulation
of extracellular glutamate and by blocking NMDA receptors, independently of the IOP-lowering
mechanisms [139,140,142,144]. Several pre-clinical and clinical studies were conducted [139,145–148]
to assess the protective properties of brimonidine.

3.1.4. Calcium Channel Blockers

Calcium channel blockers may protect RGCs by preventing cell death mediated by calcium
influx secondary to NMDA receptor overactivation and local ischemia [149,150]. Different calcium
channel blockers attenuate injury to RGCs [151] and increase the viability of immunopurified RGCs
cultures [152]. A randomized clinical trial analyzed the effects of the treatment with nilvadipine,
a calcium channel blocker, on visual field performance and ocular circulation in patients with open-angle
glaucoma. Nilvadipine slowed visual field progression, maintained the optic disc rim, and increased
the posterior choroidal circulation [153]. Although these findings look promising, more studies on
the distribution and pharmacology of the several types of calcium channels could help clarifying their
therapeutic value [154].
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3.1.5. Antioxidants

Oxidative stress occurs when concentrations of reactive oxygen species (ROS) rise
above physiological range, and it has been indicated as a potential cause of glaucomatous
neurodegeneration [155]. Thus, inhibition of ROS may enhance RGC survival [156–158]. Coenzyme
Q10, cofactor of the electron transport chain that inhibits the generation of ROS, protects retinal neurons
from damage [159–161]. Moreover, improvement in visual acuity has also been reported in patients
with optic neuropathy after treatment with Q10 [162].

Glutathione (GSH) is decreased in glaucoma patients, suggesting a general compromise of
the antioxidative defense [163]. The treatment with vitamin E can ameliorate the decrease in the levels
of retinal GSH [164,165]. Consequently, vitamin E-deficient diet is associated with an increase of RGC
death related to an increase in lipid peroxidation [166]. Moreover, methane increases the activity of
several antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase
(GPx), and the expression of anti-apoptotic genes, which culminate in reduced RGC loss [167].
Overexpression of frataxin induces up-regulation of antioxidant enzymes (such as SOD2, CAT, GPx)
and increases RGC survival [168]. Other agents, like crocin, increase the levels of GSH and SOD activity,
decreasing ROS and promoting RGC survival [169]. Generally, an increase of SOD and alpha-lipoic
acid protects RGCs against oxidative stress damage [170,171]. Therefore, evidence demonstrate that
antioxidants may be beneficial for neuroprotection of RGCs [148], but further studies are required to
investigate their full potential.

3.1.6. Nitric Oxide Synthase Inhibitors

The levels of nitric oxide (NO) are increased in experimental glaucoma, and evidence shows that
NO can result in RGCs degeneration [172–175]. Moreover, increased expression of nitric oxide synthase
(NOS) was detected in different models of RGCs injury [175–177]. Additionally, in glaucoma patients
the astrocytes of ONH become reactive and may produce high amounts of NO causing neurotoxicity
to the axons of RGCs [178,179]. This has raised the hypothesis that the inhibition of NOS, in particular
inducible NOS (iNOS), could be neuroprotective by delaying RGCs degeneration [180,181]. However,
other studies did not identify a relationship between iNOS and RGCs neurodegeneration [182,183].
More studies are necessary to clarify the role of NOS inhibitors in RGCs protection, helping to clarify
this “apparent” discrepancy.

3.1.7. Adenosinergic System

Adenosine can exert both neuroprotective and neurodegenerative actions acting through four
types of receptors: A1, A2A, A2B and A3. Adenosine acting on adenosine A1 receptor (A1R) protects
cultured retinal neurons from NMDA-induced cell death [184] by blocking calcium channels in
RGCs [185], suggesting that agents directed to A1R could be a good therapeutic strategy. Indeed,
the activation of A1R is neuroprotective against injury induced by ischemia-reperfusion [186], and
N(6)-cyclohexyl-adenosine (CHA), an agonist of A1R, increases RGCs survival mediating the trophic
effect of IL-6 [187]. In fact, IL-6 is an interesting cytokine that has been demonstrated to promote
RGCs survival [188,189], probably by the modulation of BDNF synthesis [190]. Adenosine A3 receptor
(A3R) has also been evaluated as a therapeutic target [191]. RGCs are endowed with A3R [192], and
its activation protects RGCs from cell death induced by P2X7 receptor agonist [193,194], possibly by
limiting the rise in intracellular calcium [195]. Activation of A3R promotes RGCs neurite outgrowth
and neurite regeneration in an animal model of ONC [196]. Moreover, the activation of A3R was
also demonstrated to afford protection to the retina from excitotoxic-induced cell death, retinal
ischemia-reperfusion injury and damage induced by partial optic nerve transection [197].
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3.2. Cell-Based Therapies

Beyond neuroprotection, cell replacement may have potential as a strategy for the treatment of
optic neuropathies. Replacing the diseased or degenerated cells by stem cell-derived RGCs should
provide effective therapeutic treatment in the near future. However, complex circuitry in the retina
makes cell replacement challenging and difficult for functional repair [198].

Stem cells are functionally undifferentiated and immature cells of a complex nature. These cells
are capable of differentiating into different cell types, indicating that they have the potential to repair
tissue and restore function after lesion. Due to this potential, it is believed that stem cells may be able
to either replace or repair damaged cells in the retina [199–201].

In the past decade, the capacity to generate retinal cells from pluripotent stem cells using
three-dimensional organoid cultures has become well established [202–204]. However, while corneal
transplantation is commonly performed with excellent results, many obstacles must be surpassed
before retinal transplants can become clinically useful. The major problems are the production of
appropriate transplants, functional integration in situ and the survival of the stem cell-derived RGCs.

Various types of stem cells were assessed for retinal differentiation and transplantation such as
human embryonic stem cells, induced pluripotent stem cells, isolated retinal stem cells and also from
adult stem cells, in particular neural stem cells, mesenchymal stem cells (MSCs) derived from bone
marrow, adipose tissues and dental pulp [205].

Various methods to assess the ability of RGCs to survive and integrate with host tissue have been
proposed [206,207]. Transplanted RGCs by intravitreal injection acquired the normal morphology of
endogenous RGCs, responded to light, and established synaptic contacts with the lateral geniculate
nucleus and the superior colliculus [208–210]. These examples show that RGC transplantation is
possible, although not very efficient, but further studies will certainly guarantee that transplantation of
cells to the retina may become a strategy.

MSCs have been widely demonstrated to afford neuroprotective, immunomodulatory and
antioxidant properties, making them a promising strategy for the treatment of neurodegenerative
diseases. These cells secrete neurotrophic factors like NGF accelerating the survival of neural cells [211].
The protective properties of MSCs have also been also documented in an animal model of glaucoma
and in an animal model of optic nerve injury [212,213]. The protective properties of MSCs extend
beyond the cells. Recently, the extracellular vesicles derived by these cells were demonstrated to
promote RGCs neuroprotection in rodent models of glaucoma [213,214].

3.3. Glia-Mediated Neuroprotection

The term neuroinflammation comprises a number of events that affects the CNS. In other words,
every time the CNS is faced with infectious agents, traumatic injuries or other unknown elements
that might cause a disruption of its homeostasis, it will protect itself by the initiation of inflammatory
signaling cascades in order to eliminate the pathological factor [215]. Although the main actors in this
scenario are astrocytes and microglia [216,217], in the retina, Müller cells can also be activated and get
involved in the production of inflammatory cytokines and chemokines, which maintain and enhance
the inflammatory condition participating in the progression of several diseases.

Microglial cells have long been recognized as crucial players in the maintenance of retinal
homeostasis. During development, microglial cells are involved in synaptic pruning and in retinal
wiring [218] and throughout the life of the organism these cells screen the parenchyma searching for
alterations in the environment, including cell interactions and external threats [219,220]. In pathological
conditions, microglia have been shown to interfere with neural and glial cell function contributing to
retinal degeneration and RGC loss [221]. Indeed, several reports show that abnormally responsive
microglia can directly reduce the survival of RGCs. For example, even though microglial cells are not
endowed with NMDA receptors, upon intravitreal NMDA injection, these cells detect the alterations
in calcium and adenosine triphosphate (ATP) signaling in other retinal cells, including RGCs, by
increasing the inflammatory response [222]. Interestingly, the report that isolated RGCs are resistant to
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NMDA excitotoxicity [223], while in the retina NMDA exposure leads to RGCs degeneration triggered
by increased production of tumor necrosis factor (TNF) and abnormal behavior of microglial cells [222]
is another evidence of the role of microglial cells shaping RGCs degeneration.

The pivotal role of microglia in RGCs degeneration has been mostly explored in glaucoma.
Historically, reactive microglial cells have been associated with human glaucomatous ONH lesion,
mainly by their spatial distribution along the damaged fibers and expression of activation markers
as well as pro-inflammatory mediators [224,225]. Indeed, enlarged reactive microglial cells were
found in the retina of human post-mortem donors with glaucoma manifestations [224]. Nevertheless,
this finding may raise the question of whether microgliosis might be a cause or a consequence of
the retinal degeneration. This question was very elegantly addressed using the DBA/2J mouse model
of glaucoma when microglia activation in the ONH was visualized before the detection of RGC
loss [226,227]. Furthermore, microglial cell response initiates in the unmyelinated region of the ONH
and further develops along the retina, correlating with the progression of the neurodegenerative
process [227]. In accordance with these findings, microglia reactivity was shown to impact RGCs
survival in different experimental models of glaucoma [78,79,228]. Altered ROS signalling has been
associated with glaucomatous damage both in animal models and in human glaucoma [179,229],
and reactive microglial cells may be the main cellular source [79]. In a model of induced ocular
hypertension (OHT), microglia were shown to be reactive as detected by the increased expression of
translocator protein (TSPO), major histocompatibility complex class II (MHC-II) and pro-inflammatory
mediators in the retina early after OHT induction [230]. Even when exposed to elevated hydrostatic
pressure (EHP) an in vitro model of elevated IOP, microglia become reactive, release pro-inflammatory
mediators and increase ATP and adenosine secretion [78,231]. Alterations in ATP levels are
determinant to propagate microglial cell response by acting as a “call for action” [232]. In addition,
adenosine mainly acting through the activation of A2A receptor (A2AR) may propel microglia
deleterious response overtime [233]. The A2AR has been described to control microglia reactivity.
Its expression increases in microglia in models of glaucoma [78,79], and A2AR antagonists were
shown to confer protection to retinal neurons, including RGCs, through the control of microglia
reactivity [78,79,228]. Caffeine, a non-selective adenosine antagonist, also protects RGCs by hampering
microglial cell response and controlling the neuroinflammatory environment in models of transient
retinal ischemia and ocular hypertension [230,234,235]. KW6002, another A2AR antagonist with
good oral bioavailability, confers protection to the retina, including RGCs, through the control of
microglia-mediated neuroinflammation [234]. Recently, the potential of A2AR antagonists was further
confirmed as a strategy for the human retina [78]. By using human retinal organotypic cultures,
the A2AR antagonist was able to reduce microglia alterations and the production of ROS, suggesting
that microglia-mediated inflammation in the human retina also involves A2AR [78]. The neutralization
of the actions of TNF and interleukin-1β (IL-1β) in the retinal organotypic cultures was able to prevent
the loss of RGCs triggered by EHP, reinforcing the role of retinal inflammation in neurodegeneration
in glaucoma [79]. The central role of microglia causing RGCs loss was further demonstrated with
a strategy to deplete microglia from primary retinal cultures following exposure to EHP [78]. In such
case, the effect of EHP on cell death was abrogated, showing that microglia are indeed the main triggers
and propellants of neuroinflammation-mediated glaucomatous damage [78].

The secretion of TNF by microglial cells was shown to contribute to RGC degeneration as its
receptor is highly increased in glaucoma in RGCs, astrocytes, microglia and Müller cells, triggering
a cascade of events that culminates in RGC demise [236,237]. Indeed, simple experiments neutralizing
the actions of TNF were able to restore axon function and decrease the loss of RGCs in glaucoma [238].

Recently it has been shown that chronic OHT promotes the expression of P2X7 receptor in
the retina leading to the activation of NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3)
inflammasome [239]. The activation of P2X7R-dependent NLRP3 inflammasome in microglia increases
the production of pro-inflammatory cytokines and caspase activation that leads to RGC death [239]. In
accordance with the role of purine receptors in microglia reactivity, the inhibition of P2X7 receptor in
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microglial cells confers protection to RGCs in vitro upon exposure to conditioned media from microglia
exposed to BzATP by decreasing NLRP3 inflammasome activation [239]. Furthermore, in a model of
OHT the oral administration of a saffron extract reduced retinal microglia inflammation and the loss of
RGCs, while decreasing the expression of the adenosine diphosphate P2Y12 receptor [240].

Microglial cells also modulate retinal cell function by expressing complement molecules. In
fact, in human and experimental glaucoma the expression of complement factors is increased in
conditions of elevated IOP [241–243]. The complement proteins C1q and C3 are crucial during
retinal development by allowing the targeting of dysfunctional or unnecessary synapses to prune by
microglial cells [244,245]. However, in glaucoma the inadequate targeting of synapses by increased
expression of complement factors by microglia leads to indiscriminate pruning of healthy neurons,
which might contribute to disease progression [246]. In addition, in glaucoma, microglia were found
to actively phagocyte functional RGCs increasing the loss of visual capacity [246]. Furthermore,
if neuron-microglia communication is impaired by interfering with the fractalkine receptor (CX3C
chemokine receptor 1, Cx3cr1) in microglia, this would aggravate RGC loss in disease models such
the ischemia-reperfusion [247] and glaucoma DBA/2J mouse [248], with no alterations in uninjured
retinas [247]. These findings suggest that in the context of disease although the control of microglia
response might be beneficial, it is important to preserve cell communication to restrain microglial cell
response. Therefore, a strategy to confer protection to retinal cells might be to block the over targeting
of retinal neurons by microglia through the complement system [241].

In the model of ischemia-reperfusion, treatment with minocycline, which decreases microglia
reactivity, was able to protect RGCs [247]. Moreover, in the DBA/2J mouse model of glaucoma,
minocycline decreases the number of ameboid microglia increasing their ramification and reducing
the neuroinflammatory milieu [249]. Moreover, minocycline also improved axonal transport in RGCs
and overall retinal integrity in the glaucoma model [249], providing evidence that the control of
microglia-mediated neuroinflammation can have potential in RGC neuroprotection.

Müller cells are the main glial cells in the retina. In addition to structural support, among other
functions, Müller cells are involved in metabolism, phagocytosis of neuronal debris and in the release
of trophic factors. These cells can enhance the survival of RGCs [89,250–252].

Müller cells are crucial to protect neurons against toxic molecules (Figure 5). They can
uptake excessive glutamate from the synapses, preventing glutamate-induced RGC death [253,254].
Some studies have demonstrated this function of Müller cells in vivo as well as in vitro [255–258].
The glutamate transporter GLAST contributes to the uptake of excess of glutamate from the medium
protecting against the excitotoxic effect of glutamate [254,256]. Moreover, it has been shown that
in some ocular diseases, the expression of GLAST is altered, including in an animal model of
glaucoma [259]. Moreover, Müller cells are implicated in maintaining the retinal extracellular levels
of other neurotransmitters, such as gamma-aminobutyric acid (GABA), contributing to neuronal
protection [260].

Müller cells are also involved in the regulation of glycogen and glucose metabolism and during
metabolic stress can provide lactate to retinal neurons [261]. For instance, in early phases of diabetic
retinopathy, Müller glia may afford neuroprotection against high glucose [262]. In addition, due to
their energy metabolism, Müller cells may protect neurons towards toxic stress by increasing ATP
turnover [263]. Furthermore, they play a role in water and ion regulation, buffering the retina and
inducing neuroprotection [250,264]. It is worth highlighting the important antioxidant role of Müller
cells. One crucial molecule that protects the retina against reactive oxygen species is GSH, which
can be synthesized by Müller cells [254,265]. In addition, GSH can prevent RGC degeneration in an
experimental model of glaucoma [266].
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Scheme showing the roles of Müller cells in RGC neuroprotection, such as glucose metabolism regulation,
water and ion homeostasis, neurotransmitters uptake, antioxidant defense systems (GSH) against ROS,
secretion of trophic factors. The role of Müller cells in inflammation by secretion of cytokines that may
be detrimental for RGCs is also depicted (red arrow).

Müller cells secrete a great number of factors in response to injury that can protect retinal
neurons. Müller cells are known to synthesize neurotrophins and growth factors that can increase
RGC survival [53,86,252,254], such as PEDF [267] or GDNF [105] among others. Moreover, Müller cells
produce selective neurotrophins under different conditions, for instance, in response to glutamate,
these cells upregulate the secretion of BDNF, NGF, NT-3, NT-4, and GDNF [268]. Müller cells are
not only a source of neurotrophins, they also respond to neurotrophins as they express neurotrophin
receptors [53,269] (see the neurotrophic factors functions protecting RGCs above).

Furthermore, Müller glial cells can release several inflammatory factors and cytokines [270], and
some cytokines are even known to stimulate the production of other cytokines by Müller glia [271]
in response to different stressors. Müller cells are a major source of retinal IL-1β [272,273] and
they also secrete TNF, facilitating the apoptotic death of RGCs in response to damage [274,275]. In
addition, Müller cells express toll-like receptors (TLRs) [276] and receptors for advanced glycation
end-products (RAGE) [277] that induce the production of pro-inflammatory cytokines, chemokines
and neuroprotective growth factors by these cells. In the beginning, this process acts as a protective
mechanism to prevent further damage to the retina and to promote tissue repair. However, in the adult
mammalian retina it does not appear to be beneficial since the release of pro-inflammatory cytokines
and growth factors from Müller cells can lead to further degeneration [278]. For these reasons,
understanding the processes in which Müller cells are involved and how these processes differ between
pathological conditions and finding strategies to circumvent these barriers represent major challenges
to the advancement of many ocular therapies.
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4. Clinical Trials Targeting RGCs Neuroprotection

A therapeutic strategy to optic neuropathies should protect RGCs from death but should
also manipulate axonal regeneration in order to repair the visual function that was lost due to
the disease. However, there is still no effective therapy for optic neuropathies. Innovative study
designs and integrating therapeutic testing with biomarkers have advanced several neuroprotective
and neuroenhancement compounds to clinical trials. Numerous neuroprotection strategies have been
investigated for optic neuropathies, including peripheral nerve grafting, electrical stimulation, and in
agreement with their well-known role in maintaining neuronal homeostasis, neurotrophic factors have
been proposed as a novel therapy. However, the outcomes of the completed clinical trials were not
completely satisfactory, presenting only partial or no expected effects [198,279–281].

There are several drugs in clinical trials that are currently being developed focused on RGC
neuroprotection (Table 1). In the context of neurotrophic factors some clinical trials are available.
NT-501 encapsulated cell therapy (NT-501 ECT) is a device produced by Neurotech that consists of
an intravitreal implant with a capsule filled with human cells genetically modified to secrete CNTF.
NT-501 ECT is in phase 2 for glaucoma (ClinicalTrials.gov Identifier: NCT02862938) and in phase 1 for
ischemic optic neuropathy (ClinicalTrials.gov Identifier: NCT01411657). For glaucoma, other therapies
have been proposed such as the use of recombinant human NGF (rhNGF) (ClinicalTrials.gov Identifier:
NCT02855450). In this phase 1 clinical trial the safety and tolerability of an 8-week treatment with
180 µg/mL of rhNGF eye drop solution will be determined. Additionally, the study wants to assess
the changes in best corrected distance visual acuity (BCDVA), visual field, electroretinography (ERG)
and structural changes in GCL and NFL thickness measured by optical coherence tomography (OCT)
at 1, 4 and 8 weeks of therapy, and at 4 and 24 weeks after therapy cessation. In another clinical trial
the safety of treatment with single and multiple ascending doses of rhNGF (0.5–180 µg/mL) was tested
in healthy patients (ClinicalTrials.gov Identifier: NCT01744704), and the results demonstrated that
rhNGF eye drops were well tolerated by the patients [282].

The only modifiable risk factor for glaucoma development is elevated IOP. Brimonidine is
a non-selective α2-adrenergic receptor agonist and is currently used as a treatment option in
glaucoma to lower IOP [283]. Preclinical studies demonstrated the neuroprotective properties
of brimonidine [143,284], leading to the hypothesis that an implant with brimonidine can have
beneficial properties for glaucoma patients. Indeed, this device is being evaluated in patients
with glaucomatous optic neuropathy (ClinicalTrials.gov Identifier: NCT00693485). Moreover,
cytidine-5′-diphosphocholine (citicoline) is also in a phase 4 clinical trial for glaucoma (ClinicalTrials.gov
Identifier: NCT00404729). Citicoline is an endogenous molecule that has a role in the biosynthesis of
phospholipids of cell membranes and increases the levels of neurotransmitters, like acetylcholine, in
the CNS [285]. The neuroprotective properties of citicoline in glaucoma have been tested [286,287].
Intramuscular treatment of citicoline improves glaucomatous visual defects [286], RGC function
(assessed by pattern ERG) and neural conduction along postretinal visual pathways (assessed by
visual-evoked potential) [288]. That way, the phase 4 clinical trial aims to assess the effects of oral
citicoline treatment in visual function outcomes in glaucoma patients. Memantine, a NMDA subtype of
glutamate receptor antagonist, is already being used for Alzheimer’s disease, and has undergone phase
3 clinical trials for glaucoma (ClinicalTrials.gov Identifier: NCT00141882 and NCT00168350). However,
the drug did not show significant efficacy in preserving visual function in glaucoma patients [289].

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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Table 1. Drug-based therapies in clinical trials for optic neuropathies.

Condition or Disease Intervention ClinicalTrials.gov Identifier Phase Starting Date

Glaucoma NT-501 ECT implant NCT02862938 2 2016

Glaucoma rhNGF NCT02855450 1 2016

Glaucoma, Primary Open Angle NT-501 CNTF Implant NCT01408472 1 2011

Glaucoma, Open-Angle Brimonidine Implant NCT00693485 2 2008

Glaucoma and Ischemic optic neuropathy Citicoline NCT00404729 4 2006

Open-Angle Glaucoma Memantine NCT00141882 3 2005

Open-Angle Glaucoma Memantine NCT00168350 3 2005

Ischemic Optic Neuropathy Alprostadil (prostaglandin E1) NCT03851562 2 2019

Ischemic Optic Neuropathy Bosentan NCT02377271 3 2015

Ischemic Optic Neuropathy Triamcinolone Acetonide NCT02329288 3 2014

Ischemic Optic Neuropathy NT-501 CNTF Implant NCT01411657 1 2011

Non-arteritic Anterior Ischemic Optic Neuropathy Prednisolone and Erythropoietin NCT03715881 2 2018

Non-arteritic Ischemic Optic Neuropathy RPh201 NCT03547206 3 2018

Non-arteritic Anterior Ischemic Optic Neuropathy Citicoline NCT03046693 4 2017

Non-arteritic Anterior Ischemic Optic Neuropathy Methylprednisolone NCT02439866 3 2015

Non-arteritic Ischemic Optic Neuropathy RPh201 NCT02045212 2 2014

Non-arteritic Ischemic Optic Neuropathy Dalfampridine NCT01975324 4 2013

Non-arteritic Anterior Ischemic Optic Neuropathy Avastin and Triamcinolone NCT01330524 1 and 2 2011

Non-arteritic Anterior Ischemic Optic Neuropathy Bevacizumab NCT00813059 2 2008

Non-arteritic Anterior Ischemic Optic Neuropathy Ranibizumab NCT00561834 1 2007

Non-arteritic Anterior Ischemic Optic Neuropathy Levodopa-carbidopa NCT00432393 4 2007

ClinicalTrials.gov
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Table 1. Cont.

Condition or Disease Intervention ClinicalTrials.gov Identifier Phase Starting Date

Traumatic Optic Neuropathy Recombinant human erythropoietin NCT03308448 3 2017

Traumatic Optic Neuropathy Recombinant human erythropoietin NCT01783847 1 and 2 2013

Optic Nerve Diseases (methanol associated optic neuropathy) Erythropoietin NCT02376881 3 2015

Leber’s Hereditary Optic Neuropathy Idebenone NCT02774005 4 2016

Leber’s Hereditary Optic Neuropathy Cyclosporine NCT02176733 2 2014

Leber’s Hereditary Optic Neuropathy Idebenone NCT00747487 2 2008

ClinicalTrials.gov
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Moreover, prostaglandin E1 (alprostadil) administered by intravenous infusion, is very recently
in phase 2 clinical trial (ClinicalTrials.gov Identifier: NCT03851562). Prostaglandin E1 is a potent
vasodilator of the microcirculation [290], and may correct the deficits in the perfusion pressure of
the microcirculation that supplies the optic nerve in patients with ischemic optic neuropathy, improving
visual function. In fact, intravenous prostaglandin E1 is an effective treatment for ocular and optic
nerve ischemia leading to immediate visual improvement [290]. On the other hand, due to the role
of endothelin in glaucoma as a potent vasoconstrictor [291], the antagonism of its signaling seems to
be a good therapeutic strategy for optic neuropathies. Bosentan, an endothelin receptor antagonist,
is in phase 3 clinical trial for ischemic optic neuropathy in order to assess if the treatment could
recover anatomical (NFL in OCT, optic atrophy) and functional (visual acuity, visual field) criteria
(ClinicalTrials.gov Identifier: NCT02377271). The last drug-based therapy for ischemic optic neuropathy,
the retrobulbar injection of triamcinolone acetonide to halt the progression of the visual acuity and
visual field loss in patients improving their chances of avoiding blindness, is in phase 3 clinical trial
(ClinicalTrials.gov Identifier: NCT02329288). In preclinical studies, besides the neuroprotective effects
to RGCs conferred by triamcinolone acetonide, it was demonstrated that this drug also decreases
the activation of retinal microglia [292]. For non-arteritic ischemic optic neuropathy there are several
clinical trials targeting neuroprotection. EPO administered by intravenous injection started recently in
phase 2 clinical trial, in order to assess visual field and thickness of the retinal NFL by OCT in glaucoma
patients (ClinicalTrials.gov Identifier: NCT03715881). In the same clinical trial, another aim is to assess
the potential retinal neuroprotective effect of prednisolone. Moreover, methylprednisolone is also in
phase 3 clinical trial (ClinicalTrials.gov Identifier: NCT02439866). Preclinical studies demonstrated
that methylprednisolone inhibits the apoptosis of RGCs after ONC, probably through an up-regulation
of Bcl-2 expression and a down-regulation of Bax expression [293], two of the intrinsic factors that limit
the axon regeneration described previously. Moreover, citicoline is in clinical trials for non-arteritic
ischemic optic neuropathy (ClinicalTrials.gov Identifier: NCT03046693) in order to assess the function
of RGCs by pattern ERG, thickness of GCL and visual field test.

RPh201 is a drug extracted from a botanical source and it has been produced by Regenera
Pharma. RPh201 started recently the phase 3 clinical trial for non-arteritic ischemic optic neuropathy
(ClinicalTrials.gov Identifier: NCT03547206). The results of the phase 2 clinical trial (ClinicalTrials.gov
Identifier: NCT02045212) are already available. Patients showed an improvement in visual function
after the treatment [294]. Dalfampridine is used to improve the walking ability in multiple sclerosis
patients and is in a phase 4 clinical trial for non-arteritic ischemic optic neuropathy (ClinicalTrials.gov
Identifier: NCT01975324).

Anti-VEGF antibodies (bevacizumab, avastin or ranibizumab) are used for the treatment of macular
edema and neovascular age-related macular degeneration. However, they have also been tested for
neuroprotection in optic neuropathies, and they are in three different clinical trials for non-arteritic
anterior ischemic optic neuropathy (ClinicalTrials.gov Identifier: NCT01330524, NCT00813059 and
NCT00561834) in order to halt the progression of visual acuity and visual field loss due to the disease.
The thickness of GCL increased after the treatment with bevacizumab in diabetic macular edema [295].
Moreover, levodopa-carbidopa is used to treat the symptoms of Parkinson’s disease and it is in
a phase 4 clinical trial for non-arteritic anterior ischemic optic neuropathy (ClinicalTrials.gov Identifier:
NCT00432393).

A phase 1 and 2 clinical trial (ClinicalTrials.gov Identifier: NCT01783847) assessing the effect of
erythropoietin (EPO) demonstrated an improvement in visual function [296,297]. These beneficial
effects can be due to the protection conferred to RGCs by EPO previously demonstrated in animal
models of retinal degeneration [298]. Moreover, it has been tested whether EPO could improve optic
nerve function and help patients to recover visual function after methanol associated optic neuropathy
(ClinicalTrials.gov Identifier: NCT02376881). EPO is currently in phase 3 clinical trial for traumatic
optic neuropathy (ClinicalTrials.gov Identifier: NCT03308448).
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Leber’s hereditary optic neuropathy is an inherited optic neuropathy characterized by
mitochondrial dysfunction that leads to vision loss due to RGCs loss [299]. Idebenone was in clinical
trials for the treatment of vision loss due to Leber’s hereditary optic neuropathy (ClinicalTrials.gov
Identifier: NCT02774005 and NCT00747487). The beneficial effects of idebenone are due to its
antioxidant properties and its ability to act as an electron carrier in the mitochondrial respiratory chain,
thus resulting in the restoration of cellular energy (ATP) generation and contributing to the recovery of
visual function in patients (reviewed in [300]). That way, idebenone (Raxone®) is the first, and currently
the only disease-specific treatment for Leber’s hereditary optic neuropathy and the only approved
for optic neuropathies aiming RGCs neuroprotection. Moreover, cyclosporine is also in a phase 2
clinical trial for Leber’s hereditary optic neuropathy (ClinicalTrials.gov Identifier: NCT02176733), due
to protective properties against ischemic injury-mediated mitochondrial dysfunction in RGCs [301].

Currently, there are two clinical trials involving stem-cell based therapies targeting RGCs (Table 2).
One trial aims to assess the safety and efficacy of the transplantation of autologous purified stem cells
(ClinicalTrials.gov Identifier: NCT02638714) on restoring function in damaged optic nerves using
autologous purified populations of bone-marrow derived stem cells in optic neuropathy. The intravitreal
injection of MSCs (ClinicalTrials.gov Identifier: NCT03173638) aims to evaluate if the treatment may
reduce the progression of axonal degeneration caused by non-arteritic ischemic optic neuropathy,
but this clinical trial is focused in the evaluation of the safety of cell therapy as a new treatment for
these patients.

Table 2. Stem cell-based therapies in clinical trials for optic neuropathies.

Condition or Disease Intervention ClinicalTrials.gov
Identifier Phase Starting Date

Optic Neuropathy Transplantation of autologous
purified stem cells NCT02638714 1 and 2 2015

Non-arteritic Ischemic
Optic Neuropathy

Intravitreal injection of
mesenchymal stem cells NCT03173638 2 2017

5. Different Types of RGCs and their Susceptibility after Retinal Damage

The complexity of the CNS is due to the great number of specialized neuronal types and subtypes
that give rise to a complex connectome [302]. However, due to the heterogeneity and complexity of
the mammalian neuronal types, neuronal classification has been challenging and many cell subtypes
have not yet been characterized [303]. Just like neurons in the brain, in the retina, although most
RGCs serve a similar function, it was proven that these RGCs are highly diverse. The total RGC
population develops from a common precursor into different subtypes of RGCs, with that they may
differ in their physiological roles generating varied responses to visual stimuli [304]. RGCs have
been classified based on differences in size, morphology, dendritic arborization, electrophysiological
functions, susceptibility to degeneration, regenerative capacity and expression of specific molecular
signatures, and more than thirty different subtypes of RGCs subtypes have been identified to date
in the mammalian retina [305]. In 1953, the first classifications were made and the ON- and OFF-
center RGCs were distinguished [305]. In recent works, combining different criteria, RGCs were
classified into four types of ON-OFF directionally selective ganglion cells (DS-RGCs), three types of
ON DS-RGCs, three types of alpha RGCs (sustained ON, sustained OFF, and transient OFF αRGCs),
five types of intrinsically photosensitive melanopsin-containing RGCs (ipRGCs), three types of JamB
expressing RGCs (J-RGCs), two types of beta cells (βRGCs), chromatically sensitive ganglion cells,
orientation-sensitive cells, and suppressed-by-contrast cells, among others [306].

The major requirement to properly characterize and classify RGCs is to distinguish selectively
each specific subtype. Thus, recently, a number of molecular subtype-specific markers have been
described to further classify different subtypes of RGCs [307]. Several markers are being proposed,
but most of them sign more than a single RGC subtype. Four types of ON–OFF DS-RGCs have been
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described, depending on the direction of the moving object to which they respond. They all have
similar dendritic stratification and express CART (cocaine and amphetamine-regulated transcript) [308].
DS-RGCs have been also identified by the expression of specific molecular markers, such as CDH6 and
FSTL4 [307]. Moreover, the ON DS-RGCs can be identified by the expression of the secretory protein
SPIG1 [309]. In addition, three types of α-RGCs express similar markers, including neurofilaments,
spp1 and kcng4, among others [310], although they differ in their physiological properties, dendritic
arborization and stratification in the IPL [306]. On the other hand, the ipRGCs mediate many relevant
non-image forming functions of the eye and they are identified by the expression of the photopigment
melanopsin [311].

Another molecular marker, Tbr2, identifies RGCs that are hardwired during developmental stages
and they could be precursors of ipRGCs [312]. Other single subtype of RGCs appears to be uniquely
marked by the transcription factor Prdm16. However, the precise identity of these RGCs is unclear, but
they most resemble the G9 subtype described by Völgyi and colleagues in 2009 [313].

Moreover, mouse transgenic lines have been also used to label and identify specific subsets of
RGCs [314]. For instance, the line CB2-GFP labels transient OFF αRGCs [315] and the line Isl2-GFP
labels αRGCs but not ON-OFF DS-RGCs [316]. In addition, using single cell transcriptome profiling of
RGCs, specific markers for cellular subtypes have been identified, such as Zic1, Runx1 and Fst [317].
This capacity to successfully identify RGCs subtypes hopefully will help to understand the different
susceptibility of certain RGCs to progression of pathologies like glaucoma.

In order to understand the pathophysiology of neurodegenerative diseases in which the RGCs
death is implicated, it is important to analyze the response of these RGCs subtypes individually rather
than studying them as a single entity. RGCs are susceptible to various injuries in a type-specific manner.
Thereby, their type-specific vulnerability has been extensively studied [318]. The identification and
characterization of the loss of specific RGCs subtypes in axotomy [310], ONC [319] and glaucoma [320]
models has been analyzed, suggesting subtype specific responses to injury. The importance of studying
the response of these subtypes individually rather than studying them as a single entity could help us
understand the pathophysiology of diseases in which RGCs are affected. For instance, it was found
that a greater loss of large RGCs in the peripheral retina occur in a pig glaucoma model resembling
what was described in glaucoma patients [321]. However, in the periphery of the retina, some cells
are resistant to damage, and it will be very important to know the nature of the cells that possess
the capacity to recover after an insult. The αRGCs seem to be the least susceptible RGCs subtype to
optic nerve injury [310]. The αRGCs are also the most resistant RGCs to NMDA excitotoxicity, while
the J-RGCs are the most sensitive to the same damage [322]. Nevertheless, αRGCs seem to be the more
susceptible RGCs subtype in other studies, such as in autoimmune optic neuritis, where αRGCs are
more vulnerable to degeneration than ON αRGCs [323], and after ONC injury, where OFF-transient
αRGCs are the most susceptible to injury followed by ON-OFF DS-RGCs [319]. In experimental
models of OHT, OFF-transient RGCs exhibited a faster decline on survival when compared to ON
RGCs, and they were also the first to undergo structural alterations [318]. Similarly, after ONC injury,
functional responses and receptive fields of OFF cells were also impaired earlier than ON cells, and ON
sustained RGCs seem to be more susceptible than ON transient RGCs [324]. In another model of OHT,
the mono-laminated ON RGCs were more susceptible to chronic OHT than bi-laminated ON-OFF
cells [325].

It has been shown that non-image forming ipRGCs exhibited a preferential survival following
injury compared to image forming RGCs. This fact was observed in different injury and disease models,
demonstrating the resilience to damage of this subtype of RGCs [326]. ipRGCs have the ability to
respond to light using the photopigment melanopsin, and they play a role in circadian rhythms and
pupillary reflexes through their projections to the suprachiasmatic nucleus and the olivary pretectal
nucleus [327]. This unique feature may be the basis of their resistance to insult, as these cells are not
necessary for the formation of images in the visual transduction pathway [328].
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All these studies clearly imply that RGCs respond in a subtype specific manner to injury. Moreover,
each subtype of RGCs can have a unique gene expression pattern [306,329], this differential gene
expression may protect some types of RGCs and facilitate the death of others [330]. Therefore,
the analysis of the type-specific vulnerability of RGCs based on their gene expression may provide
insights of the selective vulnerability of RGCs to pathological insults and to better understand disease
mechanisms [322]. Moreover, further studies are needed to determine how the molecular differences
between RGCs subtypes underlie their electrophysiological functions, and it is necessary to investigate
whether they differ in morphology, retinal spatial distribution, target cell connectivity, and associated
visual parameters. These studies could provide a new opportunity to the development of strategies to
target specific subtypes of RGCs for diagnostic and therapeutic approaches to treat optic neuropathies,
such as glaucoma.

6. Potential Pitfalls in Translating Preclinical Studies into the Clinics

The main goal in finding new therapeutic strategies for optic neuropathies is to preserve the function
of RGCs in order to maintain visual pathways. Therefore, besides the neuroprotection of RGCs and
axon regeneration, the re-integration of RGC axons into the appropriate visual circuity is also important.
Despite that several therapeutic strategies have demonstrated promising results in this field, there are
significant issues affecting their translation to clinical practice.

Much work has been done in order to identify the inhibitors of axonal growth in the CNS as
well as to isolate neurotrophic factors, with the hope that one day these factors could be applied to
protect and regenerate the optic nerve. From what was described above, it seems that we are getting
closer to a therapeutic strategy focused on RGC neuroprotection for optic neuropathies. However,
we can discuss the example of memantine that, despite the convincing neuroprotective effects in
animal models of glaucoma, in clinical trials the drug did not reveal significant effects in preventing
the progression of visual field loss in patients with glaucoma [289].

Several issues contributing to the lack of success of drugs in clinical trials could be suggested,
but in the case of glaucoma, the lack of an animal model that fully mimics the human disease is an
important factor that adds to this failure [331]. Another issue is that, in preclinical trials, several studies
use a preventive strategy to assess the effect of a specific drug, as opposed to the human condition
in which the treatment starts after diagnosis. Moreover, in most of the animal studies the evaluation
of the drug beneficial effects occurs by histopathological methodologies, and this is not possible in
human studies. The increasingly use of OCT and ERG in preclinical studies will benefit the translation
of what is observed in an animal models of disease into human.

Besides the protection of RGCs from death and degeneration, one of the goals in RGCs regeneration
therapies should be to allow the reintegration of the regenerating axons into visual circuity reaching
the appropriate brain targets. However, there are few studies that focus on this issue [26]. Moreover,
the identification of different types of RGCs and the characterization of their different susceptibility to
disease [306,324] may also contribute to the failure of the therapeutic strategies with high potential of
success in the clinical trials phase.

It is fundamental a better characterization of the beneficial effects of drugs in the preclinical
phase, meaning that the observation of the loss of RGCs is not enough as it is not enough to observe
potential regenerative events of the axons of RGCs. It is essential to clearly and more deeply evaluate
the beneficial effects of a specific new drug also in visual function.

The research in the field of neuroprotection in glaucoma has been difficult, but new animal models
of disease and techniques will help to bridge the gap between preclinical and clinical studies, with
clear beneficial outcomes in the forthcoming years. Many of the approaches outlined in this review are
applicable not only to RGC neuroprotection in glaucoma but also to other pathologies of the optic nerve
and retina. Gene therapy may have also a therapeutic potential especially for Leber’s hereditary optic
neuropathy, an optic neuropathy caused by mitochondrial mutation G11778A in NADH dehydrogenase
subunit 4 (ND4) gene [332]. It was conducted in patients and the recombinant adeno-associated
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virus 2 (AAV2) carrying ND4 (rAAV2-ND4) demonstrated to improve patients visual acuity [333–335].
In addition, CRISPR/Cas9-based therapies are starting to be applied making significant progress in
mammalian preclinical models of eye disease such as blind rodents [336] or in the disruption of
mutant genes that cause certain forms of glaucoma [337]. Applications of CRISPR/Cas9 technology
and other gene therapies may soon be available, not only as research tools but also as therapies to treat
retinal diseases.
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Abbreviations

A1 Adenosine A1 receptor
A2A Adenosine A2A receptor
A2B Adenosine A2B receptor
A3 Adenosine A3 receptor
ARTN Artemin
ATP Adenosine triphosphate
BCDVA Best corrected distance visual acuity
BDNF Brain-derived neurotrophic factor
bFGF Basic fibroblast growth factor
cAMP Cyclic adenosine monophosphate
CART Cocaine and amphetamine-regulated transcript
CAT Catalase
CHA N(6)-cyclohexyl-adenosine
CNS Central nervous system
CNTF Ciliary neurotrophic factor
CNTFR CNTF receptors
Cop-1 Copolymer-1
Cx3cr1 CX3C chemokine receptor 1
DS-RGCs Directionally selective ganglion cells
ED Embryonic day
EHP Elevated hydrostatic pressure
EPO Erythropoietin
ERG Electroretinography
GCL Ganglion cell layer
GDNF Glial cell-line derived neurotrophic factor
GLAST Glutamate/aspartate transporter
GPx Glutathione peroxidase
GSH Glutathione
IGF-1 Insulin-like growth factor-1
IL-1β Interleukin-1β
IL-6 Interleukin-6
INL Inner nuclear layer
iNOS Inducible nitric oxide synthase
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IOP Intraocular pressure
ipRGCs Intrinsically photosensitive melanopsin-containing RGCs
J-RGCs JamB expressing RGCs
KLF Krüppel-like family
MAG Myelin-associated glycoprotein
MHC-II Major histocompatibility complex class II
mTOR Mammalian target of rapamycin
ND4 NADH dehydrogenase subunit 4
NFL Nerve fiber layer
NGF Nerve growth factor
NgR Nogo receptor
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3
NMDA N-methyl-D-aspartate
NO Nitric oxide
NOS Nitric oxide synthase
NRTN Neurturin
NT-3 Neurotrophin-3
NT-4/5 Neurotrophin-4/5
OCT Optical coherence tomography
OHT Ocular hypertension
ONC Optic nerve crush
ONH Optic nerve head
ONL Outer nuclear layer
PEDF Pigment epithelium derived factor
PI3K Phosphoinositide 3-kinases
PND Postnatal day
PNS Peripheral nervous system
PSPN Persephin
PTEN Phosphatase and tensin homologue
RAGE Receptors for advanced glycation end-products
RGCs Retinal ganglion cells
rhNGF Recombinant human nerve growth factor
ROS Reactive oxygen species
Sema3A Semaphorin-3A
Sema5A Semaphorin-5A
SOD Superoxide dismutase
TLRs Toll-like receptors
TNF Tumour necrosis factor
TrK Tyrosine kinase
TSPO Translocator protein
VEGF-A Vascular endothelial growth factor A
Zn2+ Zinc
αRGCs alpha retinal ganglion cells
βRGCs beta retinal ganglion cells
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