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Abstract: Mutations in splicing factors are recurrent somatic alterations identified in myelodysplastic
syndromes (MDS) and they frequently coincide with mutations in epigenetic factors. About 25%
of patients present concurrent mutations in such pathways, suggesting a cooperative role in the
pathogenesis of MDS. We focused on the splicing factor U2AF1 involved in the recognition of the 3′

splice site during pre-mRNA splicing. Using a CRISPR/Cas9 system, we created heterozygous mice
with a carboxy-terminal truncated U2af1 allele (U2af1mut/+), studied the U2af1mut/+ hematopoietic
system, and did not observe any gross differences in both young (12–13 weeks) and old (23 months)
U2af1mut/+ mice, except for a reduction in size of approximately 20%. However, hematopoietic
stem/progenitor cells lacked reconstitution capacity in transplantation assays and displayed an
aberrant RNA splicing by RNA sequencing. We also evaluated U2af1mut/+ in conjunction with
Tet2-deficiency. Novel double mutant U2af1mut/+ Tet2−/− mice showed increased monogranulocytic
precursors. Hematopoietic stem/progenitor cells were also enhanced and presented functional and
transcriptomic alterations. Nonetheless, U2af1mut/+ Tet2−/− mice did not succumb to MDS disease
over a 6-month observation period. Collectively, our data suggest that cooperation between mutant
U2af1 and Tet2 loss is not sufficient for MDS initiation in mice.

Keywords: myelodysplastic syndrome; U2AF1; TET2; alternative splicing

1. Introduction

Myelodysplastic syndromes (MDS) comprise clonal hematological diseases that ap-
pear more commonly in the elderly and that can adversely evolve into secondary acute
myeloid leukemia (sAML) in up to 40% of patients. In the last decade, next-generation se-
quencing technologies (NGS) have largely deciphered the molecular genetics of MDS. Most
frequently mutated genes (>50%) codify for splicing factors, mainly SF3B1, SRSF2, U2AF1,
and ZRSR2 [1,2]. Alternative splicing is mostly executed by the major spliceosome, a com-
plex RNA and protein machinery that catalyzes the splicing reaction. The U2 Small Nuclear
RNA Auxiliary Factor 1 (U2AF1) forms a heterodimer with U2AF2 to constitute U2AF, and
U2AF1 recognizes the 3′ AG dinucleotide at the 3′ splice site (SS) of a pre-mRNA intron,
resulting in the subsequent recruitment of U2 small nuclear ribonucleoprotein (U2-snRNP)
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during pre-mRNA splicing. Mutations in U2AF1 are present in patients with MDS (in
approximately 11% of cases), myeloproliferative neoplasms (MPN), clonal hematopoiesis
of indeterminate potential (CHIP), acute myeloid leukemia (AML, in about 4% of patients),
chronic lymphocytic leukemia (CLL), and a variety of solid tumors [1]. The most prevalent
U2AF1 mutations are located at two hotspots, and they affect the S34 and Q157 residues
within the zinc finger domains (Zn) [3]. Occasionally, rare non-hotspot U2AF1 mutations
are found as missense or indel changes [4]. U2AF1 mutations are heterozygous and are
associated with adverse prognosis, increased risk of progression to AML, and poor overall
survival (OS) in MDS and MPN patients [5], with U2AF1Q157 having a worse OS than
U2AF1S34 [6]. Currently, it is unclear whether U2AF1 mutations result in a gain-of [7,8] or
loss-of-function of the protein [5,9]. Importantly, mutated U2AF1 requires the presence of a
wild-type allele for surviving and counteracting aberrant splicing [8,10].

U2AF1 mutations can contribute to MDS disease pathogenesis through different
mechanisms, such as mRNA translation [11], R loop formation [12,13], and mis-splicing
induction [14]. RNA sequencing has revealed that U2AF1 mutations affect exon skip-
ping [3], but when U2AF1S34F and U2AF1Q157P are compared, no substantial overlap in
alternatively spliced targets is observed [15]. Additionally, functional studies in U2AF1S34F

and U2AF1Q157P doxycycline-inducible transgenic mice demonstrated distinct effects on
RNA splicing and hematopoiesis, suggesting that these mutants may affect MDS differ-
ently [16,17]. While the functional impact of the more frequent U2AF1S34F mutation has
been largely studied [9,13,18–20], the effects of U2AF1Q157 are less explored. Additionally,
mice with conditional loss of U2af1 in the hematopoietic system die from severe aplasia,
demonstrating that U2af1 is essential for hematopoietic stem cells (HSC) survival and
function. In addition, no phenotype was detected in U2af1 heterozygous knock-out mice
(U2af1+/−) [8,21]. Of note, the concurrence of U2AF1 mutations with those in epigenetic
regulators, such as ASXL1 and TET2, has been described in MDS patients [5,22,23]. In mice,
AML development has been observed in knock-in animals carrying a U2af1S34F mutation
in combination with Runx1 deficiency and predicted loss-of-function Tet2 mutations [20].

TET2 catalyzes the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethyl-cytosine
(5hmC) and other oxidation products, promoting DNA demethylation. TET2 is the most
frequently mutated gene in MDS [24], and biallelic TET2 gene inactivation is frequently
observed in myeloid neoplasms [25]. Mutations in TET2, with a usually low variant allele
frequency (VAF), are also found in CHIP [26]. At the cellular level, TET2 is involved in the
regulation of HSC self-renewal and myeloid lineage commitment [27]. Tet2 hematopoietic
conditional knock-out mice result in a prolonged expansion of HSC, with skewed differen-
tiation towards monocytic progenitors, splenomegaly, and extramedullary hematopoiesis
with an overall mild phenotype [28,29]. Although combined mutations in TET2 and
splicing factors are thought to give rise to MDS and MPN, the pathogenic mechanisms
underlying concurrent mutations have not been described previously. In the present study,
we investigated the function of mutant U2af1 on hematopoiesis in a novel CRISPR/Cas9
mouse model and assessed the impact of the concurrent disruption of U2af1 and Tet2 on
the pathogenesis of MDS.

2. Results
2.1. Development of U2af1 Mutant Allele

To determine the effect of U2af1 on hematopoietic development, we genetically manip-
ulated the second Zn that affects all the described U2af1 isoforms [30,31] to create a mutant
truncated allele at the C-terminus by a CRISPR−Cas9 system (Figure 1A). We first analyzed
the 5-nucleotide deletion in the DNA of control WT and heterozygous U2af1mut/+ mice by
Sanger sequencing (Figure 1A). At the transcript level, wild-type U2af1 mRNA expression
in bone marrow and spleen of heterozygous U2af1mut/+ was decreased in comparison to
control WT mice (Figure 1B). At the protein level, no band corresponding to the truncated
allele was observed in heterozygous U2af1mut/+ samples. This could be because the mutant
transcript is very lowly expressed; alternatively, the translated mature protein could be
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degraded by the proteasome or might not be detected with our N-terminal antibody due
to conformational or stability issues (Figure 1C). When an antibody targeting the RS region
was used, a decrease in U2af1 levels was observed in heterozygous U2af1mut/+ samples.
Homozygous U2af1 mice, with both alleles edited, reached the blastocyst stage but died
afterwards. Heterozygous U2af1mut/+ mice were viable but presented smaller size and de-
velopmental abnormalities with delayed reproductive maturity. As shown in Figure 1D,E,
size of animals, growth, and muscle strength were affected in heterozygous U2af1mut/+

mice in comparison to WT animals. No differences were found in the equilibrium, as
assessed by the beam balance test (Figure 1F).

Figure 1. Generation of U2af1 mutant mouse. (A) Upper panel: gRNA sequence against exon 6 of murine U2af1 gene.
Middle panel: Sanger sequencing chromatograms in WT and U2af1mut/+ genomic DNA. Five-nucleotide deletion is
indicated in red. Lower panel: WT and truncated U2AF1 protein upon CRISPR-Cas9 gene edition. According to the primary
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sequence, the kDa value of the truncated protein was calculated using the ExPASy ProtParam tool. ZF: Zinc Finger; RRM:
RNA recognition motif; RS: arginine-serine rich domains. (B) Relative mRNA abundance of U2af1 gene for WT and
U2af1mut/+ mice quantified by RT-qPCR in bone marrow (BM) and spleen (SP). Data normalized to β–actin. (BM: WT n = 5,
U2af1mut/+ n = 4; SP: WT n = 6, U2af1mut/+ n = 5). (C) Upper part: Western blot of U2AF1 using a N-terminal antibody
on spleen cell lysates. Lamin B1 was used as housekeeping control (WT n = 4, U2af1mut/+ n = 4). Bottom part: Western
blot of U2AF1 using a C-terminal antibody on spleen and bone marrow cell lysates. β-Actin was used as housekeeping
control (WT n = 2, U2af1mut/+ n = 2). (D) Body weight of male (n = 14) and female (n = 18) U2af1mut/+ versus male (n = 12)
or female (n = 16) WT mice during adulthood. (E) Neuromuscular strength assessed by wire hang test in male or female
mutant (red bar) and WT mice (black bar) at 9 months (n = 12–14/group). (F) Beam balance test in WT and U2af1mut/+ mice
(n = 10/group) at 4 and 10 months of age. (B–E) Mean values ± SEM are represented. Asterisks indicate significant changes
by unpaired Student’s t test (* p < 0.05; ** p < 0.01; *** p < 0.001).

2.2. Old U2af1 Mutant Mice Show Normal Hematopoiesis and Uneven Splenomegaly

Given that MDS clinically manifests at an advanced age, we analyzed 23 months
old heterozygous U2af1mut/+ and control WT mice. Blood counts revealed no periph-
eral cytopenias (Figure S1a,b) and morphological analysis showed no signs of dysplasia
(Figure S1c). Flow cytometry analysis of stem and progenitor bone marrow populations
revealed no significant differences between U2af1mut/+ and WT mice (Figure S1d). Notably,
uneven splenomegaly was observed in some U2af1mut/+ mice (Figure S1e). Collectively, we
did not observe cardinal features of myelodysplasia in U2af1mut/+ heterozygous old mice.

2.3. Monogranulocytic Progenitors Are Increased in U2af1mut/+ Tet2−/− Mutant Mice

Mutations in epigenetic modifiers and splicing factors commonly co-occur in MDS, in-
cluding TET2 loss-of-function mutations and U2AF1 mutations [23]. We generated a novel
Tet2−/− mouse model by CRISPR/Cas9 to study the concurrence with U2af1. We crossed
heterozygous U2af1mut/+ mice with Tet2 knock-out mice (Figure 2A). At the DNA level,
an 11-nucleotide deletion was confirmed by Sanger sequencing in homozygous Tet2−/−

mice (Figure 2A). Lack of expression of wild-type Tet2 in Tet2−/− mice was observed at the
mRNA level (Figure 2B) and at the protein level (Figure 2C).

We performed comprehensive analyses of the hematopoietic system in WT, single
and double mutant mice. No differences were detected in blood parameters of double
mutant mice in comparison to control (Figure 3A). In peripheral blood, U2af1mut/+ Tet2−/−

mice showed an increase in T cells (mean, 38.66% U2af1mut/+ Tet2−/− versus 25.20%
WT, p < 0.0001) and in monogranulocytic (Mac-1+Gr-1+) cells (mean, 13.06% U2af1mut/+

Tet2−/− versus 8.71% WT, p < 0.05) (Figure 3B). Bone marrow analysis of Lin-Sca-1-c-kit+

progenitors showed no differences among genotypes (Figure 3C). Within myelo-erythroid
progenitors, U2af1mut/+ Tet2−/− mice showed a decreased percentage of precursors of bipo-
tent megakaryocytic-erythroid progenitors (Pre MegE) (mean, 7.58% U2af1mut/+ Tet2−/−

versus 14.42% WT, p < 0.01) and precursors of erythroid progenitors (Pre CFU-E and
CFU-E) (mean, 1.45% U2af1mut/+ Tet2−/− versus 12.39% WT, p < 0.01) but an enhanced
percentage of precursors of granulocyte-monocyte progenitors (Pre GM) (mean, 25.27%
U2af1mut/+ Tet2−/− versus 12.80% WT, p < 0.0001) (Figure 3D). This was accompanied by a
non-significant increased CFU-GM and decreased BFU-E colonies in U2af1mut/+ Tet2−/−

mice (Figure 3E).
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Figure 2. Generation of Tet2 mutant mice. (A) Upper panel: gRNA sequence against exon 3 of murine Tet2 gene. Middle
panel: Sanger sequencing chromatograms of WT and Tet2−/− mouse genomic DNA. Eleven-nucleotide deletion is indicated
in red. Lower panel: WT and truncated TET2 protein upon CRISPR-Cas9 gene edition. According to the primary sequence,
kDa value of the truncated protein was calculated using the ExPASy ProtParam tool. (B) Relative mRNA abundance of Tet2
gene for WT and Tet2−/− mice quantified by RT-qPCR in bone marrow (BM) and spleen (SP). Data normalized to Hprt (BM:
WT n = 6, Tet2−/− n = 7; SP: WT n = 4, Tet2−/− n = 7; * p < 0.05; *** p < 0.001). (C) Western blot of TET2 on bone marrow cell
lysates. Lamin B1 was used as housekeeping control (WT n = 2, Tet2−/− n = 2). (D) Gross morphology of submandibular,
axillar and inguinal lymph nodes from representative WT (upper panel) and Tet2−/− (lower panel) age-matched mice.
(E) General view of Tet2−/− mice’s anatomy, showing a significant enlargement of the spleen and the lymph nodes.

In spleen, flow cytometry analysis confirmed an amplification of myeloid cells in
Tet2−/− mice, with a significant increase in Mac-1+Gr-1+ population (mean, 3.02% Tet2−/−

versus 1.06% WT, p < 0.01) (Figure 3F). This was accompanied by splenomegaly in
Tet2−/− mice that manifested with incomplete penetrance (Figure 3G). These animals
also showed marked lymphadenopathies, with enlarged submandibular, axillar, and in-
guinal lymph nodes (Figure 2D,E). Microscopical examination of spleens in double mutant
mice showed splenomegaly with disruption of white and red pulp structure in 1 out of
11 cases (Figure 3G,H). In all, data suggest that U2af1mut/+ Tet2−/− progenitors are skewed
towards myeloid lineage at expenses of the erythroid lineage.
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Figure 3. Hematological characterization of U2af1mut/+ Tet2−/− mice. (A) Peripheral blood counts at 8–39 weeks (WT
n = 22, U2af1mut/+ n = 8, Tet2−/− n = 11, U2af1mut/+ Tet2−/− n = 12). (B) Frequencies of peripheral blood mature cells
at 8–39 weeks (WT n = 30, U2af1mut/− n = 9, Tet2−/− n = 11, U2af1mut/+ Tet2−/− n = 13). (C) Frequencies of progenitors
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(Lin- Sca-1− c-kit+) in bone marrow (WT n = 20, U2af1mut/+ n = 5, Tet2−/− n = 11, U2af1mut/+ Tet2−/− n = 13).
(D) Myelo-erythroid progenitors as percentage of progenitor cells at 8–39 weeks (WT n = 20, U2af1mut/+ n = 5, Tet2−/−

n = 11, U2af1mut/+ Tet2−/− n = 13). (E) CFU-GM (WT n = 8, U2af1mut/+ n = 4, Tet2−/− n = 4, U2af1mut/+ Tet2−/− n = 4)
and BFU-E (WT n = 7, U2af1mut/+ n = 3, Tet2−/− n = 4, U2af1mut/+ Tet2−/− n = 4) in unfractionated BM at 12–28 weeks.
(F) Frequencies of splenic mature cells at 8–39 weeks (WT n = 21, U2af1mut/+ n = 7, Tet2−/− n = 11, U2af1mut/+ Tet2−/−

n = 11). (G) Images of spleens and quantification of spleen weight at 8–39 weeks (WT n = 23, U2af1mut/+ n = 7, Tet2−/−

n = 11, U2af1mut/+ Tet2−/− n = 14). (H) Representative histological images of spleen sections of mice at 12–14 weeks (WT
n = 2, U2af1mut/+ n = 1, Tet2−/− n = 1, U2af1mut/+ Tet2−/− n = 2). (A–G) Mean values ± SEM are represented. Asterisks
indicate significant changes by unpaired Student’s t test (* p < 0.05; ** p < 0.01; **** p < 0.0001).

2.4. U2af1mut/+ and U2af1mut/+ Tet2−/− Mutant HSPC Show a Defect in Reconstitution Capacity

We sought to determine whether these changes were due to the effects of the mutant
splicing factor on blood stem cells. At the stem/progenitor compartment, LSK (marked by
Lin−Sca-1+c-Kit+) cells were increased in U2af1mut/+ Tet2−/− mice (mean, 0.65% U2af1mut/+

Tet2−/− versus 0.32% WT, p < 0.0001) (Figure 4A). To test hematopoietic function in vivo,
we competitively transplanted 1:1 ratios of donor (WT, U2af1mut/+, Tet2−/− or U2af1mut/+

Tet2−/−; CD45.2) and competitor (WT; CD45.1) cells into lethally irradiated recipients
(CD45.1). Donor contribution to peripheral blood and reconstitution to hematopoietic
lineages was assessed at 4 and 8 weeks (Figure 4B). Strikingly, U2af1mut/+ donor cells
displayed an engraftment failure compared to WT and Tet2−/− bone marrow cells. This
defect was also observed when U2af1mut/+ purified LSK were competitively transplanted
(n = 3, WT = 13 and U2af1mut/+ = 14; Figure S2). Although we detected an increase in
the frequency of LSK in U2af1mut/+ Tet2−/− mice (Figure 4A), the repopulation defect
was also observed when donor cells from U2af1mut/+ Tet2−/− animals were transplanted
(Figure 4C). Notably, multilineage reconstitution was achieved when WT and Tet2−/−

were transplanted and Tet2−/− cells showed a higher reconstitution to the myeloid lineage
in comparison to WT control (Figure 4D). These data suggest that mutant U2af1 contributes
to severe functional impairment of HSPC.

2.5. Exon Skipping Is the Alternatively Spliced Event More Frequently Observed

To explore the molecular basis of the impaired function of U2af1mut/+ and U2af1mut/+

Tet2−/− cells, we performed transcriptome profiling of sorted LSK cells (WT (n = 5),
U2af1mut/+ (n = 4), Tet2−/− (n = 6) and U2af1mut/+ Tet2−/− (n = 5)). Compared to WT con-
trols, 181 genes were significantly dysregulated in U2af1mut/+ mice, 1505 in Tet2−/− mice,
and 555 in the U2af1mut/+ Tet2−/− mice (p adjusted value < 0.05, Supplementary Table S4).
Immunoglobulin-related genes were the most affected genes across all the genotypes. To
determine the consequences in alternative splicing, we analyzed differential alternative
splicing from sorted LSK using rMATS 37. Principal component analysis showed segre-
gation of the genotypes, with U2af1mut/+ samples being more heterogeneous (Figure S3).
Using pair-wise comparisons against WT control, we identified 1578 differentially spliced
events in U2af1mut/+, 1211 in Tet2−/− and 1242 in U2af1mut/+ Tet2−/− (p value < 0.01,
FDR < 0.01) (Figure 5A and Supplementary Table S4). This analysis showed that U2af1
samples exhibit predominantly exon skipping events, which is in line with previously
published results for mutated U2AF1 [4,16], and that 152 alternative spliced genes were
common among the different pair-wise contrasts (Figure 5B).
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Figure 4. U2af1mut/+and U2af1mut/+ Tet2−/− HSPC show a defect in repopulation capacity. (A) Frequencies of LSK (Lin-

Sca-1+ c-kit+) in the bone marrow from WT and U2af1mut/+ mice (WT n = 20, U2af1mut/+ n = 5, Tet2−/− n = 11, U2af1mut/+

Tet2−/− n = 13). (B) Scheme of competitive transplantation assay. (C) Peripheral blood CD45.2+ donor chimerism at 8 weeks
post-transplantation (WT n = 5, U2af1mut/+ n = 5, Tet2−/− n = 4, U2af1mut/+ Tet2−/− n = 3). (D) Multilineage engraftment
at 8 weeks post-transplantation in WT and Tet2−/− transplanted mice. Plots show the percentage of myeloid (Mac-1+

Gr-1+), B (B220+) and T (CD4+ CD8+) within engrafted CD45.2+ cells (WT n = 5, Tet2−/− n = 4). (A–D) Mean values ± SEM
are represented. Asterisks indicate significant changes by unpaired Student’s t test (* p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001).
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Figure 5. Aberrant splicing events by RNA sequencing. (A) Number of alternatively splicing events in U2af1mut/+, Tet2−/−

and U2af1mut/+ Tet2−/− mice. (B) Venn diagram showing the overlap of genes with alternative spliced events among
comparison groups. (C) DNA damage accumulation in WT (n = 10), U2af1mut/+ (n = 4) and U2af1mut/+ Tet2−/− (n = 6)
represented as percentage of γ-H2AX+ cells in LSK, determined by flow cytometry. (D) Validation of aberrant splicing
events identified by RNA-seq. RT-PCR bands using regular agarose gel. (E) Sashimi plots showing the Ammecr1l SE event
in U2af1mut/+ samples and the H2-T24 SE in control samples. Black: WT; Red: U2af1mut/+; Orange: U2af1mut/+ Tet2−/−.
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To seek downstream biological consequences, we performed enrichment pathway
analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted with
the genes significantly mis-spliced in U2af1mut/+, Tet2−/− and U2af1mut/+ Tet2−/− mice
compared to WT control mice, highlighting enrichment in cell processes, such as DNA dam-
age, DNA repair and cell cycle, chromatin regulator and kinase pathway (Figures S4–S6).
Of relevance, KEGG functional annotation in U2af1mut/+ Tet2−/− group distributed mis-
spliced genes in pathways similar to those found for U2af1mut/+. These ranked categories
are in agreement with previous studies demonstrating that MDS-linked splicing signatures
are related to cell cycle control, DNA damage and DNA repair [32]. To validate this further,
we determined the phosphorylation status of histone γ-H2AX at Ser 139 in LSK cells as
being a sensitive marker of DNA injury [33] and the first step in recruiting and localizing
DNA repair proteins [34]. We found no differences in phosphorylated γ-H2AX in LSK cells
from U2af1mut/+ and U2af1mut/+ Tet2−/− compared to WT controls (Figure 5C). Next, we
validated selected aberrant splicing events using RT-PCR in c-kit+ cells. We verified the
Ammecr1l exon skipping event in U2af1mut/+ samples and the H2-T24 exon skipping event
in control samples (Figure 5D,E).

3. Discussion

MDS are complex and heterogeneous diseases in which a plethora of molecular
pathways are disrupted. Massive sequencing studies of MDS patients have revealed
mutations in genes with a role in RNA splicing and DNA methylation, among others. Some
of these studies have linked certain splicing factor mutations to clinical phenotypes and
biological features, for example, in the case of SF3B1 [35], and have described patterns of
concurrent mutations in patient samples [22]. However, given that pre-clinical modeling
of MDS has proven difficult, there is a paucity of data related to how specific pathways
influence one another to cause MDS. In the present study, we analyze the impact of mutant
U2af1 on the hematopoietic system in a novel CRISPR/Cas9 mouse model as well as its
effect on MDS disease development in combination with Tet2 deficiency.

Overall, our heterozygous mutant U2af1 per se is not sufficient to cause MDS disease,
even at an advanced age. This agrees with transgenic mice overexpressing U2AF1S34 [16]
or U2AF1Q157 [17] and conditional knock-in U2af1S34F mice [20] since these animals do not
develop full-blown malignancy albeit presenting mild phenotypes with some MDS-like
features. Of note, we observed that our mutant U2af1 mouse model showed a defect in the
reconstitution capacity in a competitive transplantation assay. Single mutant U2af1mut/+

and double mutant U2af1mut/+ Tet2−/− cells showed impaired engraftment with no donor
chimerism detectable in peripheral blood of the recipient mice. The defect observed here is
in line with the unanimous decreased competitive reconstitution capacity of HSC reported
in all U2af1-mutant and U2af1-deficient mouse models [8,16,17,19,20]. This observation is
puzzling in the field, given that splicing factor mutations are considered early events in
MDS pathogenesis. It remains unexplained how mutant U2AF1 clones can persist during
disease evolution.

Human MDS bone marrow samples carry multiple mutations at diagnosis, suggesting
that additional hits could be required to promote disease in our U2af1 mutant model. Given
that TET2 is the most mutated gene in MDS and can co-occur with U2AF1 mutations, we
crossed mutant U2af1 mice with Tet2-deficient mice. Several Tet2 KO mouse models exist
describing increased hematopoietic stem/progenitor cells, increased myeloid progenitors,
and splenic extramedullary hematopoiesis at >1.5 year-old age [28,29,36,37]. Some of these
findings, such as the increase in myeloid output, HSPC expansion, and splenomegaly, are
also recapitulated in our model. One remarkable result from our double mutant mice is
that there is no rescue of the impaired engraftment in mutant U2af1mut/+ Tet2−/− cells,
albeit the described enhanced ability of Tet2−/− HSC, relative to WT HSC, to reconstitute
hematopoiesis in vivo [37]. This is in agreement with the fact that deletion of Tet2 in an
Srsf2 mutant background was also insufficient to rescue the impaired self-renewal capacity
of Srsf2 single mutant cells [38].
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Transcriptomic analysis by RNA-seq showed that mis-spliced genes in mutant U2af1mut/+

and U2af1mut/+ Tet2−/− mice belong to similar pathways, suggesting the lack of substantial
differences between alternative splicing patterns in U2af1-mutated samples with and with-
out Tet2 alteration. Impairment of DNA repair has also been previously reported for splicing
factor mutated MDS. ERCC8 and FANCM, two genes involved in suppression/regulation
of R-loop formation and in the DNA damage response, were found aberrantly spliced
in U2AF1 mutated MDS cases [39]. Remarkably, both genes were also affected in our
U2af1mut/+ alternatively spliced signature. Regarding DNA injury, several studies asso-
ciate R-loops-mediated DNA damage with U2AF1 mutations [12,13]. However, we did
not observe DNA damage in LSK cells as measured by γ-H2AX assay. Notably, 32 of
the 140 genes alternatively spliced in a previously reported dataset from U2AF1S34 AML
samples and U2AF1S34 and U2AF1Q157-expressing K562 cells [3] were in common with
our U2af1mut/+ alternatively spliced signature. This would suggest that some selected
mis-spliced target genes are shared across species, cell populations, and U2AF1 mutations.

Together, this study improves our understanding of mutant U2AF1 biology. Our
findings indicate that heterozygous U2af1mut/+ mice display normal hematopoiesis albeit
the impairment of hematopoietic cells to engraft in functional assays. Additionally, mutant
U2af1 combined with Tet2-deficiency does not suffice to initiate myelodysplastic syndrome.
This suggests additional molecular alterations may be required to cause overt malignancy.
A limitation of our approach is that complex combinatorial patterns of gene mutations
cannot be achieved by intercrossing single mutant mice. Therefore, new pre-clinical
modeling approaches would be needed to accurately recapitulate the molecular complexity
of the MDS-spliceosome subgroup and to evaluate novel therapeutic targets.

4. Materials and Methods
4.1. Mice

Novel CRISPR/Cas9 U2af1 and Tet2 mice were generated as described in Supplemen-
tary methods. CD45.1 animals were purchased from Charles Rivers (Wilmington, MA,
USA). The study was conducted according to the guidelines of the Declaration of Helsinki,
and approved by the Ethics Committee of IIS La Fe (protocol code 2017/VSC/PEA/00200,
date of approval 17 November 2017).

4.2. RT-qPCR

Total RNA from 10 × 106 bone marrow cells was isolated using RNeasy Mini Kit
(QIAGEN, Hilden, Germany). DNase treatment was applied using DNA-free DNase Treat-
ment and Removal Reagents (Ambion, Austin, TX, USA). cDNA was synthesized from
1 µg of RNA using TaqMan Reverse Transcription Reagents (Thermo Fisher Scientific,
Waltham, MA, USA) and oligo(dT) primers in a final volume of 25 µL. Real-time quantita-
tive PCR reactions were performed in technical triplicates in 20 µL volume using AceQ
SYBR qPCR Master Mix (Vazyme Biotech Co., Nanjing, China) and the respective primers
(Supplementary Table S1) using a ViiA 7 Real-Time PCR System (Thermo Fisher Scientific).
Primer set efficiency was first tested in a standard curve experiment. Relative expression
was calculated from Ct obtained from Applied Biosystems ViiA 7 Real-Time PCR System
software (Thermo Fisher Scientific). Since test and housekeeping primer set efficiencies
differed >10%, we applied the corrective formula described in [40] to calculate the relative
expression ratio. β-actin or Hprt expression was used for normalization (Supplementary
Table S1).

4.3. Western Blotting

Cells were lysed in RIPA lysis buffer (Abcam, Cambridge, UK) supplemented with
a complete Mini EDTA free protease inhibitor cocktail (Sigma-Aldrich Chemie GmbH,
Munich, Germany). For TET2 Western blot, RIPA lysis buffer was supplemented with
0.5 µL/mL benzonase (Sigma) and 5 mM MgCl2. Equal amounts of total protein were sepa-
rated on SDS-PAGE (Mini-PROTEAN electrophoresis system, Bio-Rad, Munich, Germany).
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Wet transference was performed on GE Healthcare Life Sciences Amersham Hybond PVDF
membrane (Thermo Fisher Scientific). Blots were blocked at room temperature in 5%
skimmed milk in TBST. Membranes were incubated overnight at 4ºC with primary an-
tibodies and then incubated for 1h at room temperature with secondary antibodies. To
detect U2AF1, we employed a rabbit monoclonal antibody (Cell Signaling Technology,
Danvers, MA, USA, D6S3Q) at a 1:500 dilution. An anti-rabbit IgG H&L antibody (Abcam,
ab6721) at a 1:5000 dilution was used as a secondary antibody. Anti-β-tubulin antibody
(1:500 dilution; T4026, Sigma) was used as loading control. To detect TET2, we employed a
polyclonal rabbit antibody against the N-terminus of Tet2 at a 1:1000. An anti-rabbit IgG
H&L antibody (Abcam, ab6721) at a 1:5000 dilution was used as a secondary antibody.
Anti-β-actin (Sigma, A3854) at 1:20000 or anti-lamin B1 (Cell Signaling Technology, D9V6H)
at 1:1.000 was used as loading control. Protein signal was detected using ECL Western
Blotting Substrate (Pierce) for U2AF1 or UltraScence Western Substrate (Bio-Helix, Keelung,
Taiwan) for TET2.

4.4. Blood Count Analysis

Peripheral blood was collected from the facial vein of mice into an EDTA-coated tube
(Sarstedt, Nümbrecht, Germany). Blood counts were determined using an automated
blood cell counter (Sysmex XT-2000, Barcelona, Spain).

4.5. Flow Cytometry Analysis

HSC, progenitors, and mature cells from bone marrow or spleen were analyzed
using a BD fluorescence-activated cell sorter (FACS) Canto II (BD Biosciences, Heidelberg,
Germany). For myeloid progenitor analyses, we followed the immunophenotype scheme
established by Pronk et al. [41]. Briefly, the bone marrow was isolated from femurs, tibiae
and cristae of control and mutant mice. The hematopoietic cells were obtained by crushing
bones with PBS + 2% FCS followed by filtering through a 70 µm nylon mesh (SPL Life
Sciences). Red blood cells (RBCs) were lysed using Gey Solution (NH4Cl 8.3 g/L, NaHCO3
1.0 g/L, EDTA 37 mg/L) and RBC-depleted cells were stained using monoclonal antibodies
(Supplementary Table S2). To analyze hematopoietic cells in peripheral blood, RBC were
lysed with BD FACS™ Lysing Solution (BD Biosciences) following the manufacturers’
instructions. Then, samples were stained using antibodies (Supplementary Table S2). Data
analysis was performed with FlowJo v10 software (TreeStar Inc., Ashland, OR, USA).

4.6. Histological Analysis

Spleens were fixed in 4% paraformaldehyde and paraffin-embedded using a Leica
ASP6025 tissue processor (Leica Biosystems, Wetzlar, Germany). Samples were sectioned
using a Leica RM2245 microtome and stained with hematoxylin and eosin using a Dako
CoverStainer (Agilent, Santa Clara, CA, USA). Stained sections were analyzed using a
Leica DM 2000 microscope.

4.7. Cytospin Preparation

2 × 105 bone marrow cells were spun on slides for 5 min at 600 rpm using Shandon
Cytospin 3 Cytocentrifuge (Thermo Fisher Scientific). Slides were stained with May-
Grünwald Giemsa solution (Sigma). 40× images were acquired using a Leica DMD
108 microscope. Scale bar = 50 µm.

4.8. Colony-Forming Unit Assays

For CFU-GM, 50.000 unfractionated BM cells were plated in MethoCult GF M3534
media in triplicate and colonies were scored on day 7. For BFU-E, 50.000 unfractionated
BM cells were plated in triplicate in MethoCult SF M3436 media and colonies were counted
on day 10. All media were from Stem Cell Technologies (Vancouver, BC, Canada).
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4.9. DNA Damage

Flow cytometry was performed to analyze the phosphorylation status of histone H2AX
(γ-H2AX Ser139) in LSK using H2A.X Phosphorylation Assay Kit (Millipore, Burlington,
MA, USA). Data were analyzed using FlowJo v10 software (TreeStar Inc.).

4.10. LSK FACS-Sorting

Bone marrow cells from a pool of 3 mice were lysed with Gey Solution, c-kit enriched
by LS columns (Miltenyi Biotec, Bergisch Gladbach, Germany), and stained with anti-
mouse antibodies (Supplemental Table S2). Lin-Sca-1+c-Kit+ cells (LSK) were sorted using
a FACSAria-III (BD Biosciences, Heidelberg, Germany).

4.11. Competitive Repopulation Assay

For competitive transplantation experiments, 1× 106 U2af1+/+ (thereafter WT), U2af1mut/+,
Tet2−/−, or U2af1mut/+ Tet2−/− unfractionated BM cells (CD45.2) were intravenously
injected along with 1 × 106 unfractionated BM competitor cells (CD45.1) into lethally
irradiated (6 Gy × 2) 8–12 week-old mice (CD45.1). Donor chimerism in peripheral blood
was assessed at 4 and 8 weeks after transplantation.

4.12. Behaviour Tests

The wire hang test and the beam balance test were performed as described in [42].

4.13. RNA Sequencing Library Construction

LSK (50,000 cells) from WT (n = 5), U2af1mut/+ (n = 4), Tet2−/− (n = 6) and U2af1mut/+

Tet2−/− (n = 5) mice were sorted into RLT buffer supplemented with β-mercaptoethanol.
RNA extraction was performed using RNEasy Micro kit (QIAGEN). DNA was removed
using on-column DNAse treatment. RNA integrity following isolation was assessed using
Agilent High Sensitivity RNA ScreenTape Assay and Agilent 4200 TapeStation System.
Samples with an RNA Integrity Number (RIN) value ≥7 were selected for further analysis.
Low input directional RNA-seq libraries were prepared using NEBNext Ultra Directional
RNA Library Prep Kit for Illumina (Illumina Inc., Cat N◦. 7420, San Diego, CA, USA).
Purified libraries were paired-end sequenced on the Illumina NovaSeq 6000 (Novogene,
Beijing, China).

4.14. RNA Sequencing Analysis

The quality of raw RNA-seq data was assessed in fastq data files using FastQC. Reads
were mapped to the reference mouse genome GRCm38 (mm10), with genome annota-
tions from GENCODE vM24, using the splicing aware mapping software STAR (version
2.6.1c) [43]. In order to maximize junction read mapping, two passes of mapping were
performed and uniquely mapped reads were selected for downstream analysis, following
the STAR manual instructions. An average of 86% of reads per sample resulted uniquely
mapped. Quality control specific for RNA sequencing experiments was also performed
on BAM mapped files with RSeQC 2.6.4 software. Differential alternative splicing was
assessed using rMATS 4.0.2 [44]. Splicing events associated with each pair-wise comparison
were identified based on stringent parameters (false discovery rate (FDR) = 0.01 and differ-
ence in percent spliced-in (∆PSI) = 0.1). rMATS output tables were further explored with
the ‘maser’ package in R Bioconductor. Functional enrichments within lists of differentially
spliced genes were identified with the DAVID tool (version 6.8) [45] and the enrichment
cut-off p-value was set as <0.01. For differential gene expression analysis, counts of reads
per gene were calculated with featureCounts function using Bioconductor ‘Rsubread’ pack-
age [46]. Differential gene expression was determined using DESeq2 (version 1.26.0) [47].
All the analysis and plotting functions were run under R version 3.6. RNA-seq data have
been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-10486.

www.ebi.ac.uk/arrayexpress


Int. J. Mol. Sci. 2021, 22, 6963 14 of 16

4.15. Statistical Analysis

Data analysis was performed with GraphPad Prism version 8. Data are presented as
mean ± SEM. Two-tailed Student’s t-test was used to determine statistical significance. We
set statistical significance at p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22136963/s1.
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