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The problem of detecting the changes in covariance for a single pair of genomic features

has been studied in some detail but may be limited in importance or general applicability.

For testing equality of covariance matrices of a set of features, many methods have been

limited to the two-sample problem and involve varying assumptions on the number of features

p versus the sample size n. More general covariance regression approaches are appealing

but have been insufficiently structured to provide interpretable testing. To address these

deficiencies, we propose a simple uniform framework to test association of covariance matrices

with an experimental variable, whether discrete or continuous. We describe four different

summary statistics, to ensure power and flexibility under various alternatives, including a new

‘‘connectivity’’ statistic that is sensitive to the changes in overall covariance magnitude. For

continuous experimental variables, a natural individual ‘‘risk score’’ is associated with several

of the statistics. We establish asymptotic results applicable to both continuous and discrete

responses, with relatively mild conditions and allowing for situations where p > n. We also show

that the proposed statistics are permutationally equivalent to some existing methods in the

two-sample special case. We demonstrate the power and utility of our approaches via simulation

and analysis of real data. The R package CorDiff is published on R CRAN.
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1 INTRODUCTION

Methods to detect association of an experimental variable with the changes in mean expression of sets of genes are well established (Barry,

Nobel, & Wright, 2005; Goeman, Van De Geer, De Kort, & Van Houwelingen, 2004). In contrast, although tests of the changes in correlations or

covariances have received considerable attention in areas such as genomics (McKenzie, Katsyv, Song, Wang, & Zhang, 2016) and finance (Isogai,

2016), set-based methods are less established. Existing methods for genomics have been confined largely to the two-sample problem (Choi &

Kendziorski, 2009; Hu, Qiu, & Glazko, 2009; Hu, Qiu, Glazko, Klebanov, & Yakovlev, 2009). Exceptions include the liquid association method

of Li (2002), developed to describe ternary relationships among genes, but the underlying motivation is based on the concept of differential

covariance. For tests of biological systems, ensemble tests of covariance matrices for sets of genes in a proposed network or pathway can provide

insight that might not be apparent in tests of individual gene pairs (Yuan, Deng, Tang, & Li, 2016).

Several existing differential covariance methods for genomics have primarily used permutation resampling for testing (e.g., Hu et al., 2009),

partly because classical likelihood approaches require the sample size n to be large compared with the number of features p (Anderson, 1962;

John, 1971). The two-sample problem tests equality of p × p covariance matrices H0 ∶ Σ1 = Σ2 based on samples of sizes n1 and n2, where

n1 + n2 = n. In settings where p > min{n1, n2}, likelihood ratio testing may perform poorly or be undefined.

Recently, a number of statistical investigators have reconsidered the two-sample set-based differential covariance problem with an emphasis

on behaviour when p > n, with little reference to the existing genomics literature. Li and Chen (2012) derived an approximately standard normal

statistic for the Frobenius norm of differences in the two p × p sample covariance matrices, with considerable attention to sources of bias when

p is large. A maximum standardized difference statistic was proposed (Cai, Liu, & Xia, 2013) between two sample covariances, with testing based

on an extreme value approximation. There has been comparatively little discussion of the fact that these methods are designed for very different
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alternatives, ranging from modest but widespread differences in the two sample covariance matrices (Li & Chen, 2012) to large differences in a

very few covariance elements (Cai et al., 2013). An approach was reported (Zhu, Lei, Devlin, & Roeder, 2017) for sparse effects using eigenvalues

but is also limited to the two-sample problem. Cai and Sun (2017) give a review of the previously cited papers, from the perspective of one-sample

and two-sample testing. Additional aspects, such as local testing to discover groups of differentially correlated features, are beyond our scope.

Importantly, there are few approaches to test association of covariances with a continuous outcome.

Covariance regression methods (Hoff & Niu, 2012; Zou, Lan, Wang, & Tsai, 2017) offer a potentially more flexible approach, with the ability

to handle continuous predictor variables. Methods such as Zou et al. (2017) are ultimately sensitive to the property that similarity in predictors

corresponds to similarity in responses and thus are similar to kernel methods such as SKAT (Ionita-Laza, Lee, Makarov, Buxbaum, & Lin, 2013).

The special case of a linear kernel and a restricted set of predictors in Zou et al. (2017) has some similarities to our testing approach, but the

authors focus on efficiency and comparison of maximum likelihood and other fitting approaches. The regression method of Hoff and Niu (2012)

for a predictor denoted y, which may be continuous, models the covariance as Σy = Ψ+ByyTBT and for a positive definite p× p matrix Ψ maintains

a positive definite covariance function. However, the p-vector B provides in some ways less flexibility compared with the methods we propose,

because we wish to be sensitive to any changes in the covariance matrix, but at the same time, the vector B may be difficult to interpret. In addition,

the approach does not match with standard statistics used in the two-sample problem and does not lend itself to a simple test of association with y.

The differential covariance literature continues to grow, with little cross-talk among the areas described above (classical two-sample testing,

two-sample testing with p > n, and covariance regression). Key advances for genomics would be (a) to recognize situations in which analytic

p-values are available and accurate even if p > n, (b) to move beyond the two-sample scenario without the complications of interpreting the full

results of covariance regression, (c) to have a framework for understanding different test statistics, for a variety of alternatives.

1.1 A new set of statistics

To address these issues, we first note that the two-sample problem can be viewed as an ‘‘association’’ of the covariance matrix with a binary group

indicator. More generally, the investigator may be interested in trend association of covariance with an experimental variable y that might be

multilevel or on a continuous scale. To our knowledge, no general method is available with the requisite flexibility, without restrictive parametric

requirements or assumptions of the feature size p relative to n.

In this manuscript, we use a simple framework to propose four different statistics to test the changes in a covariance matrix of p features. Several

of these statistics have been proposed for the two-sample problem but not extended to a continuous predictor. Moreover, existing methods

have been published in isolation, providing little opportunity to consider power characteristics for various types of alternatives. Thus, a major

contribution of this paper is to provide a common framework and to point out the similarities and differences among covariance-change statistics.

Here, we propose four statistics to test the changes in a covariance matrix of p features, when it is anticipated that a change in y will result

in (a) a directional change in many elements of the covariance matrix, (b) a nondirectional change in covariance, (c) a change in the overall

magnitude of covariances, or (d) a large change in one or a few elements of the covariance matrix. In contrast to almost all of the comparable

methods, the statistics apply naturally whether y is continuous or discrete. Asymptotic results and p-values for most of the statistics are derived

under relatively mild conditions, to provide computationally efficient p-values for the two-sample comparisons. Permutation can be used for the

remaining statistic and if the researcher does wish to rely on asymptotic theory to ensure control of type I error. Our approach is not limited by

the data dimensions and is applicable to situations where p > n.

This paper is organized as follows. In Section 2, we introduce the method and test statistics. Section 3 provides asymptotic results for the

general methods, and for the special case of the two-sample problem shows that several of our statistics match up with those previously

proposed. In Section 4, we compare the proposed statistics with existing methods, in terms of type I error and power. Several different simulation

settings are presented for the two-sample problem, comparing our statistics to existing methods. In addition, we compare our proposed methods

in the setting with continuous y. Section 5 illustrates with real examples.

2 METHODS

2.1 Notation

Let X be the p×n data matrix consisting of elements xik and y the n-vector of clinical/experimental data. The sample mean and variance of a vector

follow standard notation, for example, ȳ and s2
y . The ith row and kth column of X are denoted xi. and x.k, and each column is assumed to have a

population p-mean of zero. Random variables are capitalized (e.g., random Yk vs. observed yk). We denote the p × p covariance of X, which may

depend on yk, as Σyk
. The zero-mean assumption is implicit in most covariance tests, following an intent that the test statistics be sensitive only

to the changes in covariance. For a subset of samples 𝜔 with at least two samples, the sample covariance is Σ̂𝜔 = X𝜔XT
𝜔∕n𝜔. A single i, j element is

�̂�ij,𝜔 =
(∑

k∈𝜔xikxjk

)
∕n𝜔. We use 𝜉 to denote the operator that sums all elements of a matrix and the superscript ‘‘◦k’’ to denote the element-wise

exponent of a matrix to power k.
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2.2 A conceptual trend model

The existing methods are limited to two-sample comparison with binary y. To motivate our statistics for binary/continuous y, we adopt a

conceptual trend model for the covariance dependence of X on y: Σy = 𝛽0 + 𝛽1y for p × p matrices 𝛽0, 𝛽1. Thus, for sample k, according to

our assumptions, E(Xik|yk) = 0 for each i and cov(Xik,Xjk|yk) = E(XikX,jk|yk) = 𝛽0,i,j + 𝛽1,ijyk for the ith and jth features. Letting zijk = xikxjk, the

model immediately suggests linear regression of z on y, for which the least squares slope solution is 𝛽1,ij = (Σkzijkyk∕n − z̄ȳ)∕
(

s2
y

n−1

n

)
, where

z̄ =
∑

kzijk . Although the trend assumption is simple, 𝛽1 can be viewed as an approximate score statistic for additive models of the form

E(Zijk|yk) = 𝜂0,i,j + 𝜂1,ijf(yk) for a strictly monotone smooth f, where 𝜂0,i,j and 𝜂1,ij are the unknown coefficients in this ‘‘true’’ model, and our 𝛽1,ij is

thus locally powerful for detecting departures from the null 𝜂1,ij = 0. We make two further observations: (a) We do not consider 𝛽0,ij to be of

interest for detecting the covariance changes, and (b) linear rescaling of y will not meaningfully change our results, because it results in constant

changes in the proposed statistics. Thus, without loss of generality, we assume ȳ =
∑

kyk∕n = 0, so 𝛽1,ij = 1

ns2
y

∑
kxikxjkyk = 1

ns2
y

∑
kzijkyk . These least

squares solutions are not intended to be used directly but serve to motivate global test statistics described below. For the two-sample special

case, the trend model results in Σ̂y matrices that are sample covariance matrices for each of the two samples and thus non-negative definite.

For continuous y, the trend model does not guarantee non-negative definiteness throughout the range of y. However, the clear interpretation

remains for 𝛽1 and its use for each of the summary covariance-change statistics.

2.3 Four statistics

In this subsection, we propose four statistics as a unified framework for covariance testing for sets of genes, which are equally applicable to a

binary (the two-sample problem) or continuous y . In different scenarios, each of them has a role to promote biological/medical discoveries. A

summation statistic S is sensitive to the covariance changes in the same direction, whereas a quadratic form statistic Q is sensitive to the changes

in either direction. Several existing methods are essentially two-sample special cases of S and Q, as we later show. The connectivity statistic C

is completely novel and has a relationship to overall covariance magnitude, which may be useful in network analysis. Statistics similar to the

maximum statistic M have been well studied (Cai et al., 2013) but had been previously limited to the two-sample problem.

2.3.1 A summation statistic

To effectively measure the covariance changes, we propose S =
∑

i

∑
j𝛽1,ij as a summation statistic to detect the global changes in covariances

that are concordantly associated with the experimental variable y (i.e., in the same direction). A simplification for S is

S =
∑

i

∑
j

∑
k

xikxjkyk =
∑

k

yk

∑
i

xik

∑
j

xjk =
∑

k

yk

(∑
i

xik

)2

=
∑

k

wkyk = yT w,

for wk = (
∑

ixik)2. In datasets where the null for S can be rejected, the value wk represents a natural ‘‘risk score’’ for sample k, with extreme w

values corresponding to extreme y.

Although the initial motivation for S was based on p × p covariance terms, the restated statistic is ultimately based on an inner product of

n-vectors, and thus, we may use a large sample normal approximation as n → ∞ for rescaled S to obtain p-values.

2.3.2 A quadratic form statistic

In contrast, Q =
∑

i

∑
j𝛽

2
1,ij

is sensitive to the changes that are not directionally concordant. Similar to S, Q can also be represented by n-vectors

and n × n matrices.

Q =
∑

i

∑
j

(∑
k

xikxjkyk

)2

=
∑

i

∑
j

∑
k

∑
l

xikxjkxilxjlykyl

=
∑

k

∑
l

ykyl

∑
i

xikxil

∑
l

xjkxjl =
∑

k

∑
l

ykylakl,

where akl =
(∑

ixikxil

)2
. The matrix with elements akl can be simplified to A = (XTX)◦2. Finally, we have the quadratic form Q = yTAy.

The nature of Q makes it difficult derive a risk score analogue and also difficult to justify closed-form limiting approximations to its null

distribution. An exception is in extreme cases, such as dominance of a single eigenvalue in A (approximately chi-square), or with a large number of

eigenvalues of similar magnitude (approximately normal). As explored in Zhou et al. (2013), for small to moderate sample sizes, a weighted beta

approximation can be more accurate than standard approximations for sums of independent chi-square distributions. However, the procedure

can be somewhat computationally intensive, and here, we opt for direct permutation of y to obtain p-values, for a general A. For certain special

cases, solutions for the first four permutation moments (Zhou et al., 2013) may be used to obtain p-values but require restrictive assumptions on

the form of A.
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2.3.3 A connectivity statistic

Each element akl of A has the form of a squared inner product between samples k and l, and so bk =
∑

lak,l reflects broad-scale association (a

‘‘connectivity index’’) of sample k with remaining samples. Accordingly, we propose the connectivity statistic C = yTb for risk scores {bk} to reflect

correlation between y and the connectivity index. Correlations between samples are ultimately driven by correlation between features, and C

reflects the tendency for the aggregate magnitude of feature–feature correlations to be associated with y, which is quite different from the type

of alternative envisioned for S and Q.

2.3.4 A maximum statistic

Our fourth statistic is similar to that of Cai et al. (2013) for the two-sample special case. We use a test for the maximum element difference,

scaled by an appropriate standard error. For our generalization of the statistic, we define Mij = (n − 1)r2
ij

, where rij is the Pearson correlation

between y and zij. . Defining {i′, j′} = argmaxi,jMij, we propose the maximum statistic M = Mi′ ,j′ , with a risk score zi′ ,j′ .

Approximate p-values for M use an extreme value approximation for 𝜒2
1

variates as n → ∞. Beyond standard assumptions that elements of X

and Y have appropriate tail behaviour (e.g., sub-Gaussian), there are modest restrictions on Σ and that log(p) grows more slowly than n1/5. With

these assumptions, approximate p-values are obtained using P(M − 4 log p + log log p ≤ t) ≈ exp
(
− 1√

8𝜋
exp

(
− t

2

))
.

2.4 Multiple testing

For practical data analysis, we use the standard Benjamini–Hochberg false discovery rate (FDR) control for each of the covariance-change

statistics across all the gene sets examined, in order to examine all findings comprehensively. This approach may be viewed as a form of stratified

FDR control (Sun, Craiu, Paterson, & Bull, 2006), with the aggregated FDR (for all gene sets and all four statistics) expressible as a weighted

average of the stratum-specific FDRs. In this manner, we are able to focus on top findings for each of the statistics in turn, highlighting the most

significant findings. Note that, according to this perspective, we can choose the most significant findings across the statistics while maintaining

the stratified FDR, and whichever statistics appear in the FDR-significant set are driven by those that are most powerful for the problem at hand.

3 THEORETICAL RESULTS

3.1 Asymptotic theorems to obtain p values

We have established asymptotic results for statistics S, C, and M for general y, which is non-trivial because p may be large relative to n. Suitable

rescaling provides p-values using normal (S and C) or extreme value (M) distributions.

3.1.1 Theorem 1 (S and C)

This theorem implies that S and C are asymptotically normal, as will be explained following the proof. The proof is a triangular array version of

the central limit theorem tailored for our setting.

Theorem 1. The Lindeberg condition for the sequence of random variables {Uk,n} states that for any 𝜀 > 0,

1∑
kvar(Uk,n)

∑
k

E

(
(Uk,n − E(Uk,n))2I(|Uk,n − E(Uk,n)|) > 𝜀

√∑
k

var(Uk,n)

)
→ 0,

as n → ∞. Assume Y and Wk,n are random variables such that E(Y4) < ∞ and E(W4
k,n
) < ∞ for all k, n, and k = 1, … , n. Define Vk,n = Wk,nYk and

Sn =
∑

kVk,n and assume the Lindeberg condition holds for {W2
k,n
} and {Vk,n}. Further, define

R =
Sn∕n − W̄nȲ
(n − 1)sW sY

,

where W̄n, Ȳ, sW, and sY are the sample means and standard deviations of W.,n and Y, and Z =
√

nR. Then, under H0 that W.n and Y are independent,

for any t, P(Z ≤ t) → Φ(t) as n → ∞.

The proof is in the Supporting Information.

Both S and C can be placed within this framework. To apply the theorem to S, we define Ak,n =
∑

iXik and Wk,n = A2
k,n

. Under the null hypothesis

that X is independent of Y, clearly, W is also independent of Y. It is clear from the definition that it allows for dependence of p on n. For C, we

define Wk,n = Bk,n where Bk is the random variable risk score given in Section 2.3.3.

Note that the theorem is stated generally enough that the columns of X, which correspond to the k subscript in W, be nonidentically distributed.

Verifying the conditions requires a model for X with increasing n but will be satisfied for a wide variety of ‘‘typical’’ assumptions. For example,

previous work has often assumed multivariate normality of X and either a binary or normal Y, for which the conditions can be shown to be

satisfied (see below for example) under very general conditions.
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3.1.2 An example of establishing conditions for Theorem 1 for S and C for multivariate normal X

Suppose each of the columns of X is p-variate multivariate normal MVN(0,Σ), where both p and Σ may depend on n. We have from the above

definitions Ak,n =
∑

iXik , W2
k,n

= A4
k,n

, and 𝜉2
n = var(Ak,n) = E(A2

k,n
). For MVN X, A4

k,n
= Z4

k,n
𝜉4

n , where Zk,n ∼ N(0,1) (and we drop the n subscript

from Z). As k is arbitrary, Theorem 1 requires establishing Lindeberg conditions for W2
1,n, for which the stronger Lyapunov condition is sufficient,

and we compute

Ln = 1
(nvar(W1,n))1+𝛿∕2

nE
(||||W2

1,n − E
(

W2
1,n

)||||2+𝛿)
= 1

n𝛿∕2𝜉8+4𝛿
n var(Z4)

E

((
𝜉4

n

||||Z4
1 − E

(
Z4

1,n

)||||
)2+𝛿

)
,

for 𝛿 > 0, and the terms involving 𝜉n cancel whereas other terms do not depend on n. Also, p does not appear because the sum across rows of X is

normal and already considered in 𝜉2
n . It is thus clear that Ln → 0 as n → ∞, satisfying the condition. Applying the same approach to

∑
kWk,nYk (i.e.,

establishing the condition for the Vk,n terms) similarly yields cancellation of 𝜉n and Ln → 0. Specifically, p does not appear, and the denominator of

the right-hand side of the above equation will include 𝜉4+2𝛿E(Y2)var(Z2) and E

((
𝜉2

n E(Y2)
||||Z2

1
− E

(
Z2

1,n

)||||
)2+𝛿

)
, because under the null hypothesis,

A2
k,n

and Yk are independent.

For C, we apply the theorem conditions to Wk,n = Bk =
∑

k

(∑
iXikXil

)2
, and the Lyapunov condition is easy to establish from independence of

columns of X.

3.1.3 Theorem 2 (M)

Theorem 2. Suppose that the correlation condition C1, tail condition C2, and the moment condition C3 shown below hold. Then, under H0, for any t,

P(M − 4 log(p) + log(log(p)) ≤ t) → exp

(
− 1√

8𝜋
exp(−t∕2)

)
,

as n → ∞.

The proof is in the Supporting Information.

In Cai et al. (2013), several conditions (denoted C1–C3) were assumed to hold, and our analogues are required. In our notation, consistent

with Cai et al. (2013), Xik is the data value for feature i and sample k, with mean 𝜇i. Key terms in the proof and conditions include the

pair {Ui[j],Vj[i]}, where Ui[j] = (Xi − 𝜇i),Vj[i] = Wj if i ≤ j, and Ui[j] = Wi,Vj[i] = (Xj − 𝜇j) if i > j. Terms 𝜌ij are feature–feature correlations, and

sj(𝛼0) = card{i ∶ |𝜌ij| ≥ (log p)−1−𝛼0}, 𝜎ij = E
(

Ui[j]Vj[i]
)
, 𝜃ij = var

(
Ui[j]Vj[i]

)
, and under the null hypothesis 𝜎 ij = 0. Roughly, condition C1 controls the

proportion of large feature–feature correlations, C2 limits the tail behaviour for X, and C3 provides bounds on four-way cross moments among

features.

Condition C1. Cai et al. (2013). For r ∈ (0,1), define Λ(r) = {1 ≤ i ≤ p ∶ |𝜌ij| > r} for some j ≠ i. Suppose there exists a subset 𝛶 ⊂ {1,2, .., p}
with cardinality o(p) and a constant 𝛼0 > 0 such that for all 𝛾 > 0, max

1≤j≤p,j∉Υ
sj(𝛼0) = o(p𝛾 ) and there exists r > 1 and a sequence Λp,r such that

the cardinality of 𝚲(r) ≤ Λp,r = o(p).

Condition C2. Sub-Gaussian tail and polynomial tail conditions, analogue of C2 and C2∗ in Cai et al. (2013). Suppose that log(p) = o(n1∕5).
There exist constants 𝜂 > 0 and K > 0 such that E(e𝜂(Xi−𝜇i)2∕var(Xi)) ≤ K, E(e𝜂(Wi)2∕var(Wi)) ≤ K for all i. Alternatively, we assume that for some

𝛾0, c1 > 0, p ≤ c1n𝛾0 , and 𝜖 > 0, E(|(Xi − 𝜇i|∕var(Xi)1∕2)4𝛾0+4+𝜖 ≤ K and E(|(Wi − E(Wi))|∕var(Wi)1∕2)4𝛾0+4+𝜖 ≤ K for all i.

Also, in either case, we assume min1≤i≤j≤p𝜃ij∕(var(Ui[j])var(Vj[i])) ≥ 𝜏 for some 𝜏 > 0.

Condition C3. Analogue of C3 in Cai et al. (2013). For any collection i, j, k, and l ∈ {1,2, … , p}, we assume without loss of generality that

i ≤ j and k ≤ l, and we suppose there exists 𝜅 ≥
1

3
such that

E
(

Ui[j]Vj[i]Uk[l]Vl[k]
)
= 𝜅

(
𝜎ij𝜎kl + E

(
Ui[j]Vj[i]

)
E
(

Vj[i]Vl[k]
)
+ E

(
Ui[j]Vl[k]

)
E
(

Vj[i]Uk[l]
))

.

We use Lemmas 1 and 2 from Cai et al. (2013) and the following lemma.

Analogue of Lemma 3 of Cai et al. (2013). Under the conditions of C2, there exists some constant C > 0 such that

P
(

max
i,j

|�̂�ij − 𝜃ij|∕ (var
(

Ui[j]
)

var
(

Vj[i]
)))

≥ C
𝜀n

log(p)
= O

(
p−1 + n−𝜖∕8

)
,

where 𝜀n = max
(
(log (p)1∕6∕n1∕2, log (p)−1

)
→ 0 as n, p → ∞.

We have �̂�ij = s2
Zij

s2
Y

. We first note that Lemma 3 from Cai et al. (2013) applies directly to s2
Zij

as an estimator of var(Zij) or alternatively to s2
Zij Y

as

an estimator of the same quantity if Z is centred. Furthermore, s2
Y
∕𝜎2

Y
= OP(n−1) and so

P
(
max

i,j

|||sZ2
ij

s2
Y − 𝜎2

Zij
𝜎2

Y
|||
)

≥ C
𝜀n

log(p)
= O

(
p−1 + n−𝜖∕8

)
,

using variance scaling wlog as in the Supplemental Appendix of Cai et al. (2013)

With the above assumptions in hand, the proof follows from the proof of Theorem 1 in Cai et al. (2013), where in each instance, our �̂�ij is

substituted for (say) �̂�ij1 from Cai et al. (2013), and zero substituted for �̂�ij2, and a single denominator �̂�ij∕n in place of the denominator in Cai et al.
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(2013), which gives the correlation coefficient. Condition C1 prevents excessive correlation of features, whereas C2 ensures that large deviations

in the data do not prevent limiting convergence of extreme �̂�ij.

3.2 Permutation testing

Although for computational speed we typically rely on asymptotic p-values, permutation testing can be useful, as a means of both performing

small sample analysis and informing interpretation of our statistics, as we show in the next subsection. Letting Π denote a random permutation of

n elements from among the n! possibilities (realized value 𝜋), the statistics for permutation 𝜋 are S𝜋 = yT
𝜋w, Q𝜋 = yT

𝜋Ay𝜋 , C𝜋 = yT
𝜋b, and M𝜋 (which

require computation of the 𝛽1 values and standard errors for each permutation). S and C are subjected to two-sided testing, with p-values based

on both right and left tails, whereas Q and M are one-tailed, rejecting for large values. For example, with H random permutations and 𝜋[h] denoting

the hth permutation, the empirical p value for S is pS =
∑H

h=1 I[|S𝜋[h]| ≥ |Sobserved|]∕H, whereas the p value for Q is pQ =
∑H

h=1 I[Q𝜋[h] ≥ Qobserved]∕H.

The null hypothesis is that the relationships of columns of X to the elements of y are exchangeable (Good, 2002), which holds if X and y are

drawn from independent distributions. A primary advantage of permutation testing is that, aside from slight issues due to discreteness or tied

outcomes, type I error rates are controlled without requiring parametric assumptions (Zhou & Wright, 2015). Note that, because permutation

testing is conditional on the observed data, the dimension p is immaterial in terms of the ability to maintain appropriate false positive control.

However, the sample size n should be sufficient that p-values < 𝛼 can be achieved. For example, if y is continuous, then the minimum p value

achievable for two-sided statistics is 2∕n!.

3.3 Special case: Two group comparisons and permutation equivalence

As stated earlier, all of our statistics apply for a general y. Here, we show that in the two-sample special case, our proposed statistics S and Q

are equivalent (in a permutation sense) to natural summaries of sample covariance matrices. In addition, M closely matches the Cai et al. (2013)

statistic. These concepts are illustrated in Figure 1 (left panel), which summarizes the properties that each statistic has in terms of alternatives to

which it is sensitive.

FIGURE 1 Left panel: A visual summary of the proposed covariance-change statistics and are grouped with previously proposed statistics for
the two-sample problem special case. Right panel: Comparison of the four proposed statistics to various existing statistics for the two-sample
problem special case, for a single-simulated dataset, and for 100 permutations. Pearson correlations illustrate the exact and approximate
correspondence of some pairs of statistics
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For the two-sample problem, an obvious summation-like statistic would be 𝜉
(
Σ̂1 − Σ̂2

)
. A statistic 𝜉

((
Σ̂1 − Σ̂2

)◦2
)

is sensitive to the covariance

changes in either direction that might otherwise cancel in the previous statistic. A statistic 𝜉
(
Σ̂◦2

1
− Σ̂◦2

2

)
is directional, but for the magnitude of

covariances, and by squaring the covariance elements provides additional weight to gene–gene pairs with high covariance magnitude. Finally,

a maximum statistic would identify the maximum covariances differences (�̂�ij,1 − �̂�ij,2)2 but appropriately scaled by a standard error for each

gene pair.

Result 1. Let 𝜔1 and 𝜔2 be the indexes for samples in groups 1 and 2, respectively, and the subscripts 1 and 2 will be used for simplicity. We assign

the experimental variable yk = 1

n1
if k ∈ 𝜔1 and yk = −1

n2
if k ∈ 𝜔2. Then

(i) the directional statistic S is equivalent to 𝜉
(
Σ̂1 − Σ̂2

)
;

(ii) the nondirectional statistic Q is equivalent to 𝜉
((

Σ̂1 − Σ̂2

)◦2
)

.

The proof is in the Supporting Information.

Figure 1 (right panel) shows the results from 100 random permutations of y for the two-sample problem with n1 = n2 = 20, p = 50. A single

X was generated using the null version of Model 2 described in the next section, but the qualitative results hold regardless of the choice of

X. As we showed above, S and Q are equivalent to 𝜉(Σ̂1 − Σ̂2) and 𝜉
(
(Σ̂1 − Σ̂2)◦2

)
, respectively. Under the permutations, C has a high Pearson

correlation over permutations with 𝜉
(
Σ̂◦2

1
− Σ̂◦2

2

)
= 𝜉(Σ̂◦2

1
) − 𝜉(Σ̂◦2

2
), supporting the perspective that C reflects a contrast in the overall magnitude

of covariances. Finally, our M is correlated under permutation with the statistic from Cai et al. (2013), although they differ modestly due to the

differences in the standard errors used.

This permutation example underscores the correspondence between our statistics and those that seem ‘‘natural’’ for the two-sample problem,

but we emphasize that our statistics apply for either discrete or continuous y.

4 SIMULATION MODELS FOR TYPE I ERROR AND POWER

Initial comparisons follow the simulation settings from Li and Chen (2012), for which feature covariances were described using auto-regressive

notation. More compactly than the original articles, we describe their simulation settings in terms of the covariance matrices.

4.1 Simulation Model 1 with a continuous y

For this simulation model, values in y are drawn iid N(0,1) in each simulation and converted to the rescaled experimental variable y∗ = y−min(y)
max(y)−min(y)

∈
[0,1]. X is drawn as multivariate N(0,Σy∗ ), with Σy∗ = (1 − y∗)𝛾1 + y∗𝛾2. We assume 𝛾1 is the identity matrix and 𝛾2 is the compound symmetric

matrix,

𝛾2ij =
⎧⎪⎨⎪⎩

1, if i = j
𝜌, if i = j + 1, j − 1
0, if i ≠ j − 1, j, j + 1

,

in which we call 𝜌 the ‘‘effect size.’’ Under the null, there is no change in the covariance structure, that is, 𝛾2 is the identity matrix, as is Σy∗ for all

y∗. As 𝜌 increases, the relationship between the covariance and y∗ becomes stronger. Figure 2 shows that the power for the proposed statistics is

near the intended 𝛼 = .05 when 𝜌 = 0. Figure 2 also shows that the directional statistic S is the most powerful approach overall.

4.2 Simulation Model 2 with a continuous y

This simulation model is a bit more complex, following a similar approach used in Cai et al. (2013). The approach generates covariance matrices

that are nondirectional in relationship to y and with no overall variation in magnitude, while respecting the need for positive definiteness.

To an initial p × p identity matrix I, Σ∗(1) was formed by drawing the first p∕2 × p∕2 off-diagonal elements from a uniform density U[−𝜌, 𝜌],
followed by Σ∗(2) = Σ∗(1) + Σ∗(1)T and Σ1 = Σ∗(2) + (𝜆min(Σ∗(2)) + 0.05)I. Σ2 is formed by reversing the rows and columns of Σ1, and finally,

Σy∗ = Σ1(1 − y∗) + Σ2y∗, where y∗ is the result of linear rescaling of y to the [0,1] interval as in the previous subsection. Here, 𝜌 ∈ [0,1)
serves as an effect size, and Σ1 and Σ2 differ in the groups of genes that show correlation structure but otherwise are the same in the

average magnitude of elements and show no directionality. Figure 3 provides the power comparison among the four proposed methods.

As expected, S and C have little or no power, whereas M has low power. The statistic Q benefits from aggregation of covariance-squared

differences and thus has much more power than the other methods. All methods control type I error properly (dashed line at 0.05

in Figure 3).
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FIGURE 2 Power comparison among S, Q, C, and M for Simulation Model 4. The dashed line at 𝛼 = .05 indicates that all the proposed methods
control type I error well under the null (𝜌 = 0). The effect size 𝜌 ranges from 0 to .8

FIGURE 3 Power comparison among S, Q, C, and M for Simulation Model 5. The dashed line at 𝛼 = .05 indicates that all the proposed methods
control type I error well under the null (𝜌 = 0). The effect size 𝜌 ranges from 0 to .6. Q is the most powerful method among these statistics for
this simulation model

4.3 Simulation Model 3 with discrete y (to assess type I error)

This simulation procedure was originally from Li and Chen (2012). We assume the first population X1 ∼ N(0,Σ1); whereas the second population

X2 ∼ N(0,Σ2), where

Σ1ij =
⎧⎪⎨⎪⎩

1 + 𝜃2
1
, if i = j

𝜃1, if i = j + 1, j − 1
0, if i ≠ j − 1, j, j + 1

,Σ2ij =
⎧⎪⎨⎪⎩

1 + 𝜃2
1
+ 𝜃2

2
, if i = j

𝜃1(1 + 𝜃2), if i = j + 1, j − 1
0, if i ≠ j − 1, j, j + 1

.

The difference between the two covariance matrices is

Σ2ij − Σ1ij =
⎧⎪⎨⎪⎩
𝜃2

2
, if i = j

𝜃1𝜃2, if i = j + 1, j − 1
0, if i ≠ j − 1, j, j + 1

.

To assess type I error, we set 𝜃2 = 0, which implies the null Σ1 − Σ2 = 0. We show results for n1 = n2 = {20,50,80,100} and feature dimension

p = {32,64,128,256,512,700}. The number of simulations was 1,000 for each setting. The asymptotic results were used to obtain p-values for
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TABLE 1 Type I error comparison, Simulation Model 1, Xk ∼ N(0,Σk), Σ1 = Σ2

n1 = n2 Method p = 32 p = 64 p = 128 p = 256 p = 512 p = 700

20 S .042 .043 .051 .035 .033 .044

Q .055 .058 .046 .043 .043 .052

C .041 .049 .029 .053 .053 .061

Li–Chen .044 .054 .051 .048 .051 .038

Cai .092 .14 .139 .204 .211 .263

M .074 .085 .085 .132 .177 .209

Mp .053 .054 .050 .052 .051 .050

50 S .047 .042 .053 .035 .049 .035

Q .052 .041 .045 .049 .042 .046

C .055 .049 .051 .046 .057 .042

Li–Chen .052 .060 .033 .043 .054 .049

Cai .042 .068 .058 .065 .055 .059

M .049 .042 .058 .034 .043 .033

Mp .059 .054 .051 .048 .051 .050

80 S .043 .057 .051 .043 .047 .04

Q .065 .051 .040 .046 .044 .048

C .056 .045 .047 .051 .063 .05

Li–Chen .054 .060 .047 .048 .052 .053

Cai .052 .056 .043 .052 .058 .041

M .074 .043 .034 .036 .042 .027

Mp .046 .046 .051 .047 .050 .049

100 S .056 .05 .042 .051 .047 .05

Q .039 .051 .050 .040 .060 .053

C .057 .042 .028 .043 .057 .055

Li–Chen .056 .049 .052 .046 .049 .048

Cai .050 .052 .043 .039 .036 .047

M .072 .052 .04 .045 .032 .027

Mp .047 .054 .048 .050 .048 .046

S and C and 1,000 permutations for Q. Although the parametric method works well for M for a moderate sample size, to ensure robustness for

this statistic for the entire range of simulations, we also report permutation-based p-values, labelled Mp .

Table 1 shows that for this multivariate normal model, most methods perform well and control type I error. The Cai et al. (2013) method and

our similar M statistics are noticeably anticonservative for 𝛼 = .05 for the smaller sample size (n1 = n2 = 20) and more so as p increases. As stated

above, for comparison, we have also included in the table a statistic Mp , which is the permutation-based version of our M. For larger sample

sizes, the asymptotic p-values for M are close to nominal, even for large p. For the setting with n1 = n2 = 20, p = 50, 100,000 simulations were

performed to provide greater insight into tail behaviour (Figure 4); p-values for Q perform well, which is sensible, as the permutation null holds. In

addition, we also show good results for a ‘‘residualized’’ Q (lower right panel), in which each row of X is residualized using simple linear regression

for the effect of y. The rationale for such an approach might be to ensure that the test statistic is sensitive to the changes in covariance only, not

to any linear association with y. Here, the residualization is also performed inside the permutation loop.

4.4 Simulation Model 4 with discrete y (to assess type I error)

Here, we follow the previous Simulation Model but with skewed data elements. Specifically, let G(w;4,0.5) denote the Gamma distribution

function with shape parameter 4 and scale 0.5 evaluated at w. Then, if W ∼ G, X = W − 2 has mean zero and variance 1, that is, follows a centred

Gamma. The elements of X1 and X2 are drawn as shown above, following the same null covariance structure that was used in Simulation Model 3.

Here, the Cai approach in Cai et al. (2013) becomes conservative, with increasing both the sample size and feature size (Table 2). The Li–Chen

method is anticonservative, but the type I error becomes closer to nominal as the sample size and feature size increase.

4.5 Simulation Model 5 with discrete y (to assess power)

For power comparisons, we return to the multivariate normal data elements. We use Simulation Model 3 but with covariance matrices determined

by 𝜃1 = 2, 𝜃2 = 1 (one of the simulation models also used by Li and Chen, 2012, and summarized in their Table 3). Although this simulation model
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FIGURE 4 QQplots for several of the proposed methods and existing methods for the null two-sample problem of Simulation Model 1, p = 50,
n1 = n2 = 20

TABLE 2 Type I error comparison, Simulation Model 2, Σ1 = Σ2, elements
following centred Gamma

n1 = n2 Method p = 32 p = 64 p = 128 p = 256 p = 512 p = 700

20 S .034 .042 .039 .039 .039 .04

Q .057 .046 .066 .050 .047 .042

C .035 .05 .047 .05 .037 .05

Li–Chen .158 .112 .083 .071 .053 .063

Cai .048 .048 .058 .055 .083 .085

M .083 .102 .108 .145 .152 .171

Mp .039 .039 .050 .037 .042 .046

50 S .049 .061 .062 .048 .055 .044

Q .055 .049 .055 .043 .051 .042

C .045 .053 .051 .048 .044 .05

Li–Chen .048 .048 .058 .055 .083 .085

Cai .016 .013 .010 .007 .003 .004

M .039 .062 .053 .054 .047 .042

Mp .051 .05 .055 .042 .050 .048

80 S .051 .046 .05 .049 .045 .056

Q .056 .048 .043 .042 .038 .057

C .062 .049 .042 .047 .047 .061

Li–Chen .165 .141 .090 .059 .051 .056

Cai .019 .010 .005 .006 .005 .002

M .046 .051 .036 .049 .048 .038

Mp .059 .039 .045 .045 .048 .051

100 S .054 .037 .047 .047 .047 .048

Q .045 .042 .049 .049 .051 .039

C .041 .038 .045 .058 .049 .053

Li–Chen .176 .133 .088 .069 .050 .046

Cai .013 .009 .007 .003 .003 .003

M .048 .044 .039 .034 .037 .048

Mp .059 .041 .058 .052 .053 .050
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TABLE 3 Power comparison, Simulation Model 3, Xk ∼ N(0,Σk), Σ1 ≠ Σ2

n1 = n2 Method p = 32 p = 64 p = 128 p = 256 p = 512 p = 700

20 S .18 .156 .179 .163 .164 .158

Q .211 .231 .235 .234 .221 .213

C .63 .826 .972 .999 1 1

Li–Chen .273 .273 .252 .285 .269 .272

Cai .138 .140 .164 .204 .233 .282

M .125 .111 .115 .157 .182 .189

Mp .129 .072 .050 .061 .083 .054

50 S .456 .474 .456 .452 .473 .437

Q .705 .751 .803 .809 .772 .789

C .989 1 1 1.000 1 1

Li–Chen .752 .800 .824 .861 .839 .857

Cai .234 .163 .146 .136 .104 .084

M .217 .14 .134 .126 .097 .077

Mp .270 .133 .092 .122 .034 .051

80 S .644 .695 .686 .692 .677 .703

Q .955 .972 .991 .995 .992 .992

C 1 1 1 1.000 1 1

Li–Chen .941 .980 .992 .994 .996 .998

Cai .496 .420 .377 .316 .246 .189

M .468 .417 .367 .305 .229 .175

Mp .574 .394 .333 .242 .253 .201

100 S .761 .776 .788 .796 .813 .814

Q .991 .997 .999 1.000 1.000 1.000

C 1 1 1 1.000 1 1

Li–Chen .997 1.000 .999 1.000 1.000 1.000

Cai .700 .652 .557 .508 .423 .406

M .689 .633 .56 .494 .403 .398

Mp .700 .649 .601 .487 .375 .374

was used by Li and Chen (2012) to support their proposed statistic, our proposed C has consistently the highest power for all the n, p settings.

The Li–Chen statistic shows power slightly higher than that of Q, even though they both are based on the Frobenius norm. We speculate that

the reason is related to the fact that permutation testing is conditional on the observed data, and the power difference nearly disappears at the

larger sample sizes. It is perhaps a bit surprising that S is less powerful than Q, as the covariance differences are directional. However, the squared

terms in Q also may effectively act to reduce noise, and we have observed situations in which S is more powerful. The Cai and M statistics show

the lowest power, as they use only the most extreme covariance difference element and do not aggregate over the large number of covariance

difference elements.

5 ANALYSIS OF REAL DATASETS

5.1 A continuous phenotype example

To illustrate the utility of covariance testing in association with a continuous phenotype, we reanalyzed the well-known data of van de Vijver et al.

(2002), in which gene expression in breast tumours of 295 patients younger than 55 was examined for association with disease-free survival.

To identify biological pathways (gene sets) of interest in the comparisons, groups of genes for 372 KEGG and 8,039 Gene Ontology pathways

were identified, so that for each test, p represents the number of genes in the pathway. To identify pathways of greatest interest, we aggregate

over all gene pairs in each pathway, using statistics as described below. We used martingale residuals, adjusted for age and sex, and 50 surrogate

variables, obtained from the expression data, as a quantitative phenotype y; p-values for Q were determined by 100,000 permutations for

high accuracy, and the remaining statistics used the asymptotic approximations. Of the four statistics proposed, three achieved false discovery

q < 0.15 for the most significant gene set using Benjamini–Hochberg adjustment. These were Q (GO:0043254 regulation of protein complex

assembly, 193 genes, q = 0.0066), C (GO:0022408 negative regulation of cell–cell adhesion, 75 genes, q=0.124), and M (GO:1900221 regulation

of beta-amyloid clearance, five genes, q=0.055).

To further examine the finding for statistic C, we performed proportional hazards regression using the risk score vector {bk} as a predictor

for disease-free survival while including the covariates described. The resulting Wald statistic for the risk scores was p = 8.0 × 10−15. This

striking result for the risk scores would be highly significant by any conceivable multiple test correction, even though the q-value for C was of
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borderline significance. To visualize, we divided the risk score vector for C into tertiles, and Figure 5 shows the corresponding Kaplan–Meier

curves for disease-free survival. The result shows that high ‘‘connectivity’’ of the genes in the pathway is associated with reduced disease-free

survival, consistent with observations that loss of cellular adhesion promotes metastasis (Martin, Ye, Sanders, Lane, & Jiang, 2013). Note that this

observation would not be apparent from standard gene-set enrichment approaches using overall expression levels.

5.2 Discrete phenotype example 1

The second real dataset is gene expression data on kidney transplant tissue (Modena et al., 2016), in which those with acute rejection

(y = 1, n1 = 54) were compared with normal outcomes (y = 2, n2 = 99). Pathway analyses proceeded similarly as with the previous example, with

7,266 Gene Ontology BP and 402 KEGG pathways examined. The most significant pathways for each statistic are listed in Figure 6. Each heatmap

depicts the matrix corresponding to the statistic (e.g., for S, it depicts Σ̂1 − Σ̂2). The most significant pathways for each statistic are as follows,

with multiple comparison false discovery q-values: GO:0035754 B cell chemotaxis (five genes, for S, q = 1.4 × 10−6), GO:0070193 synaptonemal

complex organization (11 genes, for Q, q = 0.03), and GO:0009394 2
′
-deoxyribonucleotide metabolic process (28 genes, for C, q = 4.2 × 10−18).

As another illustration for this dataset, we show the results for the most significant M statistic for GO:0021889 olfactory bulb interneuron

differentiation (Figure 6d, 13 genes, p value = .0005, q n.s.). To best illustrate the changes in correlation rather than the changes in variance, for

this statistic, we row-scaled the data to have variance 1 for each gene. The gene pair {ATF5, ERRB4} shows the most significant change, with a

high negative correlation in the AR group and little correlation in the normal group. ATF5 has been associated with transplant rejection in multiple

organ systems (Morgun et al., 2006). There is little literature on ERBB4 and transplant rejection, but the gene has been associated with kidney

nephropathy (Sandholm et al., 2012) and thought to be protective of polycystic kidney disease in a mouse model (Zeng, Miyazawa, Kloepfer, &

Harris, 2014).

5.3 Discrete phenotype example 2

The third real dataset is a targeted reanalysis of a brain expression dataset compiled by Fulcher and Fornito (2016). The authors had used

previous mouse brain connectome findings to classify each of 213 brain regions as ‘‘hub’’ and ‘‘nonhub’’ regions using imaging-based connectivity,

with expression data obtained for each region. A primary biological finding in their paper was that hub regions involved coexpression of genes

involved in energy metabolism. However, to test this hypothesis, the authors needed to use an indirect means, creating a threshold-based

connectivity score for each gene and testing for enrichment using methods that do not acknowledge gene–gene correlations. We reasoned that

a gene-set approach using S and C might be able to obtain a similar finding directly. Defining y = 1 for hub regions and y = 0 for nonhub regions,

and considering each region to be a sample, we performed testing for each of 5,944 Gene Ontology pathways containing at least five genes.

For S, the most significant pathways associated with an increase of covariance for hub regions were GO:0005746 (q = 1.09 × 10−4, five genes,

‘‘mitochondrial respiratory chain’’) and GO:0045039 (q = 1.37 × 10−4, five genes, ‘‘protein import into mitochondrial inner membrane’’). Similarly,

for C, for the same GO category, we obtained q = 9.85 × 10−4. These pathways clearly involve energy metabolism, whereas the top pathways

showing increased covariance in nonhub regions were not involved in energy metabolism. For example, in the nonhub regions, for S, we obtained

FIGURE 5 Kaplan–Meier curves for disease-free survival and breast cancer data of van de Vijver et al. (2002; p = 8 × 10−15). The curves
correspond to tertiles of the risk scores for statistic C, for pathway GO:0022408 ‘‘negative regulation of cell–cell adhesion’’
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FIGURE 6 Illustration of the four statistics in the kidney transplant data, using gene set analysis of gene expression in those with acute rejection
(n1 = 54) versus normal (n2 = 99). All panels except for Panel (a) were zero-centred to better illustrate the covariance changes. (a) Heatmap of
Σ̂1 − Σ̂2 for GO:0035754, the most significant pathway for S. (b) Heatmap of (Σ̂1 − Σ̂2)◦2 for GO:0070193, the most significant pathway for Q. (c)
Heatmap of (Σ̂◦2

1
− Σ̂◦2

2
) for GO:0009394, the most significant pathway for C. (d) Heatmap of Mij values for GO:0021889, the most significant

pathway for M. The inset shows the covariance in acute rejection versus controls for ATF5 and ERBB4

GO:0015677 (q = 4.08 × 10−6, seven genes, ‘‘copper ion import’’) and GO:0019218 (q = 4.75 × 10−4, five genes, ‘‘regulation of steroid metabolic

process’’).

6 DISCUSSION

We have proposed four covariance test statistics in a straightforward trend-testing framework that applies to general y. The approach is not

limited by p, n, or whether y is discrete or continuous. For most of the statistics, a natural risk score is an output. The availability of testing for a
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continuous y is a distinct advantage over previous methods, making covariance testing a simple approach that can be applied in a huge variety

of settings. We propose that the approach can be part of a standard testing toolkit and used to evaluate, for example, pathway associations, in

high-throughput data or the statistical significance of network discoveries.

7 DATA AVAILABILITY STATEMENT

The three datasets described in Section 5 are in https://sites.google.com/ncsu.edu/zhouslab/home/software?authuser=0.

8 SOFTWARE

The accompanying software CorDiff is available on R CRAN (https://cran.r-project.org/web/packages/CorDiff/index.html).
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