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,e classification method of steel surface defects based on deep learning provides a basis for quality control of industrial steel
manufacturing. Due to a large number of interference in the steel production area and the limited computing resources of the edge
equipment deployed in the production area, it is a challenge to develop a lightweight model to achieve rapid and accurate
classification in the case of limited computing resources. In this article, an improved lightweight convolution structure (LCS) is
proposed, which combines the separable structure of convolution and introduces depth convolution and point direction
convolution instead of the traditional convolutional module, so as to realize the lightweight of the model. In order to ensure the
classification accuracy, spatial attention and channel attention are combined to compensate for the accuracy loss after deep
convolution and point direction convolution respectively. Further, in order to improve the classification accuracy, a mixed
interactive attention module (MIAM) is proposed to enhance the extracted feature information after LCS. ,e experimental
results show that the recognition accuracy of our method exceeds that of the traditional model, and the number of parameters and
the amount of calculation are greatly reduced, which realizes the lightweight of the steel surface defect classification model.

1. Introduction

Recently, the defect recognition technology based on tra-
ditional machine vision [1, 2] has been applied to the quality
inspection of the steel industry, and the automatic detection
and classification of surface defects are realized by the
machine vision method. However, with the rapid devel-
opment of the modern steel industry, the steel industry is
demanding higher and higher surface quality of steel, and
enterprises have more strict requirements for accuracy and
recognition effect. Traditional machine vision methods
cannot meet the needs of industrial mass production.
Considering the above issue, in order to improve the
identification accuracy and efficiency of steel surface de-
tection, aiming at guiding production, and further ensuring
the quality of steel, scholars have proposed a series of steel
surface detection methods [3, 4].

Feature extraction is an important step in steel surface
defect recognition. In recent years, feature extraction

methods based on different strategies have emerged
according to the characteristics of the steel surface. Feature
extraction methods mainly include traditional digital vision
[5] and deep learning processing methods [6–8].

Traditional digital vision methods usually use shallow
features for surface defects, such as color, texture, edge, etc.
In complex scenes, traditional methods do not combine
multi-feature and multi-scale feature fusion, so the image is
not effectively represented. To solve these problems, the deep
learning method is applied to steel surface defect detection,
which includes steel surface defect recognition, detection
[9], segmentation, and other tasks. However, because the
speed of a deep neural network is greatly affected by model
parameters and calculations, it is not suitable to run on
mobile terminals and embedded devices.

Considering the above factors, we design an improved
lightweight convolution structure. By constructing a light-
weight feature extractor, the number of parameters is re-
duced and the model is smaller and lighter. In addition, we
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introduce attention mechanism to further improve the
recognition accuracy of complex defects by guiding the
network to focus on the defect area. To sum up, we propose
an improved lightweight convolution structure and mixed
interactive attention method for steel surface defect
classification.

Our method has high accuracy and strong robustness.
And the most important thing is that the model proposed by
us has a small size and is more suitable for edge devices to
carry out rapid industrial defect detection. In the feature
extraction stage, we use the advantage of depth separable
convolution to extract image features quickly and decom-
pose a 3 × 3 convolution kernel into a 3 × 1 convolution
kernel and 1 × 3 convolution kernel, which can reduce the
number of parameters to be computed. Next, inspired by the
CBAM [10] attention module, a mixed interactive attention
module MIAM is constructed. ,e mixed interactive at-
tention module fuses spatial information in the local sensing
field, channel information in channel dimension, and rich
interactive information in the feature map. In addition, the
module enriches the diversity and details of the features and
improves the performance of the features.

,e main contributions of this article are summarized as
follows:

(i) We propose a novel end-to-end ILCS in order to
identify the surface defects of steel. Using attention
mechanism, ILCS that combines spatial, channel,
and their own interactive information makes the
feature information more abundant and effective.
And ILCS pays attention to the surface defects of
steel itself and weakens the background information.

(ii) We introduce depth convolution and point direc-
tion convolution in LCS to replace the traditional
convolution. On the basis of greatly reducing the
model parameters, our proposed method achieves
higher accuracy and faster detection speed.

(iii) We propose a mixed interactive attention model
MIAM, which can improve the expressiveness of
feature maps while adding a small number of pa-
rameters, thereby improving accuracy. And MIAM
which is a plug-and-play module can be simply
inserted into any other deep learning model.

,e rest of this article is organized as follows: Section 2
introduces some related works of this article. Section 3
introduces our proposed lightweight convolution structure
(LCS) for feature extraction, mixed interactive attention
model (MIAM) for feature enhancement, and some model
details. Section 4 evaluates our method and compares it with
the most advanced method. We conclude our thesis in
Section 5.

2. Related Works

2.1. Convolutional Neural Networks. In recent years, con-
volutional neural network structure [11] has made great
progress in the field of computer vision due to its good
performance. LeNet which was the earliest convolutional

neural networks was proposed in 1994 [12], and it is a
pioneering and innovative achievement completed by Lecun
et al. LeNet reduces the amount of calculation compared to
ordinary neural networks by developing deep learning
feature extraction. ,en in 2012, Krizhevsky et al. published
AlexNet [11], which further promoted the development of
computer vision. AlexNet expanded the idea of LeNet [12] to
a larger neural network that can learn more complex object
level. Based on the classical structure [11, 12], researchers
have proposed many new convolutional neural network
structures. Convolutional neural network has become the
mainstream method of computer vision.

Szegedy et al. from Google began to seek to reduce the
computing cost of a deep learning network and designed
GoogleNet [13], which was the first perception architecture.
After GoogleNet, ResNet [14] has brought about new
changes and is one of the most influential papers in recent
years. ResNet has a simple idea, where ResNet supplies the
output of two consecutive convolution layers and shunts the
input into the next layer. Inspired by the core structure of
GoogleNet and ResNet, some new networks are proposed,
such as EffNet [15]. ,ey proposed new convolution
structures, making the model lighter and significantly re-
ducing the computational burden.

2.2. LightweightNeural Network. With the popularization of
deep learning, the volume of neural network is becoming
larger and larger, the structure is becoming more and more
complex, and the number and depth of network layers are
also increasing. Although the prediction effect is improving,
the cost of training and prediction is rising, and the demand
for hardware resources is also rising. A model with a large
amount of parameters and calculation is usually only suit-
able for servers with strong computing power to train and
run, and the model is not suitable for mobile devices or edge
devices with limited hardware resources and computing
power. So, in the field of deep learning, scholars strive to
promote the development of a neural network to minia-
turization, while ensuring the accuracy and faster speed. In
recent years, researchers put forward lightweight network
models such as ShuffleNet [16], NASNet [17], MnasNet [18],
MobileNets, and MobileNetV2 [19]. ,ese models make it
possible for mobile terminals and embedded devices to run
neural network models. MobileNet is more representative in
a lightweight neural network. Our network structure bor-
rowed some characteristics of MobileNet series to construct
LCS.

3. Attention Mechanism for Vision Tasks

Attention mechanism takes the idea of human visual at-
tention. At present, attention mechanism is widely used in
nature language processing and image recognition. In 2014,
the Google mind team published “recurrent models of visual
attention” [20], which used attention mechanism to classify
images based on traditional RNN model and achieved good
performance. Since then, attention mechanism has been
widely used in deep learning tasks. Researchers turned to

2 Computational Intelligence and Neuroscience



how to add attention mechanism to convolutional neural
network (CNN). ABCNN [21] was an earlier exploratory
work of attention in CNN, where three methods were
proposed to use attention mechanism in CNN. Reference
[21] described how to add attention to CNN where attention
was added before convolution in the first method, attention
was added in the second method during pooling, and the
first and second methods were integrated to realize attention
in the third method. ,ese three methods proposed by Yin
et al. provide us with a new idea. ,en, combining with this
idea, many attention modules based on CNN have been
proposed in recent years, which contained residual attention
networks [22], STN [23], SENet [24], and CBAM [10]. ,ese
attention mechanisms have a good performance on CNN.
,is article combines the idea of channel attention and
spatial attention of CBAM [10] to construct our network
structure.

4. ILCS Module

In model training, data augmentation is first performed
based on the collected dataset. ,en the enhanced dataset is
trained by the ILCSmodel.,e network architecture of ILCS
consists of a lightweight convolution structure (LCS), a
mixed interactive attention model (MIAM), and an MLP
classifier. ,e network architecture is shown in Figure 1. In

model testing, the trained model is used to classify defective
images and the classification results are used to assist in
defect detection.

,e proposed architecture takes the steel surface defect
image as input, while the output is the defect category label.
,e size of each defect image is 300 × 300 × 3 (width, height,
and channel). ,e input first generates the feature tensor of
size 37 × 37 × 256 by constructing a LCS, where a LCS
contains three feature extraction blocks, and the output
dimensions are 150 × 150 × 64 in Block 1, 75 × 75 × 128 in
Block 2, and 37 × 37 × 256 in Block 3.

In order to further improve the representation ability of
feature maps, we will obtain the feature tensor of 37 × 37 ×

256 to enhance its features by mixed interactive attention,
allowing us to focus on the important features and suppress
the unnecessary ones.

Finally, the new feature tensor is converted to a one-
dimensional feature vector, and then a fully connected layer
is connected with the output. LCS can quickly determine
whether an image contains defects and classify the image into
the appropriate defect category based on the type of surface
defects. ,e algorithm of ILCS is shown in Algorithm 1.

4.1. LCS. ,e internal structure of the LCS block is shown in
Figure 2. Each feature extraction block includes convolution

ILCS ModelData Argumen
tation

Horizontal flip

Random clipping

Gaussian blur

Lightweight Convolution Structure Mixed interactive attention 
module

CA SA

IA

Dataset

MLP 
Classifier

Classification 
results

Feature extraction block

CA Channel attention

SA Spatial attention

IA Interactive attention

Camera

Auxiliary 
defect 

detection

×

×

+

Figure 1: ,e network architecture of ILCS and flowchart of defect detection of steel, where ⊗ denotes a point-by-point product operation
and ⊕ denotes a point-by-point sum operation.

Computational Intelligence and Neuroscience 3



layer (Conv), batch normalization layer (BN), spatial at-
tention (SA), activation layer (ReLU), and channel attention
(CA).

4.1.1. Depth Separable Convolutions. ,e traditional con-
volutional neural network has been widely used in many
fields and has made great achievements in many machine
learning projects. But it still has a severe problem which is
overspending and mainly reflected in two aspects.,e first is
the consumption of computing resources and the second is
the consumption of time cost. Based on the previous issues,
researchers proposed convolution operation, according to
two different perspectives of spatial dimension and depth
dimension. One is spatial separable convolutions based on
spatial perspective, and the other is depthwise separable
convolutions based on depth perspective. Inspired by the
above two ideas, in this article, we introduce depthwise
separable convolution and design our module.

MobileNet [19] converts a standard convolution to a
deep separable convolution. ,e deep separable convolution

method of learning spatial characteristics and channel
characteristics greatly reduces the number of model pa-
rameters. EffNet [15] further divides the depthwise convo-
lution of 3 × 3 in depth separable convolution into
convolutions of 1 × 3 and 3 × 1, which greatly reduces the
amount of calculation without losing accuracy. Similarly,
this article draws on the idea in [25] and designs a 1 × 3
convolution kernel and a 3 × 1 convolution kernel in feature
extraction block to replace the large convolution kernel of
3 × 3 and reduce the calculation amount. We use this
separation method to make the feature semantic informa-
tion extracted by convolution focus on the spatial dimen-
sion. By using this separation method, edge details of steel
surface defects can be learnt.

In order to calculate the number of parameters, the
characteristic tensor of the input block in LCS is H × W ×

Cin and the tensor of output feature is H × W × Cout, where
H, W, Cin, and Cout represent height, width, channel of
input, and channel of output, respectively. According to the
above description, we convert ordinary convolution to deep
separable convolution [19], which includes depthwise
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Figure 2: ,e internal structure of the feature extraction block, where H, W, C represent height, width, and channel, respectively.

(i) Input: Defect image dataset X � x1, . . . , xi, . . . , xn , where xi ∈ RH×W×C, n is the total training dataset, and L represents the
number of defect categories.
Output: Defect category Y � y1, . . . , yi, . . . , yn , where yi ∈ [0, L − 1]

(1) Preprocessing of X: horizontal flip, random clipping, Gaussian blur;
(2) Y←∅
(3) for xi in X do
(4) F � LCS(xi);
(5) F′ � Mc(F)∗ F;//Mc in equation (6)
(6) F″ � Ms(F′)∗F′;// Ms in equation (4)
(7) F‴ � F″ + Mi(F);// Mi in equation (8)
(8) yi �MLPClassifier(F‴);
(9) yi � argmax (yi);//argmax() is a function of python
(10) Y←Y∪yi;
(11) return Y;

ALGORITHM 1: ,e classification model based on ILCS.
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convolution (DWC) kernel K × K × 1 and pointwise con-
volution (PWC) kernel 1 × 1 × Cin. As shown in Figure 3, we
decompose DWC into convolution cascades of 1 × K × 1
kernel and K × 1 × 1 kernel to reduce the number of pa-
rameters. For example, we can separate the convolution
kernel of 3 × 3 into convolution kernels of 1 × 3 and 3 × 1.
Two PWC of kernels 1 × 1 × Cin and 1 × 2 × Cin are used in
our structure, and their positions are before and after the two
cascaded DWC. ,e original convolution is compared with
our number of structural parameters, which is expressed as
follows:

Cin × Cout(  + K × Cin(  + K × Cin(  + 2 × Cin × Cout( 

K × K × Cin × Cout

�
2

K × Cout
+

3
K × K

,

(1)

where K × K × Cin × Cout is the number of parameters of
original convolution, K × K × 1 × Cin is the number of
parameters of DWC, and the number of parameters of ILCS
equals K × 1 × 1 × Cin plus 1 × K × 1 × Cin.,en we add two
PWCs where the number of parameters of two PWCs is 1 ×

1 × Cin × Cout and 1 × 2 × Cin × Cout. From equation (1), we
know that the LCS can greatly reduce the number of model
parameters and improve the calculation speed.

4.1.2. Lightweight Convolution Structure. Inspired by
MobileNet [19] and EffNet [15], we introduce and combine
depth convolution and point direction convolution in order
to replace the traditional convolution to construct a basic
feature extractor called LCS.

,is LCS architecture consists of four convolution layers,
four batch normalization layers, four ReLU layers, two
spatial attention (SA), two channel attention (CA), and one

pooling layer. ,e LCS is shown in Figure 2. ,e detailed
configuration of individual layers/modules in the LCS is
shown in Table 1 for defect classification on the NEU
benchmark dataset.

In Block i, Conv1 and Conv4 are for channel feature
extraction and Conv2 and Conv3 are for spatial feature
extraction. And after each convolution operation, we con-
nect a BN layer to prevent the gradient from disappearing
and speed up the network convergence in this block. First of
all, we use 1 × 1 convolution operation to achieve reduced
dimensions for the number of channels and rectified linear
activation [13], not only for the convenience of cascade
network, but also for adapting multi-channel image input.
,en we use a convolution kernel of 1 × 3 and a convolution
kernel of 3 × 1 to replace the ordinary convolution kernel of

Input I

Convolution with 3×3 kernel

Input I

Convolution
with

1×3 kernel

Convolution 
with 3×1 

kernel

Figure 3: Separation of the depthwise convolution kernel of 3 × 3 into convolution kernels of 1 × 3 and 3 × 1.

Table 1: ,e configuration of each layers in the LCS.

Layers Output size Filter size
Input H × W × C×× —

Block 1 150 × 150 × 64

32 × 1 × 1
32 × 1 × 3
32 × 3 × 1
64 × 1 × 2

Block 2 75 × 75 × 128

64 × 1 × 1
64 × 1 × 3
64 × 3 × 1
128 × 1 × 2

Block 3 37 × 37 × 256

128 × 1 × 1
128 × 1 × 3
128 × 3 × 1
256 × 1 × 2

MIA 37 × 37 × 256 —
MLP 1 × 1 × 6 —

Computational Intelligence and Neuroscience 5



3 × 3, and finally we use the convolution kernel of 1 × 2 to
get the final characteristic graph.

,e essence of neural network is to learn the distribution
of data, but when we build the network model, we find that
the generalization ability of the model is poor.

In order to solve this problem, we do batch normalization
(BN) after each convolution operation, where BN introduces
normalized activation into the LCS block. ,is method
ensures that when the LCS is trained, BN’ layers can continue
learning on input distributions that exhibit less internal
covariate shift, thus accelerating the training [26]. And BN
also can enhance the generalization ability of the model. ,e
batch normalizing transform formula is as follows:

y �
x − E[x]
����������
Var[x] + 

 ∗ c + β, (2)

where E[x] is mini-batch mean, Var[x] is mini-batch
variance, and c and β are scale and shift, respectively, and
they are learnable parameter vectors.

In order to improve the expressiveness and accuracy of
spatial dimension and channel dimension, we add spatial
attention (SA) shown in Figure 4 to focus on region-of-
interest after Conv2 and Conv3, which can effectively en-
hance regional characteristics. Channel attention (CA) is
added to focus on channel after Conv1 and Conv4, which
can effectively enhance the weight of channel characteristics
and the spatial perception ability. Otherwise, convolution is
usually followed by a ReLU nonlinear activation function.
Based on the idea of MobileNet [19], we use ReLU6 in
MobileNet. ReLU6 is an ordinary ReLU, but the maximum
output is limited to 6, which is to prevent large precision loss
caused by excessive activation output value. In our exper-
iment, we found that ReLU6 has a good performance in our
network. ,e formula for ReLU6 is as follows:

ReLU6(x) � min(max(0, x), 6). (3)

4.2. MIAM

4.2.1. Spatial Attention Module. In order to highlight the
effective features of defect images in spatial information, we
add SA in LCS and MIA. Specifically, through average
pooling of spatial dimension and maximum pooling of
spatial dimension operation, two feature maps are obtained.
Two feature maps are concatenated by channel dimension,
subsequently. And the merged feature map is inputted into
the convolution layer for convolution.,en spatial attention
map Ms(F) is further formed, which is as follows:

Ms(F) � σ f
3×3

([AvgPool(F);MaxPool(F)]) , (4)

σ(x) �
1

1 + e
− x, (5)

where F ∈ RH×W×C is the feature map obtained from the LCS
feature extractor, H and W are the height and width of the
feature map, respectively, and C is the number of channels. F
can be expressed as F � [f1, f2, . . . , fC], where f i ∈ RH×W is

each feature map, f3×3 represents a convolution operation
with the filter size of 3 × 3, and σ denotes the sigmoid
function.

4.2.2. Channel Attention Module. In order to highlight the
effective features of defect images in channel information,
we add CA in LCS andMIA.,e structure of CA is shown in
Figure 4. Different from spatial attention, CA obtaining two
feature vectors are computed by averaging pooling and
maximum pooling of channel respectively. ,en two feature
vectors are linearly transformed by MLP, finally, and two
feature vectors are fused to obtain the channel attention
Mc(F). ,e formulas of Mc(F) and MLP are as follows:

Mc(F) � σ(MLP(AvgPool(F))

+ MLP(MaxPool(F))),
(6)

MLP(x) � W1 W0(x)( , (7)

where a multiple layer perception (MLP) is implemented by
two fully connected layers, and AvgPool and MaxPool
represent global average pooling and global maximum
pooling, respectively, to obtain global information for each
channel.

4.2.3. Interactive Attention. According to the biological
visual interaction mechanism [27], we construct an inter-
active attention block, which enriches the feature details of
the attention area. In interactive attention, the input feature
map is transformed into FT through transpose operation,
and then FT is used to multiply the original input feature
map F point-by-point to obtain new self-interactive feature
information, so as to enrich the original feature map.

,e architecture of the interactive attention block is
shown in Figure 5. ,e formula is as follows:

Mi(F) � F · FT, (8)
where · is point-by-point product operation and T refers to
matrix transpose operation.

4.2.4. Mixed Interactive Attention Module. A MIAM can
fuse spatial information Ms(F) with channel information
Mc(F) and rich interactive information Mi(F). ,e mixed
interactive attention module is shown in Figure 6.

First, the channel informationMc(F) can be obtained by
equation (6). ,en channel information Mc(F) times
original feature map F to obtain a new feature map F′, which
can enhance channel information, and the formula is as
follows:

F′ � Mc(F)∗F. (9)

Secondly, from F′, the spatial informationMs(F′) can be
obtained by (4). ,en spatial information Ms(F′) times
original feature map F′ to obtain a new feature map F″,
which can enhance spatial information, and the formula is as
follows:
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Figure 5: Interactive attention module.
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F′′ � Ms F′( ∗F′. (10)

Finally, after obtaining F″ from equation (10), interac-
tive informationMi(F) adds feature map F″ to obtain a new
feature map F‴, which combines spatial, channel, and their
own interactive information. ,e feature information is
enriched and effective, and the formula is as follows:

F′′′ � F′′ + Mi(F). (11)

4.3. Integrated Models and Classifier. According to our in-
tegration model, a general framework of the ILCS module is
shown in Figure 1. We use LCS to extract a series of feature

Table 2: Top-1 and top-5 test accuracy (%) of deeper networks on the NEU dataset.

Top-1 acc. (%) Top-5 acc. (%)
ResNet 95.09 100.00
ResNet +MIAM 96.36 100.00
EffNet 94.81 100.00
EffNet +MIAM 95.83 100.00
MobileNet 95.57 100.00
MobileNet +MIAM 96.04 100.00
ILCS (ours) 97.50 100.00
,e bold values are the ablation experimental results of our attention block and the Top1 accuracy and top5 accuracy of our ILC in the dataset.

(i) Input: Total number of test set images n; list of scores S � s1, . . . , si, . . . , sn , where si ∈ R1×6 is score vector in which each element
is a score belonging to a certain class for an image; list of true classes of defects T � t1, . . . , ti, . . . , tn ; k is the number of selected
sort results.
Output: Top-k accuracy.

(1) m � 0;
(2) for si in S do
(3) if ti ∈ argsort(si)[−k: ] then//argsort() is a sort function of python
(4) m + +;
(5) return m/n.

ALGORITHM 2: Top-k accuracy.
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Figure 7: ,e classification accuracy of the test set of the network.
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Figure 8: ,e classification loss of the test set of the network.

Table 3: Params (M) and FLOPs (G) of module in the NEU dataset.

Params (M) FLOPs (G)
ResNet 25.56 65.78
ResNet +MIAM 25.57 65.79
MobileNet 2.23 4.70
MobileNet +MIAM 2.24 4.71
EffNet 2.21 8.35
EffNet +MIAM 2.22 8.36
ILCS (ours) 2.24 4.26
Bold values are the ablation experimental results of our attention block and
the Params (M) and FLOPs (G) of our ILC in the dataset. Our method only
increases a small number of parameters, but greatly improves the accuracy.
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maps for the input image. ,en, according to MIAM, we use
the cascade module of spatial attention, channel attention,
and interaction attention to enhance the representation
ability of feature maps. Finally, a multiple layer perception
classifier (MLP classifier) is implemented by two fully
connected layers to classify defects and obtain the classifi-
cation results.

5. Experiments

5.1. Dataset. We conduct experiments on the NEU dataset,
consisting of 6 classes defects, such as rolled-in scale (RS),
patches (Pa), crazing (Cr), pitted surface (PS), inclusion (In),
and scratches (Sc) and contains 1800 299 × 299 grayscale
images. Each class has 300 samples.

5.2. Implementation Details. We implement our method by
use of PyTorch framework. For comparison, we add aMIAM
module of ILCS to original baselines which include ResNet
[14], EffNet [15], and MobileNet [19].

Similar to prior work, in the NEU dataset, we use 70%
images as training dataset and 30% images as test dataset. In
order to improve the accuracy of the result and speed up the
convergence of ILCS, all images are normalized before they
are introduced in to ILCS.,emean of all pixels in all images
in the NEU dataset is 0.4 and the variance is 0.2.

We train ILCS using the optimal hyper-parameter
configuration network, and set a mini-batch of 16 on GTX
1060 GPU. ,e loss function is cross-entropy loss.

5.3. Experimental Results. In this article, firstly, original
baselines including ResNet, EffNet, and MobileNet are
trained and tested in the NEU dataset. Secondly, original

baselines with MIAM are trained and tested again to evaluate
the effectiveness of MIAM. Finally, ILCS runs on the NEU
dataset and experimental results are compared in Table 2, and
the Top-1 acc. and Top-5 acc. are obtained by Algorithm 2.

To validate the performance of ILCS, we experimentally
analyze the effects of different models combined with our
methods using Paramms (M) and FLOPs (G) [19] to
measure results, and the classification accuracy and loss of
the test set of our network are shown in Figures 7 and 8.

From Tables 2 and 3, we can clearly see that baselines
combined with our methods can improve model accuracy
without limiting model performance.

,e EffNet +MIAM achieves a 1.02% % improvement in
terms of Top-1 accuracy over the EffNet, but only 0.01M
more parameters and 0.01G more FLOPs. Also, the
MobileNet +MIAM has an improvement of 0.47% % over
the MobileNet, but only 0.01M more parameters and 0.01G
more FLOPs. Finally, compared with the above model,
parameters of ILCS are 2.24M and FLOPs are 4.26G. Under
the same parameter number or lower parameter number
structure, we can achieve higher accuracy. In the case of a
small increase in parameters, our method outperforms the
primitive baseline.

5.4. Model Visualization. To understand the ability of the
ILCS about paying attention to the defect area, we use the
heat map to visualize the attentionmap of each type of defect
image, which is a common method of attention
visualization.

In the visualization examples shown in Figure 9,
stronger attention areas are covered by the redder the
color, inversely the bluer the color. It can be seen from the
figure that our attention method has an obvious effect on
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Figure 9: Image attention visualization of six surface defects in NEU surface defect database.
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linear and block defects, such as “Inclusion,” “Patches,”
and “Scratches.” ,is ability to pinpoint attention areas
makes our approach more valuable for classification,
detection, segmentation, etc.

6. Conclusion and Future Work

In this article, a simple and effective block is proposed to
further explore the effectiveness of attention mechanism in
the classification of steel surface defects, that is the inter-
active attention block for the classification of steel surface
defects, which effectively enhances the attention weight of
defect areas.

Based on the fast feature extraction of LCS, we suggest
that the network should further pay attention to channel
information, spatial information, and its own interactive
information, so we add the interactive attention block to
space and channel attention to form MIAM. ,e results
show that our method can improve the attention of the
backbone network to the defect area, so as to improve the
identification accuracy of the backbone network.

,e image classification results in the NEU dataset show
that the interactive attention block in this article improves
the defect classification accuracy of different CNN models
based on lightweight backbone networks, and only a small
amount of calculation parameters is added.,e visualization
results show that the interactive attention block can help the
model to focus on most types of defects.

In addition, this block can be combined with the
backbone network of the lightweight model to achieve rapid
processing, so it can be used for industrial production
quality inspection and further realize the automation of steel
production.

Finally, our model has defects in many aspects. For
example, the current model only classifies the defect image
but does not locate the defect region. In addition, for in-
dustrial applications, complex industrial background noise
images should be considered to suppress the background
noise, which our model has not done. In the future, our
research direction will focus on defect location and indus-
trial complex background noise suppression andmodify and
improve our model to achieve higher accuracy and efficiency
in industrial defect detection tasks.
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