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Abstract. Chronic hepatitis B (CHB) and acquired 
immunodeficiency syndrome (AIDS) are global public 
health problems that pose a significant health burden. Human 
immunodeficiency virus (HIV) and hepatitis B virus (HBV) 
coinfection is common, as these viruses have similar transmis‑
sion routes, such as blood transmission, sexual transmission 
and mother‑to‑child transmission. Coinfection frequently leads 
to accelerated disease progression. For individuals coinfected 
with HIV/HBV, combination antiretroviral therapy containing 
dual anti‑HBV drugs is recommended. Certain studies 
have also indicated the benefits of antiretroviral drugs with 
anti‑HBV activity in patients with coinfection. A total of four 
Food and Drug Administration‑approved HIV drugs also have 
anti‑HBV activity; namely, emtricitabine, lamivudine, teno‑
fovir disoproxil fumarate and tenofovir alafenamide, which 

are all nucleoside reverse transcriptase inhibitors. However, 
various issues, including drug resistance and side effects, limit 
their application. Therefore, it is necessary to develop more 
drugs with dual activity against HBV and HIV. The present 
review outlines the mechanisms, safety and efficacy of certain 
drugs that have been investigated for this purpose.
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1. Introduction

Chronic hepatitis B (CHB) and acquired immunodeficiency 
syndrome (AIDS) are both serious public health problems 
and caused by viruses that have the same transmission paths, 
including mother‑to‑child, blood (including minor wounds of 
the skin and mucous membranes) and sexual contact. Due to 
their shared transmission routes, coinfections of hepatitis B 
virus (HBV) and HIV are common and ~5‑20% of patients 
living with HIV infection worldwide are also infected with 
HBV (1). Compared with patients infected with only HBV, 
HIV/HBV‑coinfected patients have a higher risk of devel‑
oping end‑stage liver disease and an overall higher mortality 
rate (2‑4). Furthermore, the presence of HBV in HIV‑positive 
patients is associated with a lower number of CD4+ lympho‑
cytes and a lower virologic response against HIV during 
treatment (5).

It is necessary for coinfected patients to start antiviral 
treatment as early as possible because as the degree of immu‑
nodeficiency worsens, the patient's response to HBV treatment 
regimens is reduced (6). Highly active antiretroviral therapy 
(HAART) is able to effectively promote immune system 
reconstitution (7). The World Health Organization (WHO) 
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recommends that patients living with HIV who are coinfected 
with HBV with severe chronic liver disease are required to 
initiate ART regardless of their WHO clinical stage and CD4+ 
cell count (8) and Chinese guidelines also suggest that they 
need to start HAART if coinfected with HBV regardless 
of their CD4+ cell count as early as possible (9). However, 
immune reconstitution syndrome secondary to HAART 
may cause hepatitis flares; therefore, HBV and HIV should 
be treated at the same time (7). Using one drug that is active 
against HBV is able to induce HIV resistance to nucleoside 
drugs; therefore, two anti‑HBV drugs should be included in 
the treatment plan. For HIV/HBV coinfected individuals, 
combination ART (cART) with dual anti‑HBV and anti‑HIV 
antiretroviral activity is recommended (10). The treatment 
goals are to control HIV and HBV transmission, suppress 
viral replication and prevent drug resistance mutations in 
reverse transcriptase (4). The treatment duration for HBV in 
coinfected patients is indefinite due to the low response rates 
and the requirement for lifelong treatment for HIV (11). Thus, 
the drugs should be selected carefully and closely monitored 
during treatment to minimize the risk of HBV and HIV drug 
resistance.

Numerous studies have proven the importance of dual 
activity drugs for coinfection treatment. Using highly effec‑
tive cART with dual activity is able to significantly reduce 
the risk of developing end‑stage liver disease in HIV/HBV 
coinfected patients (12). Interruption of HIV medications 
with anti‑HBV activity in HIV/HBV coinfected individuals 
may result in HBV reactivation and/or hepatitis (13). HIV 
mono‑infected patients may be protected from HBV infection 
by using anti‑HBV antiretroviral medications (14). However, 
only four Food and Drug Administration (FDA)‑approved 
HIV drugs that have anti‑HBV activity have been developed 
thus far, namely emtricitabine, lamivudine, tenofovir (TFV) 
disoproxil fumarate (TDF) and TFV alafenamide (TAF), all 
of which are nucleoside reverse transcriptase inhibitors (15). 
In a meta‑analysis, the evidence for the relative effectiveness 
of these drugs in the treatment of HBV/HIV coinfection was 
insufficient (3). Considering the drug resistance of HBV and 
HIV and the side effects of the medications, the development 
of novel drugs with dual activity is urgent to ensure that there is 
a sufficient number of alternative drugs for treating HIV/HBV 
coinfection. Fortunately, antiretroviral drugs with dual activity 
for treating HBV and/or HIV are under different pre‑clinical 
or clinical study stage. In the present review, the mechanisms, 
safety and effectiveness of drugs investigated for HIV/HBV 
coinfection are provided.

2. Immunomodulators

GS‑9620. Toll‑like receptor‑7 (TLR‑7) has a vital role in the 
innate immune response against pathogens. GS‑9620, also 
called vesatolimod, was developed by Gilead and is a potent, 
selective and orally active small‑molecule agonist of TLR‑7. 
GS‑9620 is able to activate T cells and natural killer (NK) 
cells, inducing immune activation. Furthermore, GS‑9620 is 
capable of increasing the plasma levels of various cytokines 
and the expression levels of associated genes, such as IFNα 
and IFN‑stimulated genes (16). CHB is characterized by 
persistently low innate and adaptive immune responses. 

Therefore, the TLR7 agonist GS‑9620 may have the potential 
for improving anti‑HBV immunity. Certain studies have indi‑
cated that GS‑9620 is able to sustainably suppress viral DNA 
and antigens in the sera of woodchuck and chimpanzee models 
of CHB (17,18). The mean maximum reduction in viral DNA 
was 2.2 logs and reductions of >1 log persisted for months 
in HBV‑infected chimpanzees treated with GS‑9620 (18). 
In another study, GS‑9620 reduced the levels of HBV DNA, 
RNA and antigens in vitro in HBV infection models (19). 
Furthermore, GS‑9620 administration reduced covalently 
closed circular (ccc)DNA levels and the incidence of hepa‑
tocellular carcinoma (HCC) in woodchucks with chronic 
woodchuck hepatitis virus infection (17). Clinical research on 
GS‑9620 in patients with CHB is preliminary. Oral adminis‑
tration of GS‑9620 at 1‑, 2‑ or 4‑mg doses did not cause any 
significant decrease in hepatitis B surface antigen (HBsAg) in 
patients with CHB who were not taking any oral antivirals 
or who were virally suppressed by oral antiviral treatment, 
which may be due to differences in dose administration and/or 
concentration and species‑specific effects of the therapy in 
the animal and human CHB models. However, GS‑9620 has 
been indicated to be safe and well‑tolerated in patients with 
CHB (20‑22).

HIV‑1 infection remains incurable due to a persistent viral 
reservoir, requiring the administration of antiretroviral drugs 
throughout life. Long‑lived memory CD4+ T cells serve as 
the primary reservoir of latent HIV. Interrupted HIV treat‑
ment may result in viral reactivation. The latent reservoir in 
resting CD4+ T cells is considered to be the major obstacle 
to HIV treatment. Toll‑like receptor agonists are able to 
reverse HIV‑1 latency (23), induce latent HIV expression 
and promote the immune system to recognize and eliminate 
infected cells. Tsai et al (24) and Sloan et al (25) indicated 
that GS‑9620 has the ability to activate HIV expression 
ex vivo in peripheral blood mononuclear cells (PBMCs) 
isolated from HIV‑infected patients with suppressive cART. 
Furthermore, GS‑9620 is capable of augmenting the ability 
to kill HIV‑infected cells through enhanced HIV‑specific 
cellular cytotoxicity and anti‑HIV antibody‑mediated 
immunity. Treatment of PBMCs with GS‑9620 induced a 
concentration‑dependent increase in HIV‑specific CD8+ 
T‑cell activation (26). In addition, treatment with GS‑9620 
significantly reduced the viral reservoir in simian immu‑
nodeficiency virus (SIV)‑infected rhesus monkeys (27). 
Borducchi et al (28) reported that the V3 glycan‑dependent 
broadly neutralizing antibody, PGT121, combined with 
GS‑9620 delayed viral rebound following ART discontinu‑
ation in simian HIV‑infected monkeys. Of note, no serious 
adverse events were observed in virologically suppressed 
HIV‑1‑infected adults when the doses of GS‑9620 were 
increased in a phase 1b study (29). Overall, GS‑9620 may be 
a candidate drug with dual effects caused by the regulation 
or activation of innate and adaptive immunity.

IFN. IFNs have potent antiviral effects. They exert antiviral 
activity by regulating the immune response and upregulating 
the expression of antiviral genes. IFNα is an FDA‑approved 
medicine currently used to treat HBV and HCV infections due 
to its robust antiviral activity. Pegylated IFN, usually called 
Peg‑IFN, is a chemically modified form of standard IFN. 
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Compared with standard IFN, Peg‑IFN has a longer half‑life 
and stays in the body for a longer duration. Peg‑IFNα is avail‑
able in two forms, peg‑IFNα‑2a and‑2b, with the commercial 
names Pegasys and PegIntron, respectively.

Compared with that of nucleos(t)ide analogs (NAs), treat‑
ment with Peg‑IFNα has the advantages of limited treatment 
duration, a higher rate of HBeAg and HBsAg seroconver‑
sion, a higher chance of sustained off‑treatment virological 
response and lack of resistance. Furthermore, treatment with 
Peg‑IFNα has a lower HBV‑associated HCC incidence than 
NAs in HBV‑infected patients (30). However, Peg‑IFNα has 
been associated with severe adverse events, has low efficacy of 
viral suppression and is administered by subcutaneous injec‑
tion, which are disadvantages. IFN therapy is contraindicated 
in patients with decompensated cirrhosis, pregnancy, heart 
failure, chronic obstructive pulmonary disease and psychosis. 
Thus, pegylated IFN must be carefully selected according to 
the patient's condition.

Furthermore, IFNs have anti‑HIV activity (31‑39). 
According to Frissen et al (37), high‑dose IFNα‑2a had 
potent anti‑HIV activity. Asmuth et al (35) reported that 
pegylated IFNα‑2a treatment reduced the viral load in 
untreated HIV‑infected patients without HCV infection. 
Pegylated IFNα‑2a is also useful in patients with multiple 
resistance‑associated mutations and who are resistant to 
most antiretroviral medications (40). Furthermore, several 
studies suggested that treatment with IFNα may diminish 
the HIV reservoir size (31‑33). However, the effect of IFN 
on HIV remains controversial due to potential deleterious 
effects during later stages of HIV infection. Sandler et al (41) 
suggested that continuous IFNα‑2a therapy may lead to IFN 
desensitization and antiviral gene downregulation, thereby 
increasing the SIV reservoir size and accelerating CD4 cell 
depletion. IFNα levels were positively correlated with viral 
load and negatively correlated with the CD4+ T‑cell count in 
chronic HIV infection (42,43). Cheng et al (44) confirmed 
that blocking the sustained elevations in IFN‑I signaling 
enhanced immune recovery and reduced HIV‑1 reservoirs. 
However, another study indicated that the reduction in CD4+ 
cells may be due to the HIV‑infected cells being more vulner‑
able to IFNα‑mediated attacks, resulting in a decrease in 
HIV DNA (39).

In summary, the interaction between HIV and type I IFNs 
is complex and the effects of IFNs on HIV remain uncertain; 
however, they may still be part of an effective strategy for 
eradicating the virus. The concentration and regimen of IFN 
should be carefully selected to ensure that they trigger the 
appropriate antiviral response. Thus, the benefit of IFN treat‑
ment outcomes may depend on the stage of HIV infection and 
the patient's immune status.

IL‑15. IL‑15, a 14‑ to 15‑kDa cytokine, is able to eliminate 
viruses in infected cells by enhancing innate and adaptive 
immunity through inducing the activation and proliferation of T 
and NK cells. Among HIV‑infected patients who have received 
structured treatment interruption (STI), HIV replication 
control was associated with sustained IL‑15 levels (45). IL‑15 
has been proven to attenuate the impairment of NK cells 
in chronic HBV carriers (46). IL‑15 therapy is also able to 
augment NK‑cell function in virus‑suppressed HIV‑positive 

individuals on ART, and IL‑15‑stimulated NK cells may 
eliminate latently HIV‑infected cells exposed to the histone 
deacetylase inhibitor vorinostat (a latency reversal agent) (47). 
IL‑15 and ALT‑803 (an IL‑15 superagonist, also known 
as N‑803) drove virus transcripts in latently infected CD4 
T cells in vitro to be recognized by autologous HIV‑specific 
CD8 T‑cells, suggesting their roles as latency‑reversing 
agents (48). In ART‑suppressed, SIV‑infected macaques and 
HIV‑infected humanized mice, ALT‑803 combined with CD8 
lymphocyte depletion induced a sustained and robust reversal 
of latency (49). Another study suggested that the administra‑
tion of ALT‑803 temporarily inhibited viral replication in 
SIV‑infected animals without ART (50). Walter et al (51) 
revealed that high levels of IL‑15 in breast milk prevented 
postnatal HIV transmission. In addition, IL‑15 has potential as 
an immune adjuvant. Coadministration of HIV vaccine vectors 
and vaccinia viruses expressing IL‑15 contributed to the robust 
CD8+ T‑cell responses (52). However, IL‑15 may have a delete‑
rious role in HIV infection, particularly in the acute phase. 
IL‑15 is able to increase the viral set point and accelerate 
disease progression (53). It abrogated the decrease in viral 
load induced by vaccines in SIV‑infected macaques (54). IL‑15 
was significantly associated with HIV viremia and negatively 
correlated with the CD4+ cell count in HIV‑1 infected patients 
with viral loads of >100,000 copies/ml, which was associated 
with IL‑15‑induced immune activation (55). In addition, IL‑15 
may cause tissue damage due to its strong proinflammatory 
properties and T cell‑mediated alveolitis induced by IL‑15 has 
been confirmed in patients with AIDS (56).

Only a small number of studies have demonstrated the 
inhibitory effect of IL‑15 on HBV replication (57,58). In 
IL‑15‑treated HBV transgenic mice, reduced viral loads in the 
serum and undetectable HBV DNA intermediates in the liver 
were observed (58). Hydrodynamically injecting the plasmid 
pLIVE‑IL‑15, which expresses IL‑15, into C57BL/6 mice 
reduced serum HBsAg and hepatitis B e antigen (HBeAg) 
titers and liver HBV DNA levels in an IFN‑β‑dependent 
manner (57). According to the results of certain studies (57,58), 
IL‑15 may have therapeutic potential to inhibit HBV replica‑
tion in vivo, but sufficient evidence supporting its effectiveness 
in humans is lacking.

Mycophenolate mofetil (MMF). MMF is an immunosuppres‑
sant that may be used as a prodrug of the active metabolite of 
mycophenolic acid to increase the bioavailability of mycophe‑
nolic acid. MMF is able to selectively and reversibly inhibit 
the type II isoform of inosine monophosphate dehydrogenase 
(IMPDH) in T and B lymphocytes and block the conversion 
of inosine monophosphate to guanosine monophosphate in 
the de novo synthetic pathway of the guanine purine (59). 
MMF is hydrolyzed to mycophenolic acid (MPA) in vivo 
and these two compounds have the same immune activity. 
Suppressing IMPDH in lymphocytes may cause guanosine 
triphosphate (GTP) and deoxyGTP (dGTP) depletion (60). 
Furthermore, inhibition of IMPDH activity may block 
T‑lymphocyte proliferation (61) and increase the apoptosis 
rate of activated T lymphocytes (62). MMF exerts cytostatic 
effects and potential antiviral effects by depleting GTP and 
dGTP pools (63), and RNA and DNA synthesis require GTP 
or dGTP as substrates (64). MMF may be used as an adjuvant 
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for HIV‑1 infection treatment and exerts an anti‑HIV effect 
through the following three mechanisms: i) Depletion of 
substrates required for reverse transcriptase; ii) depletion of 
the activated CD4+ T‑lymphocyte pools and limitation of the 
availability of HIV‑targeted cells (60); and iii) inhibition of 
syncytium formation by reducing the amount of gp120, which 
is a glycoprotein protruding from the outer surface of the HIV 
virion that has a molecular weight of 120 (64).

Numerous studies have demonstrated that MMF has 
activity against HIV in vivo and in vitro (63,65‑69). Treatment 
of patients with acute HIV‑1 infection with antiretroviral 
therapy (comprised of 5 drugs) combined with MMF (2 g/d) 
decreased the HIV‑1 RNA load significantly and rendered 
HIV‑1 antibody undetectable, but the RNA load rebounded 
when the treatment was stopped (70). In addition, adding 
MMF to HAART for HIV‑1‑infected patients reduced the 
number of latently infected CD4+ T cells (69). A phase II study 
(NCT03262441) to determine whether administering MMF 
treatment for >22 months is able to reduce the reservoirs is 
currently ongoing. García et al (63) indicated that the combi‑
nation of MMF with HAART delayed viral load rebound 
and MMF alone enhanced the control of viral replication 
when lymphocyte proliferation was suppressed. Furthermore, 
MMF is able to improve the activity of antiretroviral drugs 
in a dose‑dependent manner (67,71,72). Coadministration of 
abacavir (a guanosine analog inhibitor) and MPA enhanced 
the anti‑HIV effect of abacavir in both stimulated PBMC and 
monocyte‑derived macrophages (60) and reduced the plasma 
levels of HIV RNA (73).

Similarly, MMF/MPA is able to theoretically inhibit HBV 
replication. MPA at a concentration of 10 µg/ml reduced the 
secretion of HBsAg and HBV DNA without inducing cytotox‑
icity, and HBV cccDNA and mRNA were undetectable (74). 
It is safe to use lamivudine and MMF prophylactically in 
renal transplant recipients with CHB who did not receive 
any antiviral therapy prior to transplantation (75). In a 
mouse model with hydrodynamic injection, MMF reduced 
the serum HBsAg and HBV DNA levels (76). In another 
study, MPA inhibited HBsAg and HBeAg expression, as 
well as HBV DNA replication in vitro in a dose‑dependent 
manner (77). Furthermore, MMF enhanced the anti‑HBV 
activity of guanine‑ and diaminopurine‑based nucleos(t)ide 
analogs such as lobucavir and entecavir, probably by reducing 
the competing natural substrate dGTP (78,79). Thus, MMF 
appears to have an inhibitory effect on HBV replication. 
However, in certain studies, this inhibitory activity was not 
detected. MMF has the ability to inhibit hepatic NK‑cell 
proliferation and activity in vivo, where NK cells have a 
critical role in the defense against HBV infection. A study 
suggested that MMF was not beneficial in suppressing HBV 
replication after liver transplantation in lamivudine‑resistant 
patients (80). Treatment with MMF alone may stimulate 
virus replication with glomerulonephritis in patients who are 
HBV carriers but had not received antiviral treatment (81). 
Pyrimidine synthesis inhibitor (leflunomide, FK778) and 
MPA increased the risk of HBV replication in cell culture 
models (82). In summary, MPA may both inhibit and stimu‑
late the proliferation of HBV. Based on this contradictory 
phenomenon, Pan et al (83) evaluated the effects of MPA 
in HepG2.2.15 cells and indicated that a low dose (1 µg/ml) 

of MPA increased the HBV titers, while a high dose (5 and 
10 µg/ml) of MPA decreased HBV titers. However, all three 
doses of MPA significantly increased HBsAg expression, 
which was consistent with previous results (84); thus, it may 
be assumed that MPA has proviral effects.

MMF appears to be safe and the common side effects of 
MMF are usually mild (85). MMF, as an immunosuppressant, 
has not been approved for treating HIV or HBV infection, as 
the evidence is insufficient. More clinical trials are required 
to confirm its antiviral activity. However, it is still expected to 
become an adjuvant treatment for HIV.

3. Monoclonal antibodies

Cemiplimab. Programmed cell death receptor 1 (PD‑1) is an 
immune checkpoint molecule that is necessary to maintain 
immune homeostasis upon binding to its ligands, programmed 
cell death ligand 1 (PD‑L1) and ligand 2 (PD‑L2). The 
PD‑1/PD‑L1 axis has a crucial role in viral infection and is 
upregulated in CHB and chronic HIV infections, where it 
may maintain chronic infection by attenuating the antiviral 
immune responses mediated by T cells or NK cells (86,87). 
PD‑1 is intensely and extensively expressed during chronic 
infection. As mentioned above, even after receiving long‑term 
cART, the latent reservoir in HIV‑positive patients remains in 
resting CD4+ cells expressing PD‑1 (88). By establishing an 
HIV latency model in vitro, Evans et al (89) demonstrated that 
PD‑1high CD4+ memory T cells had high levels of latency and 
that blocking PD‑1 prior to infection reduced the incidence of 
latency, suggesting that PD‑1 may help to establish and main‑
tain latent HIV infection. PD‑1/PD‑L1 blockade enhanced 
viral‑specific T‑cell function, increased memory B‑cell 
proliferation (90,91) and restored or enhanced host immune 
functions. Blocking the PD‑1/PD‑L1 pathway may contribute 
to treating chronic infections. Several studies have indicated 
that blocking PD‑1 has an effect on HBV/SIV (92‑95) and 
promotes latency reversal (89,96). In addition, PD‑1, as an 
important immunosuppressive agent, may help to prevent 
severe liver damage and blocking the PD‑1/PD‑L1 axis may 
cause liver cell destruction and HBV reactivation (97). One 
study demonstrated that during anti‑PD‑1 treatment, certain 
patients with resolved HBV infection developed HBV 
reactivation (98). Therefore, blocking PD‑1/PD‑L1 may have 
a certain value in treating HBV/HIV infection, but the HBV 
reactivation risk cannot be ignored.

Cemiplimab (REGN2810) is a high‑affinity and 
hinge‑stabilized IgG4 monoclonal antibody against cell 
surface PD‑1 (99), which was developed by Regeneron 
Pharmaceuticals in collaboration with Sanofi. As previ‑
ously mentioned, the antiviral effect of certain PD‑1/PD‑L1 
inhibitors has been confirmed in HIV/SIV and HBV models; 
therefore, it is speculated that cemiplimab may have a similar 
impact and potential to treat HIV/HBV coinfection. Currently, 
two phase I/II studies are underway to evaluate the safety 
and immunotherapeutic activity of cemiplimab in patients 
infected with HIV‑1 or HBV on suppressive antiviral therapy 
[NCT03787095 (100) and NCT04046107 (101)].

Pembrolizumab. Similar to the above, pembrolizumab 
(Keytruda) is an IgG4 monoclonal antibody targeted to 
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PD‑1. A phase I study indicated that pembrolizumab was 
safe in the treatment of different types of cancer in patients 
living with HIV and one participant experienced persistent 
low‑level HIV viremia (<400 copies/ml) (102). Patients 
with metastatic melanoma treated with pembrolizumab 
remained safe in the context of their HBV infection (103); 
thus, pembrolizumab may be used to treat HBV infection 
in theory. However, a 51‑year‑old male patient diagnosed 
with stage IV lung adenocarcinoma developed reactivation 
of HBV when treated with pembrolizumab (104). A phase I 
study to detect the safety of a single dose of pembroli‑
zumab in HIV‑positive patients without cancer is currently 
underway (NCT03239899) (105). However, the safety and 
efficacy of PD‑1 inhibitors in HIV/HBV coinfected patients 
remain uncertain. The evidence is still insufficient to 
indicate that treating HBV‑ or HIV‑positive patients in the 
absence of tumors with PD‑1/PD‑L1 inhibitors is effective, 
as patients with HBV or HIV infection have traditionally 
been excluded from clinical trials due to a theoretical risk 
of immune reconstitution inflammatory syndrome (106). 
Although a small number of studies (104,107) on PD‑1 
inhibitors in HBV mono‑infection are available, suggesting 
that they may have a proviral effect, these inhibitors enhance 
host immune functions and are a promising immunotherapy 
for HIV/AIDS (108). Targeting the PD1/PD‑L1 pathway may 
be used as a therapeutic strategy to improve immune func‑
tion and target the viral reservoir (109). Combination therapy 
may be a more promising treatment strategy. For instance, 
IL‑15 combined with anti‑PD‑L1 antibody is able to enhance 
HIV‑specific CD8+‑cell function (110).

4. Nucleoside/nucleotide reverse transcriptase inhibitors

TFV, a nucleotide (nucleoside monophosphate) analogue 
reverse transcriptase inhibitor, was originally described in 
1993 (111) and was approved for clinical use in its oral prodrug 
form, such as TDF and TAF. TDF was the first selected for 
clinical development and was ultimately approved by the 
FDA for the treatment of HIV and HBV in 2001 and 2008, 
respectively (112). TAF was approved by the FDA in 2016 for 
treating HBV, which has higher safety than TDF. CMX157, 
also known as Hexadecyloxypropyl‑TFV and TFV exalidex 
(TXL), is a novel lipid conjugate prodrug of TFV. It is the 
strategic collaboration project achieved by Contravir and 
Chemirex in 2014. It is effectively targeted to the liver and 
has higher antiviral activity and lower toxicity in the bone 
and kidney than TFV. CMX157 is considered to be an effec‑
tive drug for treating HBV and HIV infection (113‑118). The 
antiviral activity of CMX157 against HIV and HBV was 
260‑fold and 4.5‑fold that of TFV in vitro, respectively (116). 
Furthermore, CMX157 is also effective in nucleoside/nucleo‑
tide‑resistant HIV (115). In completed clinical trials, CMX157 
was indicated to be safe and tolerable in healthy subjects and 
patients with HBV [NCT01080820 (119), NCT02710604 (120) 
and NCT02585440 (121)]. However, the agreement between 
Contravir and Chemirex was terminated in 2019. Whether 
Chemirex will continue to develop CMX157 is unclear (122). 
Considering that CMX157 has potent antiviral activity in 
HBV and HIV infection and it is still considered to be a 
promising drug. In view of its strong antiviral activity and low 

toxicity, it would be beneficial if Chemirex were able continue 
to develop CMX157.

5. Cyclophilins inhibitors

Cyclophilins (CYPs) belong to a protein family with 
peptidylprolyl isomerase activity; they promote protein folding 
and have essential roles in various biological processes. 
Among these proteins, CyPA is critical to HIV‑1 and HBV 
virus replication (123,124). Certain studies indicated that CYP 
inhibitors interfere with HBV and HIV replication (125,126). 
CRV431 (formerly CPI‑431‑32) is a cyclophilin inhibitor 
that targets CypA and it has been demonstrated to possess 
broad‑spectrum antiviral activity against HIV, HBV, HDV and 
HCV by disrupting the interactions between CypA and viral 
proteins (123). It blocks the interaction between CypA and the 
HIV‑1 capsid to inhibit HIV replication. Furthermore, it also 
has efficacy against drug‑resistant HIV‑1 (127).

In addition, CRV431 is able to reduce multiple HBV infection 
markers, including DNA, HBsAg and HBeAg, by blocking the 
interaction between HBV X protein or HBsAg and CypA or by 
inhibiting viral entry, which relies on the vital receptor sodium 
taurocholate cotransporting polypeptide (128,129). CRV431 
reduced the level of serum HBsAg and liver HBV DNA in trans‑
genic mice in a dose‑dependent manner, and it was also indicated 
that low‑dose CRV431 (10 mg/kg/d) combined with the TFV 
prodrug TXL resulted in an additive inhibitory effect (130). A 
clinical trial to assess the safety, tolerability and pharmacokinetics 
of CRV431 in patients with CHB is currently ongoing [National 
Clinical Trial (NCT) identifier no. NCT03596697] (131).

A study demonstrated that CRV431 is metabolized mainly 
by the cytochrome P450 enzyme (124), while other nucleo‑
tide drugs are metabolized predominantly by the kidneys. 
Therefore, it was speculated that the potential drug‑drug inter‑
action between CRV431 and nucleotide drugs may be minimal. 
To date, CRV431 has demonstrated an excellent safety profile 
in all animal and clinical studies. Furthermore, CRV431 has 
antisteatosis, antiinflammatory, antifibrotic and antitumor 
activities (132). Therefore, CRV431 is a bright prospect in the 
treatment of liver diseases and serves as a promising drug for 
the treatment of liver disease and HIV‑1 infection.

6. Conclusions

At present, there is a large number of HIV/HBV coinfected 
patients worldwide and it continues to increase. Coinfection 
of HBV and HIV is able to accelerate disease progression and 
may severely impact the health of patients. At present, it is 
recommended that coinfected patients use drugs with dual 
antiviral effects. However, there are several reasons to limit 
the applications of these drugs. Liver enzyme flares may be 
caused by drug resistance during HAART. Due to the genetic 
variability of HBV, certain HBV genotypes may naturally 
have lower sensitivity or resistance to certain anti‑HBV drugs. 
For instance, genotype E exhibited a natural resistance to 
certain HBV medicines and HBC has a reduced sensitivity 
to IFNα (133). In addition, HBV may have cross‑resistance to 
different drugs, such as those caused by lamivudine‑induced 
resistance mutations, after several years of treatment and 
resistance to emtricitabine, as the two drugs have a similar 
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structure (134). Furthermore, treatment choices for HBV 
infection are limited by drug resistance to HIV. However, 
drugs with dual activity are able to prevent HBV and HIV 
reverse‑transcriptase resistance mutations associated with 
drug resistance. In addition, renal function is a factor that 
requires to be considered when choosing drugs, particularly 
TDF/TAF, which have limitations for patients with renal 
insufficiency. Consequently, it is necessary to develop more 
drugs with dual activity. First, considering the rapid mutation 
rate of HBV and the frequent resistance of certain antiviral 
drugs, novel drugs with dual activity must be developed to 
address this problem. In addition, novel antiviral drugs may 
overcome the limitations caused by renal insufficiency and 
other side effects. Immune dysfunction in patients infected 
with HBV or HIV rapidly decreases the ability to control 
viral replication. Therefore, immunomodulators acting on the 
immune system are promising for the treatment of these two 
viruses. The potential of NRTIs and monoclonal antibodies 
for treating HBV and HIV is considerable. However, certain 
drugs are double‑edged swords. Understanding the host's 
immune status and disease progression is essential for drug 
management. To date, most of dual‑effect drugs are not avail‑
able to the increasing number of coinfected individuals due to 
the limitations of drug resistance or toxicity, and the develop‑
ment of dual‑activity drugs remains particularly urgent. In 
the present review, certain dual‑activity drugs that are at the 
laboratory investigation stage were presented, but evidence 
to support their activity against HBV and HIV is limited and 
more clinical trials are required to prove the dual activity of 
these drugs.
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