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1  |  INTRODUCTION

At high and ultra high field (B0 ≥ 3 T) the magnitude of the 
transmit radio frequency (RF) field |B1+| can deviate substan-
tially from the desired value. Therefore, an accurate measure-
ment of |B1+| is essential for many applications in MRI, such as 

the design and calibration of multi‐transmit RF‐pulses1,2 includ-
ing B+

1
‐shimming.3 In quantitative MRI it is crucial to correct 

for spatial flip‐angle variations influencing the idealized signal 
models, for example.4,5 For these purposes many techniques 
were developed to determine accurate B+

1
‐field maps. Due to the 

lack of diagnostic information fast acquisition is required.
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Purpose: Highly accelerated B+

1
‐mapping based on the Bloch–Siegert shift to allow 

3D acquisitions even within a brief period of a single breath‐hold.
Theory and Methods: The B+

1
 dependent Bloch–Siegert phase shift is measured 

within a highly subsampled 3D‐volume and reconstructed using a two‐step varia-
tional approach, exploiting the different spatial distribution of morphology and B+

1
‐

field. By appropriate variable substitution the basic non‐convex optimization problem 
is transformed in a sequential solution of two convex optimization problems with a 
total generalized variation (TGV) regularization for the morphology part and a 
smoothness constraint for the B+

1
‐field. The method is evaluated on 3D in vivo data 

with retro‐ and prospective subsampling. The reconstructed B+

1
‐maps are compared 

to a zero‐padded low resolution reconstruction and a fully sampled reference.
Results: The reconstructed B+

1
‐field maps are in high accordance to the reference for 

all measurements with a mean error below 1% and a maximum of about 4% for ac-
celeration factors up to 100. The minimal error for different sampling patterns was 
achieved by sampling a dense region in k‐space center with acquisition times of 
around 10–12 s for 3D‐acquistions.
Conclusions: The proposed variational approach enables highly accelerated 3D ac-
quisitions of Bloch–Siegert data and thus full liver coverage in a single breath hold.
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One of the first techniques to map the B+
1
‐field was the 

Double‐Angle‐Method (DAM),6,7 which utilizes the mag-
nitude ratio between two acquisitions with flip‐angles of α 
and 2α, respectively. However, this approach suffers from 
long acquisition times due to its inherent T1 dependency 
requiring long TR. To overcome this limitation improved 
versions of DAM were presented in8,9 by “applying a B+

1

‐insensitive magnetization reset at the end of each data ac-
quisition”.9 Other magnitude based methods were presented 
like (AFI10), exploiting the ratio of the steady‐state signal 
magnitude of two interleaved GRE‐acquisitions with differ-
ent TR, Dowell et al.11 which is based on the signal null at a 
certain flip‐angle or (DREAM by Nehrke et al.12) based on 
the ratio between a stimulated and an FID‐echo. In contrast 
to these works established on magnitude information other 
approaches exploiting the signal phase were proposed. One 
approach was presented by Morrell et al.13 using the phase 
information after two consecutive RF‐pulses along differ-
ent axes. An improved version which is more robust against 
B0‐inhomogeneities was presented in.14 Nevertheless, both 
methods require very short RF‐pulses and are therefore re-
stricted to non‐selective excitation.

A very promising phase‐based approach was presented by 
Sacolick et al.15 that exploits the shift in resonance frequency 
caused by an off‐resonant RF‐field—the so called Bloch–
Siegert (BS) shift. This method was the first being able to 
directly measure the B+

1
‐field and not only the flip‐angle α. 

Because this method is independent of T1 it does not suffer 
from long TR periods, however, an off‐resonant BS‐pulse 
with high magnitude and long duration is required to achieve 
a suitable signal. This increases the specific absorption rate 
(SAR) drastically and therefore limits the minimum possible 
TR due to patient safety constraints. As a result acquisition 
times in the order of minutes are necessary for volumetric 
measurements.

Two possibilities exist to further accelerate data acqui-
sition. First, imaging strategies were proposed to acquire 
more data after one BS‐encoding pulse using faster read‐out 
strategies such as turbo spin echo (TSE),16 EPI‐readout17,18 
or spiral trajectories.18,19 These approaches have, however, 
its own challenges at high and ultra‐high field strength. The 
second acceleration strategy is to acquire less Cartesian en-
codings, usually termed subsampling, and recover the miss-
ing information within the reconstruction using concepts of 
parallel imaging (PI) and compressed sensing (CS). Such an 
approach was proposed by Sharma et al.20 using a modified 
SPIRiT‐reconstruction,21 that yields acceleration factors of 
about 30 without sacrificing accuracy. This method already 
performs very well, but further improvement can be expected 
by directly applying a smoothness constraint to the recon-
structed B+

1
‐field. In Zhao et al.22 a Tikhonov regularization 

was applied to improve the B+
1
‐field estimation especially 

in low signal regions in a multi‐transmit setting out of fully 

sampled BS‐data. In the case of subsampling this has not 
been done so far. Specific sampling patterns typically play 
an important role for the reconstruction of morphological im-
ages from subsampled data.23 Therefore we also investigated 
this influence for B+

1
‐mapping in this study.

For single breath hold 3D‐B+
1
‐mapping we propose a 

highly accelerated method based on the efficient recon-
struction of subsampled BS‐data using a two‐step regu-
larization strategy. This tailored regularization reflects 
the prior knowledge of piece‐wise smoothness on the un-
derlying morphological image and the prior knowledge 
of spatial smoothness on the B+

1
‐field. This allows us to 

exploit shared information present in the measured data. 
Evaluation of the resulting algorithm is carried out with 
retrospectively and prospectively accelerated in vivo mea-
surements against fully sampled BS‐data. Furthermore, we 
demonstrate abdominal in vivo acquisition with full liver 
coverage during a single breath hold.

2 |  THEORY

2.1 | Bloch Siegert approach for  
B+

1
‐mapping

By applying an RF‐field with arbitrary resonance‐offset 
ωBS, a slight shift in resonance frequency can be observed 
in any NMR experiment.24 This effect depends on the 
RF‐magnitude and was exploited in15 to map the spatial 
varying B+

1
‐field by applying an off‐resonant RF‐pulse 

(BS‐pulse) between excitation and readout in an arbi-
trary MRI sequence, causing a B+

1
‐ dependent phase shift 

ϕBS after that pulse in each voxel. Under the assumption 
ωBS ≫ γB1 (Sacolick et al.15) this additional phase shift 
only depends on the spatially varying squared B1 peak‐
magnitude B2

1,peak
 and a pulse‐shape dependent constant 

KBS. The factor KBS can be computed as a function of the 
normalized BS‐pulse‐shape B1,norm(t) with duration Tpulse,  
the resonance‐offset ωBS and the gyro‐magnetic ratio γ 
leading to the following equation for the phase shift ϕBS 
(see Equation 6 in15):

To separate the phase shift ϕBS from other effects influenc-
ing the signal phase (background phase) such as B0‐field 
inhomogeneities, receiver coils or excitation, a reference 
measurement is required, which is typically performed as an 
acquisition with the negative resonance‐offset −ωBS to in-
crease the signal‐to‐noise ratio (SNR) in the final B+

1
‐ map. 

The signals of these two acquisitions, I+ for positive and 
I− for the negative resonance‐offset, are proportional to the 

(1)�BS = B2
1,peak ∫

Tpulse

0

(
�B1,norm(t)

)2

2�BS(t)
dt = B2

1,peak
⋅KBS
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magnitude of the magnetization M, the background phase ϕ0 
and the desired BS‐phase ϕBS.

The B+
1
‐map is given as the peak value of the applied BS‐

pulse B1,peak. It can be calculated easily from these two meas-
urements in the fully sampled case by a complex division of 
the independently reconstructed images, I+ and I−, by refor-
mulation of Equation 1 under the assumption of temporally 
constant ϕ0 as follows:

2.2 | Variational BS‐reconstruction from 
highly subsampled data
The proposed approach to accelerate the B+

1
‐mapping is to 

employ a tailored subsampling of Fourier data combined with 
variational image reconstruction. The two measurements with 
positive and negative resonance‐offset as described above 
yield subsampled Fourier data kj+ and kj− corresponding to 
the two images I+ ≃ |M|ej(�0 +�BS) and I− ≃ |M|ej(�0−�BS), 
respectively. Our goal is to obtain the phase shift ϕBS from 
these measurements. Due to the subsampling, however, it is 
not possible to separate this phase shift from the magnetiza-
tion |M| and the background phase ϕ0 directly in the meas-
ured k‐space data. To overcome this, we use a variational 
approach to recover the three unkonwn quantities from the 
subsampled Fourier data. To this aim, a direct approach 
would be to seek for morphological data p ≃ |M|ej�0 and 
phase shift data q ≃ ej�BS with |q| = 1 given as solutions of 
the minimization problem

Here the first two terms match the pointwise products 
pq ≃ |M|ej(�0 +�BS) and pq ≃ |M|ej(�0−�BS), with q̄ being the 
complex conjugate of q, to the corresponding acquired data 
kj+ and kj−, respectively. The last two terms employ a regular-
ization on the morphological data p and the phase shift data 
q. The regularization parameters λ and μ control the influ-
ence of the data fidelity terms on the whole cost function in 
comparison to the regularization terms weighted identically 
with one. Their choice depends on the noise‐level and image 
resolution. The data fidelity terms are defined as the sum over 
the squared L2‐norm in each of Nc receiver channels j. The 

MR forward model is given by a point wise multiplication 
with the precalculated receiver coil‐sensitivity maps cj, the 
discrete Fourier operator  and the subsampling patterns P+ 
and P− for each acquisition.

Although Equation 5 is a rather natural approach for 
the problem under consideration, it comprises the solution 
of a non‐convex optimization problem, also when using 
convex regularization terms R1 and R2. In particular, even 
if we would drop the non‐convex constraint |q| = 1, due 
to the mappings (p,q) ↦ pq and (p,q) ↦ pq̄, the data fidel-
ity terms are still non‐convex. As a result, one can gen-
erally not expect to obtain a globally optimal solution of 
Equation 5.

To overcome the non‐convexity, we reformulate Equation 
5 using a change of variables, where we define u = pq and 
v = q

2. With these new variables, the data fidelity term in 
Equation 5 reads as

We see that the variable v only appears in the second term. 
Now adding two regularization terms for u and v instead of 
the ones on p and q as in Equation 5 would still yield a non‐
convex problem which in particular comprises two data fi-
delities for u. However, if we drop the second data fidelity 
for u (which corresponds to using less measurements), the 
minimization problem for u decouples from the terms in-
volving the variable v. This allows to separately first solve 
a convex variational problem for u = pq ≃ |M|ej(�0 +�BS) and 
afterwards, having u fixed, a second convex variational prob-
lem for v = q

2
≃ e−j2�BS, where we drop the non‐convex con-

straint |q| = 1 to obtain convexity. The phase shift ϕBS can be 
obtained directly from the optimizer v̂.

The first step is realized by solving the convex minimiza-
tion problem

where we employ the second order total generalized varia-
tion (TGV2

�
) functional25 for regularization of the unknown u, 

which contains morphological information that is modulated 
by a smooth phase shift. The functional TGV2

�
 is known to be 

a suitable image prior for morphological MR images since it 
enforces piece‐wise smooth solutions, which is exactly the 
behavior of MR images with edges at tissue boundaries and 
modulated excitation and receiver inhomogeneities. Its ap-
plicability in MRI was already demonstrated in26 for recon-
struction from subsampled measurements, diffusion‐tensor 
imaging,27 quantitative‐susceptibility mapping28 or in joint 
MR‐PET reconstruction.29 The TGV2

�
 functional is defined 

according to,30,31 where the parameter α = (α0, α1) balances 

(2)I+ ∝ |M|ej(�0+�BS)

(3)I− ∝ |M|ej(�0−�BS)

(4)B1,peak =

√
arg

(
I+∕I−

)

2KBS

=

√
�BS

KBS

(5)

min

p,q

�q� = 1

�
2

Nc∑
j

‖P+ (cjpq)−kj+‖2
2

+
�
2

Nc∑
j

‖P− (cjpq)−kj−‖2
2
+ R1(p) + R2(q).

(6)

(u,v) ↦
�

2

Nc�

j

‖P+ (cju)−kj+‖2

2
+

�

2

Nc�

j

‖P− (cjuv)−kj−‖2

2
.

(7)û = arg min
u

𝜆

2

Nc�

j

‖P+ (cju)−kj+‖2
2
+ TGV2

𝛼
(u),
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between first order derivative information and second order 
derivative information. The ratio �0

�1

 is fixed to a value of 
√

2 
in the 2D and to 

√
3 in the 3D case, which was found to be a 

robust choice32 in image reconstruction.
The second step of obtaining the phase information is re-

alized via the solution of the convex optimization problem

Here, the unknown v corresponds to the B+
1
‐field, which 

is known to be spatially smooth, and hence the squared 
L2‐norm of the image gradient is used for regularization 
(H1‐regularization).33

Overall, this yields to a two‐step reconstruction method 
that comprises the sequential solution of two convex optimiza-
tion problems such that the optimizer v̂ ≈ e−j2𝜙BS of the second 
optimization problem exhibits a phase equal to the doubled 
BS‐phase ϕBS without morphological structure leading to

3 |  METHODS

3.1 | Implementation

3.1.1 | Numerical solution
The optimization problem in Equation 7 of the proposed 
two‐step algorithm belongs to the class of non‐smooth con-
vex optimization problems that can be solved efficiently with 
the primal‐dual splitting algorithm proposed in.34 The spe-
cific adaption of Equation 7 to the primal‐dual framework is 
described in.26 The optimization problem in the second step 
(Equation 8) is a smooth and convex problem that can be 
solved using the well‐known conjugate‐gradient (CG) algo-
rithm35 on the normal equations. Defining the linear forward 
operator in Equation 8 as K:v ↦ (P− [cjû ⋅v])j= 1,⋯, Nc

, this 
accounts to solve

3.1.2 | Reconstruction framework
The overall reconstruction framework was implemented 
in MATLAB (MathWorks, Inc., Natick, Massachusetts). 
To reduce the calculation time, the iterative optimization 
for Equations 7 and 8 were implemented in C++/CUDA 
(NVIDIA Corporation, Santa Clara, CA) using a modified 

version of an open‐source GPU‐library (AGILE)36 and a 
reconstruction library (AVIONIC).37 Receiver coil‐sensi-
tivities were estimated from the fully sampled k‐space data 
using the method proposed by Walsh et al.,38 that was also 
used for coil combination to calculate the fully sampled ref-
erence and the zero padded low resolution estimates from 
the multi‐coil measurements. We further note that data nor-
malization was carried out with respect to the maximum of 
a Hamming‐filtered low resolution estimate from the posi-
tive BS‐dataset similar to.39 The reconstruction framework 
with examples can be found online at “https://github.com/
IMTtugraz/BSReconFramework”.

3.2 | Validation and parameter optimization
To assess the practical applicability of the developed algo-
rithm, different in vivo investigations from healthy volun-
teers with retrospective and prospective subsampling have 
been performed.

3.2.1 | In vivo measurements
All in vivo measurements were gained from five male healthy 
volunteers in the age between 28 and 33 with the approval 
of the responsible ethics committee on a Skyra 3 T system 
(Siemens, Erlangen, Germany). To measure the BS‐shift 
a GRE sequence was modified by adding an off‐resonant 
Gaussian shaped RF‐pulse between excitation and readout as 
stated in15 with a duration Tpulse = 10 ms, an off‐resonance fre-
quency fBS = 4 kHz and an on‐resonant equivalent flip‐angle 
αBS = 1000∘ leading to a pulse constant KBS = 53.4 rad/G2. 
Measurement data was acquired using a 20‐channel head/neck 
receive‐coil (Siemens, Erlangen, Germany) and the birdcage 
body‐coil for transmit. The acquired in vivo 3D brain datasets 
have a matrix size of 128 × 128 × 32 as in,20 a squared FOV 
with 230 mm, a resolution of 2 mm in slice direction and a 
slice oversampling of 25%. TE and TR were set to minimal 
values of TE/TR = 13.5/95 ms, respectively, and an excita-
tion flip‐angle of α = 25∘ was used which corresponds to the 
mean Ernst‐angle in gray and white matter. The minimal TE 
is restricted by the length of the BS‐pulse and the TR by the 
SAR‐constraint. The acquisition parameters for liver and knee 
dataset were adjusted to a matrix size of 128 × 128 × 44 and 
128 × 128 × 52, a FOV of 220 and 150 mm and a resolution 
in slice direction of 3.2 and 2.5 mm, respectively.

3.2.2 | Error evaluation
The reconstructed B+

1
‐maps B1rec were validated against a ref-

erence map B1ref, which is a fully sampled dataset. The error 
maps are defined as |B1ref−B1rec|∕B1nom with a normalization 
to the desired B1 magnitude B1nom necessary to achieve the 
nominal flip‐angle αBS. This error measure is proportional to 

(8)v̂ = arg min
v

𝜇

2

Nc�

j

‖P− (cjûv)−kj−‖2
2
+

1

2
‖∇v‖2

2
.

(9)B1,peak =

√
− arg (v̂)

2KBS

.

(10)�KH(Kv−k−) + ∇H∇v = 0,

or equivalently

(�KHK−Δ)v = �KHk−.
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the correction error in many quantitative MRI models. Each 
result is further evaluated as mean absolute error (MAE), 
its median value (medAE) and the 99% quantile q99% over 
a certain region of interest (ROI) covering the whole brain 
inside the cranial bone structure. For the evaluation of ran-
dom subsampling patterns all three error measures are given 
as average over 10 independent trials. The reconstruction re-
sults were compared to the fully sampled reference and a low 
resolution estimate, which is obtained as zero padded inverse 
FFT with subsequent coil combination for both measure-
ments using38 and Equation 4. Furthermore, results are evalu-
ated by an error histogram.

3.2.3 | Tuning of the  
regularization parameters
In our proposed approach we need to tune two regulariza-
tion parameters μ and λ in order to achieve optimal re-
sults. For that purpose we first performed a grid search 
for one particular measured dataset and subsampling pat-
tern. Those led to the minimum MAE were fixed for all 
further experiments. The found values are λopt = 64 and 
μopt = 5.0 · 10−4.

3.2.4 | Subsampling patterns
The in vivo data were retrospectively subsampled from the 
fully sampled reference k‐space data. Initially, we used a 
rectangular region in k‐space center (block pattern) as sub-
sampling pattern which is defined by a fixed number of n×m 
Cartesian encodings in ky and kz phase encoding direction. 
Results with this type of pattern were already shown in.40 
The block sampling strategy was used, because the B+

1
‐de-

pendent information is mostly encoded with low spatial fre-
quency information. However, in compressed sensing image 
reconstruction, it is common to use irregular subsampling 
patterns, to fulfill the incoherence condition. Therefore, ran-
domized sampling schemes as proposed in the seminal work 
of Lustig et al.41 were investigated. Therein, random sam-
ples are generated according to polynomial density kernels 
around the k‐space center. In order to generate more densely 
sampled patterns we also substituted the polynomial kernels 
with Gaussian density kernels. Block and Gaussian pat-
ters are schematically visualized in Supporting Information 
Figure S1. The benefit of random sampling was explored 
firstly, for only the positive and secondly for both, positive 
and negative, BS‐pulse encoding as described in.42

F I G U R E  1  Retrospectively subsampled: B+

1
‐map in μT for fully sampled reference, low resolution estimate and the result of the proposed 

two‐step reconstruction method for a retrospectively subsampled dataset in the brain of a healthy volunteer for a block size of 4 × 4, 10 × 6 and 
12 × 4 encodings in the k‐space center. The results are shown as central slice of the 3D‐dataset. The right part of each column shows the error map 
for the corresponding result as normalized error in percent of the desired B1 peak‐magnitude. The MAE is given as the mean of the error map over 
the whole 3D‐brain inside the cranial bone structure for each case [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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The random pattern described in41 is defined by the pa-
rameter p, which is the polynomial degree used in the density 
function. A higher p‐value means that the sampling points are 
spread more uniformly over the whole k‐space. The Gaussian 
density pattern is described by its standard deviation σy and σz 
in both phase encoding directions. The effect of such patterns 

with different distribution parameters and a fixed accelera-
tion factor R were evaluated against the fully sampled refer-
ence. For the acquisition of prospectively subsampled data 
the sequence was modified, such that only an adjustable num-
ber of Cartesian encodings are acquired in k‐space center in 
both phase encoding directions.

T A B L E  1  Retrospectively subsampled: MAE, medAE and q99% inside the described ROI for different block sizes in percent of the desired B1 
peak‐magnitude and the corresponding acceleration factor R. The values are given for the low resolution estimate and the result of the proposed 
two‐step reconstruction method

Zero Padded Two‐step Reconstruction

pattern R MAE (%) medAE (%) q99% (%) MAE (%) medAE (%) q99% (%)

4 × 4 256.0 5.768 3.124 46.726 1.433 1.062 6.518

6 × 4 170.7 3.834 2.529 21.843 0.938 0.700 4.220

6 × 6 113.8 3.534 2.452 18.810 0.846 0.637 3.748

8 × 4 128.0 2.956 1.973 17.881 0.812 0.622 3.350

8 × 6 85.3 2.699 1.824 16.811 0.747 0.564 3.216

8 × 8 64.0 2.681 1.799 17.651 0.728 0.549 3.121

10 × 4 102.4 2.049 1.482 9.154 0.731 0.558 3.084

10 × 6 68.3 1.857 1.366 8.187 0.669 0.505 2.891

12 × 4 85.3 1.521 1.139 6.779 0.665 0.512 2.799

12 × 6 56.9 1.416 1.039 6.511 0.609 0.463 2.593

12 × 12 28.4 1.321 0.968 5.672 0.573 0.437 2.417

F I G U R E  2  Retrospectively subsampled: Error histogram for the retrospectively subsampled dataset compared to the fully sampled reference 
in percent of the desired B1 peak‐magnitude for block sizes of 4 × 4, 10 × 6 and 12 × 4 encodings in the k‐space center. The error histograms are 
shown for zero padded low resolution estimate and the result of our proposed two‐step reconstruction method [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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4 |  RESULTS

Figure 1 shows results of the proposed two‐step reconstruc-
tion method on retrospectively subsampled measurement 
data in the brain for different block sizes. The results are 
compared to the fully sampled reference and a low resolu-
tion estimate with the same amount of data. The B+

1
‐maps 

gained by zero padding (low resolution) are highly cor-
rupted with artifacts especially in low signal regions where 
dominant phase jumps are likely to occur. In contrast to 
that the two‐step reconstruction method yields artifact free 
results in very good accordance to the fully sampled refer-
ence for block sizes with 10 × 6 and 12 × 4 encodings and 
even for a block size of 4×4 the error is bounded to compa-
rable low values. In Table 1 MAE, medAE and q99% values 
for different block sizes are summarized for both methods. 
All three error measures show a substantial improvement 
for our two‐step reconstruction approach compared to re-
sults gained from low resolution data for all cases.

Figure 2 displays error histograms for the low resolution 
estimate and the proposed two‐step reconstruction method to 
visualize the error distribution inside the described ROI. The 
histograms are shown for a retrospectively subsampled data-
set with block sizes of 4 × 4, 10 × 6 and 12 × 4 encodings 
in the k‐space center. The error histograms for the proposed 
two‐step reconstruction are much narrower for all block sizes 
as compared to zero padded results. Using the proposed two‐
step reconstruction method about 1.4%/1.7%/11% of all vox-
els exceed a defined error limit of 2.5% for pattern sizes of 
12 × 4, 10 × 6 and 4 × 4 compared to 16%/23%/55% using 
zero padding.

Figure 3 shows the MAE value for different block sizes as 
a function of the regularization parameters μ and λ. The error 
stays stable over a wide range, reflecting the algorithm’s ro-
bustness to non‐optimally tuned regularization parameters. 
Furthermore, for those sampling patterns where the block 
size has a similar ratio of both phase encoding directions as 
the imaging matrix (12 × 4 and 10 × 4 encodings in k‐space 
center) a lower sensibility with respect to changes in λ and μ 
can be observed.

Figure 4 shows results for the two‐step reconstruction 
method for different irregular subsampling patterns. Pattern 
combinations that irregularly sample higher frequency infor-
mation in the TGV‐part P+ while only densely sampling the 
k‐space center in the H1‐part P− (patterns 1 and 2) did not 
improve the reconstruction quality but lead to an increase in 
error, especially if the distribution favors sampling higher 
spatial frequencies. Using two different irregular sampling 
patterns with the same distribution parameters in both parts 
of the reconstruction also introduces artifacts. Increased re-
construction quality is achievable when the same irregular 
pattern is used in both reconstruction steps as it is done in 
cases 4–7, where the error decreases the more sampling is 
concentrated around the k‐space center. The highest concen-
tration is achieved using a Gaussian density function (pattern 
6) which yielded the highest B+

1
‐accuracy. Furthermore, the 

Gaussian density function allows even higher acceleration 
with only slight increase in error (pattern 7). Compared to the 
best block‐sampling pattern (12 × 4 encodings in Figure 1) 
a slight improvement in error with equal acceleration rate R 
can be observed, nevertheless for the acquisition of prospec-
tively subsampled data block‐sampling was used to keep the 
acquisition protocol simple.

F I G U R E  3  MAE inside the described 
ROI as a function of both regularization 
parameters λ and μ for different block 
sizes (8 × 8, 10 × 4, 12 × 4 and 12 × 12 
encodings in k‐space center) in percent of 
the desired B1 peak‐magnitude. For this 
evaluation the retrospective subsampled 
brain dataset shown in Figure 1 was 
used [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Figures 5 and 6 show results obtained with the proposed 
two‐step reconstruction approach from prospectively subsa-
mpled brain, knee and liver datasets from different healthy 
volunteers. For the brain and knee dataset we further provide 
an additional fully sampled dataset as reference. For the liver 
dataset it is not feasible to obtain a fully sampled reference 
due to breath hold limitations such that an overlay of the B+

1

‐field on a morphological scan is provided. To further show 
the improvement of the proposed method over zero padding 
Figure 6 also provides zero padded results of the liver dataset 
for comparison. Zero padded results for brain and knee data-
set are further shown in Supporting Information Figure S2. 
For brain and knee dataset the results of our two‐step recon-
struction are in high agreement with the fully sampled refer-
ence, whereas the knee dataset shows a slight corruption due 

to high blood flow in the leg artery that leads to phase errors. 
The effect is much more prominent in the reference than in 
the final results of the proposed method. For the abdominal 
dataset in Figure 6 some minor heart‐motion related artifacts 
outside the liver tissue are visible.

5 |  DISCUSSION

In this work we presented a variational two‐step approach 
to reconstruct the B+

1
‐field from highly subsampled BS‐data. 

Different subsampling strategies were investigated on the 
basis that the spatially smooth B+

1
‐field information mostly 

relies on low spatial frequencies in the k‐space center. In the 
initial hypothesis we assumed that it might be advantageous 

F I G U R E  4  Retrospectively subsampled: First row: Reconstruction results of the proposed two‐step reconstruction method in μT using 
different subsampling patterns. Second row: Corresponding error maps as normalized error in percent of the desired B1 peak‐magnitude (Reference 
see Figure 1). Third row: Combinations of subsampling patterns for the first step P+ (TGV, +ωBS, left pattern) and the second step P− (H1, −ωBS, 
right pattern) were investigated as follows: Case 1 and 2: 12 × 4 block‐pattern in k‐space center in H1‐part and a variable density pattern out of41 
in TGV‐part with p = 14.4 and p = 25 respectively. Case 3: Different instances of this pattern with p = 14.4 in both parts. Case 4 and 5: The same 
instances of this pattern with p = 14.4 and p = 25 respectively. Cases 6 and 7: Pattern with Gaussian density function with σy = 5 and σz = 2, in case 
7 with a higher acceleration factor. For each case the achieved acceleration R, the MAE, the medAE and the q99% quantile inside the described ROI 
are given in percent of the desired B1 peak‐magnitude as mean over 10 trails with different realizations out of the described probability distribution 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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to sample a broader distribution of spatial frequencies for the 
reconstruction of the TGV2 regularized part I+ to better char-
acterize the morphological basis. The performed subsampling 
experiments, however, showed that it is more important to 
sample a dense k‐space center region for both BS‐acquisitions 

and to encode in both measurements the identical k‐space 
lines. This behavior can probably be explained by the fact 
that subsampling artifacts depend on the specific encoding 
pattern and their suppression is more effective for similar oc-
currence in both parts of the reconstruction. It could be shown 

F I G U R E  5  Prospectively subsampled: B+

1
‐map in μT for fully sampled reference and the result of our proposed two‐step reconstruction 

method with 10 × 6 and 12 × 4 encodings in the k‐space center and the corresponding error map in percent of the desired B1 peak‐magnitude from 
prospectively subsampled data. The B+

1
‐maps are shown for a brain and knee dataset from two different healthy volunteers. All results are shown in 

a transverse, coronal and sagittal orientation [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  6  Prospectively subsampled: B+

1
‐map in μT as result of our proposed two‐step reconstruction method with 10 × 6, 12 × 4 and 

12 × 6 encodings in the k‐space center in the liver of a healthy volunteer. These results are compared to those gained with zero padding using the 
same amount of data. The datasets were measured prospectively subsampled and acquired in a single breath hold. Due to the lack of a reference 
in the liver dataset, the reconstructed B+

1
‐map (10 × 6 encodings) is also shown as an overlay to a morphological scan to show the underlying 

morphological structure. All results are shown in a transverse, coronal and sagittal orientation [Colour figure can be viewed at wileyonlinelibrary.
com]
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that two different instances of a random pattern with the same 
distribution parameters exhibit substantially more artifacts in 
the final B+

1
‐map as compared to the reconstruction results 

using the identical encoding pattern. The investigation of the 
error for different distributed sampling patterns showed a flat 
minimum for a compact sampling in the k‐space center. The 
retrospective subsampling study (see Figure 1) suggest that a 
compact sampling with a block‐pattern of similar ratio as the 
imaging matrix yields nearly as good results as with Gaussian 
distributed dense sampling (see Figure 4) in terms of accu-
racy and achievable acceleration. Thus, the block sampling 
approach was implemented for in vivo measurements to sim-
plify the acquisition protocol.

In contrast to this work, the authors in20 used the SPIRiT 
method21 to perform a joint reconstruction with staggered 
pattern, the acceleration potential was only investigated on 
top of a fixed number (20 × 20, 32 × 32) of auto calibration 
lines in a multi‐transmit system. Since the proposed algo-
rithm also includes the principles of parallel imaging it re-
lies on the precomputation of receiver coil‐sensitivities. For 
high acceleration factors this translates to an increased error 
when the highly subsampled BS‐data is used for estimation. 
It is then recommended to either use prescan calibration data 
or a concurrently measured dataset after the BS‐calibration 
scan. The application of the proposed method to multi‐trans-
mit data and different k‐space trajectories is straight‐forward 
and will be subject to future research. A question which may 
arises is the ability to capture very localized B+

1
‐field varia-

tions occurring for parallel transmit coils or at higher field 
strength. To give an idea of the behavior the experiment in 
Supporting Information Figure S3 shows the B+

1
‐map in a 

phantom placed very close to the elements of a small‐animal 
birdcage coil. Near these elements very localized B+

1
‐field in-

homogeneities occur which can be captured quite well with 
the proposed method. Nevertheless, depending on a specific 
coil configuration a detailed examination of the undersam-
pling pattern would be necessary, which might lead to larger 
block sizes.

The investigation concerning the dependency of the re-
construction quality on the model parameters λ and μ showed 
that these are fairly stable over a wide range and across differ-
ent pattern sizes for a given SNR scenario. Since the SNR is 
usually only altered slightly it is possible to achieve robust re-
construction results without additional tuning. GPU powered 
reconstruction on a NVIDIA Geforce Titan Xp GPU takes 
about 30 s for the complete 3D‐measurement.

General limitations of the BS‐method are phase drifts or 
phases fluctuations between positive and negative BS‐en-
coding. Although the used interleaved acquisition scheme43 
makes the method more robust against phase drifts, phase 
fluctuations may still be an issue within regions with fast 
and pulsatile phase changes such as large arteries. In Figure 
6 this becomes visible, for example, in the right part of the 

liver dataset due to heart motion or in Figure 5 within the  
knee dataset due to blood flow in the leg artery. Since  
the proposed method enforces smoothness on the B+

1
‐field the 

error due to local disturbances is effectively suppressed and 
interpolated based on the local neighborhood in the resulting 
B+

1
‐map (see knee dataset in Figure 5). In Figures 1 and 5 the 

described interpolation effect leads to an alleged increased 
error in the cranial bone structure where the fully sampled 
reference exhibits low signal leading to an uncertainty in the 
reference map. Therefore, this region was excluded from the 
error analysis.

In this work, we also performed an investigation about 
the feasible acceleration potential for 3D acquisitions and 
the expectable error in the B+

1
‐field with respect to the fully 

sampled reference. For all investigated regions receiving 
array coils with 20–32 active coils were used. For these 
applications acceleration factors from 80 to 100 were 
achieved that reduces the acquisition time into the range 
of 10–12 s for the whole 3D‐dataset. From retrospective 
subsampling experiments mean errors below 1% and max-
imal errors below 4% were observed for the investigated 
setting and used acceleration factors. Further acceleration 
is achievable for a higher number of independent receiver 
coils or by sacrificing accuracy.

Similar acquisition times for whole brain coverage are 
still possible by a combination of BS‐based B+

1
‐mapping 

with spiral readouts and optimized BS‐pulses (12 s)18,19 or 
below 40 s combined with EPI readout.17 However, these 
methods are prone to artifacts in particular at high and ul-
trahigh field strength. Nevertheless, the combination of the 
proposed method with such trajectories is straight‐forward 
and further acceleration can be expected. For regions that 
allow a long readout train 3D‐single‐shot acquisition might 
be feasible. However, in this work we focused on the robust 
implementation of accelerated BS‐mapping for widely avail-
able Cartesian imaging.

In a recent work44 a method is described, where inter-
leaved acquisition and ECG‐triggering are combined in a 
proper way to acquire cardiac B+

1
‐maps. By a combination of 

this approach and the proposed method a 3D cardiac B+
1
‐map 

in a few heart beats seems possible.

6 |  CONCLUSIONS

A new highly accelerated 3D B+
1
‐mapping method based 

on the BS‐shift and reconstruction by variational mod-
eling was introduced. The method is able to reconstruct 
3D B+

1
‐maps from parallel acquired Cartesian encodings 

within a typical breath‐hold period of a patient using ac-
celeration factors of up to 100. With Cartesian encoding 
the method is stable even at very high field strength. The 
reconstruction errors were estimated from retrospective 
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subsampling experiments and were found to be below 
1% in mean and 4% in maximum.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Schematic representation of the block pattern 
and the irregular pattern with Gaussian density function. For 
the block pattern a rectangular region in k‐space center with a 
predefined number of n × m Cartesian encodings in ky and kz, 

respectively is used. The irregular pattern with Gaussian den-
sity function is defined by the standard deviation σy and σz in 
both phase encoding directions. Here the ±2σy,z area is shown 
in red. The sampling pattern is gained by selecting a random 
number of Cartesian encodings according to the probability 
density function. The readout direction is kx in all cases 
FIGURE S2 Prospectively subsampled: B+

1
‐map in μT for 

fully sampled reference and the zero padded results with 
10 × 6 and 12 × 4 encodings in the k‐space center and the 
corresponding error map in percent of the desired B1 peak‐
magnitude from prospectively subsampled data. The B+

1

‐maps are shown for a brain and knee dataset from two differ-
ent healthy volunteers. All results are shown in a transverse, 
coronal and sagittal orientation 
FIGURE S3 Prospectively subsampled: B+

1
‐map in μT for 

fully sampled reference and the proposed two‐step recon-
struction method measured with a block size of 12 × 4. The 
measurement was performed with a TX/RX small‐animal 
birdcage coil with an inner diameter of 4 cm. The cylindrical 
agar phantom was placed very close to the elements of the 
birdcage, leading to localized B+

1
‐field variations similar as in 

a parallel transmit setting. The measurement was performed 
using a FOV of 40 mm and a flip angle α = 12∘. To achieve 
optimal reconstruction results for this special case the regu-
larization parameters have to be retuned, leading to the fol-
lowing values: λ = 5, μ = 16 · 10−4
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